New Exact Solutions, Dynamical and Chaotic Behaviors for the Fourth-Order Nonlinear Generalized Boussinesq Water Wave Equation

Chen, Cheng and Wang, Zuolei and Anco, Stephen C. (2021) New Exact Solutions, Dynamical and Chaotic Behaviors for the Fourth-Order Nonlinear Generalized Boussinesq Water Wave Equation. Advances in Mathematical Physics, 2021. pp. 1-13. ISSN 1687-9120

[thumbnail of 8409615.pdf] Text
8409615.pdf - Published Version

Download (1MB)

Abstract

Based on the extended homogeneous balance method, the auto-Backlund transformation transformation is constructed and some new explicit and exact solutions are given for the fourth-order nonlinear generalized Boussinesq water wave equation. Then, the fourth-order nonlinear generalized Boussinesq water wave equation is transformed into the planer dynamical system under traveling wave transformation. We also investigate the dynamical behaviors and chaotic behaviors of the considered equation. Finally, the numerical simulations show that the change of the physical parameters will affect the dynamic behaviors of the system.

Item Type: Article
Subjects: Euro Archives > Mathematical Science
Depositing User: Managing Editor
Date Deposited: 02 Jan 2023 10:14
Last Modified: 24 Jun 2024 04:01
URI: http://publish7promo.com/id/eprint/723

Actions (login required)

View Item
View Item