Okuyade, W. I. A. and Abbey, T. M. (2017) A Blood Flow Model of a Bifurcating Artery. Asian Journal of Physical and Chemical Sciences, 3 (2). pp. 1-15. ISSN 24567779
Okuyade322017AJOPACS35528.pdf - Published Version
Download (350kB)
Abstract
A flow model of blood in a normal bifurcating artery is presented. The models of the problem are solved using the regular perturbation series expansion. Solutions of the temperature, concentration, velocity, Nuselt number, Sherwood number and skin friction are realized, and presented quantitatively and graphically using the Maple 18 computational software. It is noticed, among others, that the increase in Grashof number increases the temperature, velocity, Nusselt number, Sherwood number and wall shear stress, whereas the Hartmann number increases the concentration but decreases the temperature, velocity and wall shear stress. These results have some attendant physiologic implications on the well-being of man.
Item Type: | Article |
---|---|
Subjects: | Euro Archives > Physics and Astronomy |
Depositing User: | Managing Editor |
Date Deposited: | 17 May 2023 04:07 |
Last Modified: | 13 Jan 2024 03:46 |
URI: | http://publish7promo.com/id/eprint/2515 |