Improving prime editing with an endogenous small RNA-binding protein

Yan, Jun and Oyler-Castrillo, Paul and Ravisankar, Purnima and Ward, Carl C. and Levesque, Sébastien and Jing, Yangwode and Simpson, Danny and Zhao, Anqi and Li, Hui and Yan, Weihao and Goudy, Laine and Schmidt, Ralf and Solley, Sabrina C. and Gilbert, Luke A. and Chan, Michelle M. and Bauer, Daniel E. and Marson, Alexander and Parsons, Lance R. and Adamson, Britt (2024) Improving prime editing with an endogenous small RNA-binding protein. Nature. ISSN 0028-0836

[thumbnail of s41586-024-07259-6.pdf] Text
s41586-024-07259-6.pdf - Published Version

Download (6MB)

Abstract

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3′ ends of CRISPR–Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3′ ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3′ ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.

Item Type: Article
Subjects: Euro Archives > Medical Science
Depositing User: Managing Editor
Date Deposited: 08 Apr 2024 08:03
Last Modified: 08 Apr 2024 08:03
URI: http://publish7promo.com/id/eprint/4629

Actions (login required)

View Item
View Item