Navigation Patterns and Scent Marking: Underappreciated Contributors to Hippocampal and Entorhinal Spatial Representations?

Lebedev, Mikhail A. and Pimashkin, Alexey and Ossadtchi, Alexei (2018) Navigation Patterns and Scent Marking: Underappreciated Contributors to Hippocampal and Entorhinal Spatial Representations? Frontiers in Behavioral Neuroscience, 12. ISSN 1662-5153

[thumbnail of pubmed-zip/versions/2/package-entries/fnbeh-12-00098-r1/fnbeh-12-00098.pdf] Text
pubmed-zip/versions/2/package-entries/fnbeh-12-00098-r1/fnbeh-12-00098.pdf - Published Version

Download (2MB)

Abstract

According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks.

Item Type: Article
Subjects: Euro Archives > Biological Science
Depositing User: Managing Editor
Date Deposited: 10 Mar 2023 05:57
Last Modified: 30 Jan 2024 06:13
URI: http://publish7promo.com/id/eprint/2052

Actions (login required)

View Item
View Item