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Background. Malaria remains a significant public health problem, especially in resource-poor settings. We aimed to forecast the
year 2021 monthly confirmed malaria cases in the northwestern province of Zambia. Methods. *e total number of confirmed
monthly malaria cases recorded at health facilities over the past 7-years period (January 2014 to December 2020) was taken from
the District Health Information System version 2 (DHIS.2) database. Box–Jenkins autoregressive integrated moving average
(ARIMA) was used to forecast monthly confirmed malaria cases for 2021. STATA software version 16 was used for analyzing the
time series data. Results. Between 2014 and 2020, there were 3,795,541 confirmedmalaria cases in the northwestern province with a
monthly mean of 45,185 cases. ARIMA (2, 1, 2) (0, 1, 1)12 was the best fit and the most parsimonious model. *e forecasted mean
monthly confirmed malaria cases were 60,284 (95%CI 30,969–121,944), and the total forecasted confirmed malaria cases were
723,413 (95%CI 371,626–1,463,322) for the year 2021.Conclusion.*e forecasted confirmedmalaria cases suggest that there will be
an increase in the number of confirmedmalaria cases for the year 2021 in the northwestern province.*erefore, there is a need for
concerted efforts to prevent and eliminate the disease if the goal to eliminate malaria in Zambia by 2030 is to be realized.

1. Background

Malaria remains a significant public health challenge in low
and middle-income countries (LMICs) despite some ad-
vancements in diagnostic and treatment modalities and
resources applied to prevention, control, and elimination
[1–3]. Malaria is a disease caused by infection of parasites of
Plasmodium species and transmitted through infected
Anopheles mosquito bites [4, 5]. However, though pre-
ventable and treatable, malaria continues to contribute
significantly to global morbidity and mortality, especially in
LMICs, mainly in sub-Saharan Africa, Latin America, and
Asia [3, 6, 7]. Globally, in the year 2019, approximately 229
million people were estimated to have had malaria, with
about 409,000 reported deaths due to the disease [8]. *e
African region has a disproportionately significant share of

the global malaria burden, which accounted for 94% of
malaria cases and deaths in 2019 [8]. As of 2019, malaria
transmission was endemic in 87 countries and territories,
mainly in Africa, Asia, and South America. Malaria has
substantial economic consequences at individual, house-
hold, and country levels, such as low individual productivity,
household food insecurity, and poor economic growth,
respectively [9]. It is estimated that the annual cost of control
and elimination interventions is US$ 3 billion, whilst a
recent systematic review estimated the annual per capita cost
of control and elimination at US$ 2.21 and 3.00, respectively
[8, 9].

*ere have been significant prevention and control in-
tervention measures and efforts to eliminate malaria
[7, 10, 11]. Malaria elimination is one of the key priorities in
Zambia’s National Health Strategic Plan, and it is the main
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objective for the 2017–2021 National Malaria Elimination
Strategic Plan [11, 12]. With the support from international
organizations and partners such as the Global Fund to fight
AIDS, tuberculosis, and malaria, the United States Presi-
dent’s Malaria Initiative, and the World Bank, Zambia,
utilize vital interventions such as indoor residual spraying
(IRS), distribution of long-lasting insecticidal nets (LLINs),
prompt diagnosis and treatment of malaria cases, and in-
termittent preventive treatment of malaria in pregnancy
(IPTp) among others to fight the disease [11, 13]. However,
in certain parts of the Zambia, such as the northwestern
province, there has been a persistence of malaria cases, and
in some years, even resurgence incidents have been recorded
[5, 14]. Malaria is still one of the leading causes of morbidity
and mortality, especially in children aged below five years
with the peak of transmission during the rainy season,
between December and April every year [2, 15].

*ere is a need to estimate future malaria occurrence for
planning and intervention purposes to mobilise additional
malaria elimination programming resources. *e autore-
gressive integrated moving average (ARIMA) time series
method can produce an estimation model with known
monthly malaria cases [16]. Forecasting malaria cases is
essential for allocating appropriate preventive control
measures and eventual elimination strategies [5]. Time series
analysis can predict malaria in a particular month based on
preceding months [16, 17]. *ere is heterogeneity in malaria
occurrence in Zambia in terms of geospatial distribution and
temporal effects of temperature and precipitation [2, 11].
*erefore, we designed this study to develop a temporal
model for forecasting confirmed malaria cases based on
previous malaria cases in the northwestern province of
Zambia, one of the subnational regions with malaria
resurgence.

