Post Seismic Debris Flow Modelling Using Flo-2D; Case Study of Yingxiu, Sichuan Pronvince, China

Adegbe, Mamodu and Alkema, Dinand and Jetten, Victor G. and Agbor, Ako Thomas and Abdullahi, Idris Nda and Shehu, Onoduku Usman and Unubi, Abraham Stephen (2013) Post Seismic Debris Flow Modelling Using Flo-2D; Case Study of Yingxiu, Sichuan Pronvince, China. Journal of Geography and Geology, 5 (3). pp. 101-115. ISSN 1916-9779

[thumbnail of 28390-99097-2-PB.pdf] Text
28390-99097-2-PB.pdf - Published Version

Download (1MB)

Abstract

In many parts of the world debris flows are one of the most dangerous of all mass wasting events. Mountainous areas with high slope instability, high seismic activities and extreme rainfall condition are the main triggering factors. The Monday, May 12, 2008, mega-earthquake of magnitude 8.0 that struck the Wenchuan area, Northwestern Sichuan province in China was catastrophic. This event, led to co-seismic landslides and subsequent rainfall induced debris flow in Yingxiu catchment on August 14th, 2010. The catchment has a very steep topography, an area of 5.35 km2 and a channel length of 3.55 km. The aim of this research is to model the post seismic debris flow, Parameterize and calibrate the event. Two main initiation zones were identified based on susceptibility assessed from geomorhological mapping and formed the bases for input in the FLO-2D model. 161, 350 m3 (64.54%) of the debris flow volume was modeled with FLO-2D in a manner consistent within the limit of the data available. FLO-2D model do not incorporate entrainment of materials in the transport zone. Thus, limitation to the production of the total deposits volume on the debris flow fan. The model was parameterized and the result shows that, Sediment concentration and the coefficient of friction were the two main parameters that affected the velocity of debris flow, area of inundation and the impact force respectively. Finally, the debris flow was calibrated using a back analysis of the debris flow event of 2010.

Item Type: Article
Subjects: Euro Archives > Geological Science
Depositing User: Managing Editor
Date Deposited: 10 Jun 2023 04:37
Last Modified: 20 Oct 2023 03:37
URI: http://publish7promo.com/id/eprint/2730

Actions (login required)

View Item
View Item