2. Methods

2.1. Study Area. *e study was conducted using data from
the northwestern province of Zambia, which is one of the ten
provinces of Zambia and it lies between 13.005°S and
24.9042°E and covers an area of 125, 826 square kilometres,
and its estimated population for the year 2020 was 950,789
[18]. More than three-quarters (77%) of the province is rural
and has an average annual rainfall of more than 1200mm
which is above the national average of about 1000mm [2].
*e higher rainfall predisposes the province to an increased
risk of malaria; thus, predicting malaria in one of the high
burden areas can help the country in the fight against the
disease. Resistance to commonly used insecticides such as
pyrethroids has also been documented in Zambia in areas
adjacent to the Northwestern province. However, due to
limited research conducted in the country, the authors did
not find literature on insecticide resistance in the province
[19, 20]. *e Churches Health Association of Zambia
(CHAZ) compliments the Ministry of Health in managing
malaria programs in this region. Over the time period
considered in this study, mass distribution campaigns of
LLINs in households in 2014 and 2017 were done, while
continuous distribution to children below five years and

pregnant women was done at health facilities during under-
five clinics and antenatal clinics, respectively [21]. Other
services, such as IPTp, case management, and social
behavioural change communication, weredone on a routine
basis throughout the years. Indoor residual spraying is done
annually in selected households [11]. Information on health-
seeking behaviour among the population in the north-
western province with suspected symptoms of malaria is not
available; however, it has been noted that the presence of
chronic carriers of malaria parasites among the adult
population may lead to underestimation of the true number
of malaria cases in the population over the time period of the
study [22]. Among the children under the age of five years, a
national survey in 2015 found that only about 22% who had
had a fever in the two weeks preceding the survey had sought
treatment from health facilities [5]. Despite these limitations
in available data, for planning purposes for those that seek
medical care at health facilities, the monthly reported cases
of confirmed malaria through the District Health Infor-
mation System (DHIS) is helpful to health authorities.

2.2. Data Collection. All health facilities in Zambia collect
routine attendance data and report monthly to the district
health authorities.*e district health offices, in turn, collate
the inputs from all health facilities within their jurisdictions
and report to the Ministry of Health Headquarters via the
web-based District Health Information System version 2
(DHIS.2). Malaria cases confirmed by either the rapid
diagnostic tests (RDT) or microscopy in the communities
by community health volunteers and health facilities are
reported through the system. CHAZ supports the Ministry
of Health in managing malaria programs in three prov-
inces, namely, eastern, northwestern, and southern prov-
inces. *e number of monthly confirmed malaria cases
(RDTs and microscopy) from January 2014 to December
2020 was extracted from the DHIS.2 database by CHAZ
monitoring and evaluation staff, using a Microsoft Excel
data extraction sheet.*ere have not been policy changes in
malaria diagnosis using either RDTs or microscopy during
the time of the study as RDTs were introduced before 2014
[23].

2.3. Modelling of Time Series. *e ARIMA model, which is
also known as the Box–Jenkins methodology, was used to
model the time series and was applied to confirmed malaria
cases [16]. *is methodology was based on the presence of
autocorrelation within the time series [24]. *e time interval
was equally spaced, while the model’s construction was done
on stationary data (constant mean and variance over time)
[24]. It was applied on count data that were continuous
(number of confirmed cases per month), and studies have
suggested that there should be at least 50 observations, while
our study had 84 observation [25].

2.4. Notation of the ARIMA. An important notation: p
stands for the order of the autoregressive (AR) component. d
stands for the order of differencing. q stands for the order of
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the moving average (MA) component, which is an error of
the difference between the observed and estimated values
[26].

A seasonal ARIMA model is represented by ARIMA
(p, q) (P, D, Q) s, where p and P represents autoregressive
and seasonal autoregressive, respectively; d and D are the
nonseasonal and seasonal differencing, respectively. For q
and Q, these are the moving average parameters and sea-
sonal moving average parameters, respectively, and s rep-
resents the longevity of the seasonal period; in this case, it is
12.

*e Box–Jenkins methodology was used to model the
ARIMA and through four main steps: identification, esti-
mation, diagnostics, and forecasting (Figure 1).

Step 1. ARIMA model identification
*e ARIMA model identification requires that the data

are stationary. Stationary data require that there are no
systematic changes in the mean and variance and no peri-
odic variation. *is was achieved by first-order differencing
the data. After the first-order difference, the graphical tools
used to identify the model were autocorrelation function
(ACF) and partial autocorrelation function (PACF). We
then used the ACF and PACF to decide the suitability of the
moving average and autoregressive components, respec-
tively. To further confirm the data’s stationarity, the aug-
mented Dickey–Fuller test was conducted, which has a null
hypothesis that data are not stationary. *e test statistics
(−4.024) was less than the critical value (−3.535) at the 1%
level, and the p value was statistically significant (p � 0.003),
suggesting stationarity of data.

Step 2. Model estimation
*e 8 tentative models that were obtained from the plots

of ACF and PACF were used for estimating the appropriate
model. All models were considered, and the appropriate
model selection was based on the one with the highest log-
likelihood value, lowest volatility, most significant coeffi-
cients, and with lowest BIC and AIC values.

Step 3. Model diagnostic checks
To test for adequacy of the selected ARIMA model, we

used the residuals of the fitted model to find the ACF plot,
and we checked for normal distribution. We then conducted
the portmanteau (Q) test to test for the presence of white
noise. In addition, the Q-Q plot and Shapiro–Wilk test were
performed to test for normality of the residuals. After di-
agnostic tests were completed, the ARIMA model was
considered appropriate when acceptable limits were within
acceptable limits.

Step 4. Forecasting
We used the model that was selected to forecast malaria

cases and evaluated the model forecast accuracy by dividing
the data into two groups. First, the development was based
on data from (January 2014 to December 2020), and fore-
casting was done for January 2021 to December 2021.
Forecast accuracy was assessed using the mean absolute
percentage error (MAPE). All data analyses were conducted

using STATA 16 (STATA Corp, College Station, Texas,
USA) with p< 0.05 was considered statistically significant.

2.5. Ethical Considerations. Approval to conduct this study
was obtained from the ERES Converge Institutional Review
Board Committee (Ref. no. 2020 Nov 003). No personal data
were used as the data were in aggregate form; therefore,
confidentiality was maintained.

3. Results

From January 2014 to December 2020, there were 3,795,541
malaria cases for all ages in northwestern province. In the
time series plot of monthly confirmed cases of malaria, there
were seasonal trends that were observed. *e augmented
Dickey–Fuller (ADF) test results showed the presence of unit
root (z(t)� −0.852, p � 0.835, lags� 15), suggesting that the
series was not stationary (Figure 2(a)). But after the first
differencing, the series became stationary (Figure 2(b)), and
all further statistical analyses were conducted on stationary
data.

To identify the AR andMAprocess’s appropriate lags, we
used the correlograms (plots of ACF and PACF against lags
lengths), ACF, and PACF (Figure 3). *e first two lags of the
ACF were significant (outside the 95% CI band). For the
PACF, the first two lags were significant and lag 14 with
decaying over time. Based on the ACF and PACF plots,
tentative models were identified.

Using the log-likelihood, sigma-squared (volatility),
number of significant coefficients, Akaike information cri-
teria (AIC), and Bayesian information criteria (BIC), ini-
tially, first-order differences were assessed, followed by

Diagnostic checks
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Figure 1: Summary of the Box–Jenkins methodology.
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nondifferenced models. Model identification was based on
the one with the highest log-likelihood ratio, lowest sigma-
squared (volatility), the highest number of significant co-
efficients, lowest Akaike information criteria (AIC), and
lowest Bayesian information criteria (BIC). *e ARIMA (2,
1, (2) (0, 1, 1)12 model was identified as the most ideal
(Table 1).

Plots of the autocorrelation function (ACF) and partial
autocorrelation (PACF) of the ARIMA model residuals
showed that ACFs and PACFs were not significantly dif-
ferent from zero (white noise) (Figure 4). *e portmanteau
Q-test (Q15�18.4, p � 0.241) favoured the null hypothesis
of no autocorrelation in the residuals. *e residual histo-
gram plot showed no volatility clustering and assumed the
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Figure 2: (a) *e original monthly malaria cases. (b) First-order differenced monthly malaria cases (2014–2020).
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Figure 3: Plot (a) of the autocorrelation function (ACF) and (b) partial autocorrelation function (PACF) for the first-order differenced
monthly malaria cases.
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residuals were homoscedastic (Figure 5). *e skewness-
kurtosis test (X2 � 4.4, p � 0.133) was consistent with the
model residuals’ normality assumption.

*e mean malaria cases for the year 2021 forecast period
was 60,284.*emodel estimated an increase in malaria cases
compared to themean of the previously observedmonths—a
plot of the observed and forecasted values of malaria cases
(Figure 5). A t-test of the observed and projected mean
malaria cases showed no significant difference (p> 0.05)
(Table 2). *e estimated mean absolute percentage error
(MAPE) was 10.4% (SD= 6.2).

A forecast for the year 2021 using the ARIMA (2, 1, 2) (0,
1, 1)12 model is given in Table 2. From Table 2, the forecast
for the year 2021, the meanmonthly confirmedmalaria cases
are expected to be 60, 284 (95% CI 30 969–121 944), which is
higher than the monthly means for cases from 2014 to 2020
of 45,185 cases. *is suggests a 33% increase in anticipated
malaria cases from previous years.

4. Discussion

*is study set out to forecast malaria cases in the north-
western province, one of the ten provinces in Zambia with
high transmission of malaria using the ARIMA model,
which used the model temporal dependence structure of a
time series occurrence [27, 28]. Herein, we developed an
ARIMA model that tried to offer a simple tool that can
forecast the probable number of malaria cases per month in
the future based on previously observed malaria cases over

several years. Our ARIMA (2, 1, 2) (0, 1, 1)12 model was the
best in forecasting malaria cases in the study area. *e
developed model was validated and seemed to fit the data
well, given the forecasting’s tolerable error level. Other
studies have found ARIMA (0, 1, 1) (0, 1, 0)12 [27] and (2, 1,
1) (0, 1, 1)12 [29] to be the best for forecasting malaria. Also,
studies from Ghana [30] and Ethiopia [31] have used the
ARIMA model for forecasting malaria cases.

Furthermore, ARIMA models have been used in the
assessment and prediction of new HIV infections in Korea
[32], forecasting of monthly dengue infections in Brazil
[33], the occurrence of haemorrhagic fever in China [34],
and hantavirus eruption in Chile [35]. ARIMAmodels have
one main advantage: they take care of periodic changes and
trends and random disturbances in the time series. To the
best of our knowledge as informed by our search of
published literature, this is the first time that ARIMA
models have been applied to project confirmed malaria
cases on a monthly basis for a given area in Zambia. *e
Ministry of Health can adopt this approach at provincial
and district levels in planning for malaria interventions and
management.

*is study established that ARIMA can predict monthly
confirmed malaria cases in the northwestern province of
Zambia. *e fitted model indicates the need for first-order
differencing to make the data stationary and then a second-
order autoregressive term and a second-order moving av-
erage term to accommodate serial correlation in the data.
*is suggests that expected malaria cases for each month are

Table 1: Estimation of the ARIMA model.

Tentative models for
malaria

ARIMA
(1,0,1)

ARIMA
(1,0,2)

ARIMA
(2,0,1)

ARIMA
(2,0,2)

ARIMA
(1,1,1)

ARIMA
(1,1,2)

ARIMA
(2,1,1)

ARIMA
(2,1,2)

Log-likelihood −893.8 −903.4 −899.2 −898.4 −893.8 −894.9 −882.7 −873.2
Significant coefficient 2 3 2 2 1 1 2 4
Sigma2 (volatility) 11471.2 11161.8 10607.2 10486.8 11471.2 11476.5 9795.2 8753.2
AIC 1823.4 1816.3 1808.5 1808.9 1795.6 1799.8 1775.4 1758.5
BIC 1833.1 1828.4 1820.6 1823.7 1805.1 1811.9 1777.5 1773.8
AIC, Akaike information criteria; BIC, Bayesian information criteria; ARIMA, autoregressive integration moving average.
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Figure 4: Histogram of the residuals.
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directly influenced by confirmed malaria cases in the pre-
vious month and the prediction errors of the current and
previous months. Our model suggests that it can be used to
inform, advocate, and plan for interventions for the year
2021 and going forward.

*is study found that the forecasted number of con-
firmedmalaria cases for the northwestern province in 2021 is
higher than that of the previously observed periods. *e
forecasted malaria cases are in keeping with a recent upsurge
in malaria cases reported in the secondary analysis of three
recent Malaria Indicator Surveys in Zambia [2].*e increase
is despite the recent implementation of prevention and
treatment interventions such as the mass distribution of
insecticide-treated nets [21], prompt diagnosis and treat-
ment of malaria cases, indoor residual spray, as well as
intermittent preventive therapy for pregnant women [2].
Malaria is endemic to Zambia, with transmission all year
round. Still, the northwestern province is among the

provinces with the highest malaria cases with peak trans-
mission during the rainy season between November and
April [2]. Although a recent study in Zambia showed that
climatic indicators such as rainfall and temperature were not
significant determinates of increases in malaria, ARIMA
models elsewhere have demonstrated otherwise, which in-
crease mosquito population and influence their biting be-
haviour [36, 37].

In this study, results indicate that the ARIMA (2, 1, 2)
model gives a good forecast of malaria cases for January
2021–December 2021 (12 months) with a 9% margin of
prediction error, i.e., MAPE� 9.4. *e error was higher than
4%, which was reported in another study that used the
ARIMA (2, 1, 1) (0, 1, 1)12 model to forecast the occurrence
of malaria cases in Bhutan [29]. One plausible explanation
for the difference could be that our observations covered a
slightly shorter period of 84 months compared to 168
months in the previous study, leading to more accuracy. In
the future, studies should consider assessing the effect of
other time-changing variables such as malaria treatment
policy, vector control, and malaria drug resistance on
malaria cases over time and also, forecast using different
models such as ARIMA models meteorological factors and
ARIMA without a constant term to see how the models
might perform.

4.1. Limitation. Our study has some limitations. Firstly, the
ongoing malaria interventions could distort the forecasted
values as we did not factor in interventions in the model;
however, the influence of the interventions in the province
on confirmed malaria cases has been captured indirectly as
we used the actual number of confirmed cases in the
province over the last seven years during which the various
interventions were ongoing. We believe our model will hold
when the levels of interventions continue at the same rates

Table 2: Forecast malaria cases for 2021 in the northwestern
province, Zambia.

Month (the year 2021) Forecast Lower limit Upper limit
January 122,049.90 121,495.80 162,604.00
February 123,641.20 108,579.60 178,702.80
March 118,253.70 80,397.05 176,110.30
April 99,178.90 46,707.79 159,650.00
May 70,390.03 14,445.38 136,334.70
June 47,424.95 — 112,919.00
July 29,822.21 — 94,503.10
August 20,056.04 — 83,788.29
September 16,845.45 — 81,019.86
October 18,681.90 — 84,604.55
November 29,024.87 — 92,084.34
December 28,043.86 — 101,001.30
Total 723,413.01 371,625.62 1,463,322.24
Mean 60,284.42 30,968.80 121,943.52
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and types of interventions applied. Secondly, the study did
not consider meteorological variables such as rainfall,
temperature, and humidity, which have been shown to
influence malaria transmission; equally, the effects of these
factors on the numbers of confirmedmalaria cases have been
captured indirectly through our use of actual monthly re-
ported cases of confirmed malaria; therefore, unless there
will be drastic climatic changes that are different from the
ones experienced in the last seven years, our model will still
hold. *irdly, this study predicted the malaria cases at the
provincial level, which is still a large area where there is
heterogeneity in geospatial terms. Different districts within
the province might experience malaria differently. However,
from the programs planning and implementation per-
spective, the provincial health authorities guide how the
districts and health facilities within the province operate;
therefore, planning at the provincial level can have more
impact in prioritising resources and advocacy for resource
mobilisation with the central government and cooperating
partners. We, therefore, feel that our approach can have a
better impact than when applied at lower levels such as
districts and health facility levels, given that lower capacities
exist at the district and health facility levels compared to the
provincial level in using data to engage central government
and cooperating partners.

5. Conclusion

*is study has been able to use historical data that considers
seasonality patterns at the provincial level to forecast malaria
cases on a monthly basis. *e predicted cases show an
expected increase. *e forecasted malaria cases provided in
advance can help planners and implementers of malaria
programs to effectively mobilise resources and implement
effective prevention and elimination measures. Further
studies should attempt to evaluate the usefulness of incor-
porating the forecasting model such as this one into the
existing malaria prevention and elimination programs to
assess its impact in reducing malaria and the cost of in-
tervention measures.
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