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In this paper, combined with the partial differential equation music signal smoothing model, a new music signal recognition
model is proposed. Experimental results show that this model has the advantages of the above two models at the same time,
which can remove noise and enhance music signals. This paper also studies the music signal recognition method based on the
nonlinear diffusion model. By distinguishing the flat area and the boundary area of the music signal, a new diffusion coefficient
equation is obtained by combining these two methods, and the corresponding partial differential equation is discretized by the
finite difference method with numerical solution. The application of partial differential equations in music signal processing is
a relatively new topic. Because it can accurately model the music signal, it solves many complicated problems in music signal
processing. Then, we use the group shift Fourier transform (GSFT) to transform this partial differential equation into a linear
homogeneous differential equation system, and then use the series to obtain the solution of the linear homogeneous differential
equation system, and finally use the group shift inverse Fourier transform to obtain the noise frequency modulation time-
dependent solution of the probability density function of the interference signal. This paper attempts to use the mathematical
method of stochastic differentiation to solve the key problem of the time-dependent solution of the probability density
function of noise interference signals and to study the application of random differentiation theory in radar interference signal
processing and music signal processing. At the end of the thesis, the application of stochastic differentiation in the filtering
processing of music signals is tried. According to the inherent self-similarity of the music signal system and the completeness
and stability of the empirical mode decomposition (EMD) algorithm, a new kind of EMD music using stochastic
differentiation is proposed for signal filtering algorithm. This improved anisotropic diffusion method can maintain and
enhance the boundary while smoothing the music signal. The filtering results of the actual music signal show that the
algorithm is effective.

1. Introduction

Music signal restoration and enhancement is an important
part of music signal processing, and it is a problem of early
auditory music signal processing. Music signal preprocessing
is the necessary work in the early stage of music signal anal-
ysis and processing, such as filtering to reduce the noise of
the music signal and enhance the edge of the music signal
[1]. Music signal recognition technology plays an important
role in improving the quality of music signals and is condu-
cive to the postprocessing of music signals, such as music
signal segmentation and music signal tracking [2]. Due to
the difficulty in solving the time-dependent solution of the
probability density function of the noise interference signal,
most of the current researches are based on statistical

models, and only the solution method of its steady-state
solution is given. The main reason is that the probability
density function satisfies that it is difficult to solve the par-
tial differential equations [3]. Traditional linear filtering
methods such as median filtering and Wiener filtering
can also blur the edges of the music signal while removing
noise. When the partial differential equation model is used
to restore the music signal, it can remove the noise and
keep the edge of the music signal. On this basis, this article
uses the impact filter model to improve it, which can make
the processed music signal have more edges while remov-
ing noise, so that it has the characteristics of music signal
recognition [4].

For statistical filters in music signal restoration, for
example, median and average filters use the median and
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arithmetic mean values of peripheral pixels in a window to
replace the central pixel value. The mean filter is com-
monly used to filter out Gaussian noise, and the median fil-
ter is commonly used to filter out impulse noise [5]. Filters
based on partial differential equations can use a broadly
continuous two-dimensional function to model the music
signal, thereby performing operations such as derivation
and integration of the music signal, which standardizes
the problem of music signal processing and makes the
description of the problem form becomes simple, and the
nonlinear filter in music signal processing is reunderstood
and analyzed [6]. The use of traditional linear filters to
restore and enhance the music signal contaminated by
noise will blur or even destroy the discontinuous informa-
tion of the music signal boundary, while the anisotropic
diffusion filter based on partial differential equations can
denoise and at the same time well keep the music signal
[7]. At the same time, the diffusion method based on par-
tial differential equations has some shortcomings. The most
important one is the computational cost of the diffusion
equation, which is related to the calculation of continuous
integrals. These computational inconveniences make the
anisotropic diffusion method difficult to apply to most
real-time videos [8].

The main research work of this paper is centered on the
application of partial differential equations in music signal
recovery and music signal recognition. It mainly analyzes
traditional music signal analysis methods and studies the
application of partial differential equation methods and
anisotropic diffusion equations in music signal restoration,
as well as their improved algorithms for music signal recog-
nition. Partial differential equation is a relatively sophisti-
cated method of music signal analysis and processing,
which has important research and application value and
requires in-depth research. The use of partial differential
equations for music signal processing is to process the music
signal as a whole. For example, it can well keep the edge
shape and position unchanged while denoising. On the basis
of summarizing the mathematical model of partial differen-
tial equation method in music signal processing, combining
partial differential equation and wavelet method, this paper
proposes a new denoising algorithm suitable for second-
order partial differential equations and high-order partial
differential equations. We focus on the simple and practical
wavelet threshold denoising method, and aiming at the
shortcomings of its threshold denoising, we propose a
denoising method based on wavelet transform and Wiener
filtering and introduce the modeling and denoising method
of partial differential equation image processing. The exper-
iment shows their effectiveness. The organic combination of
the two will overcome their shortcomings and get better
results. The variational model and the anisotropic diffusion
model have a complete theoretical framework, various
models, and mature numerical solutions. The introduction
of them into the field of music signal processing and com-
puter hearing undoubtedly provides a powerful tool for solv-
ing problems in this field. Therefore, the research topic of
this article has a certain theoretical background and strong
practical value.

2. Related Work

The idea of using partial differential equations for music sig-
nal processing was really established from Zhang et al. [9].
They introduced the concept of scale space, which expresses
a group of music signals on multiple scales at the same time.
The contribution to a large extent constitutes the basis of
partial differential equations for music signal processing.
The multiple scales of the music signal are obtained by
Gaussian smoothing, and the scale space of the music signal
can also be obtained by using the classical heat conduction
equation to evolve the music signal. Chen et al. [10] pro-
posed that the heat conduction equation is not the only
equation that can form a scale space and put forward the cri-
teria for forming a scale space. The anisotropic diffusion
model proposed by Farrokhmanesh and Hamzeh [11] is
the most influential in this field. They proposed to replace
the Gaussian diffusion with a selective diffusion that can
maintain the edge, which led to many theoretical and prac-
tical problems. Under the same framework, Todisco et al.
[12] proposed the method of reducing partial differential
equations (TV: total variation) proposed by shock filter,
which highlights the importance of partial differential equa-
tions in music signal processing.

In the fields of music signal processing and computer
hearing, there are some partial differential equations based
on curves and surfaces of curvature motion. Shahabi and
Moghimi [13] developed a level set numerical algorithm.
Their idea is to use a higher-dimensional hypersurface level
set to represent deformed curves, surfaces, or music signals.
This technique not only makes the numerical results more
accurate but also solves the topological structure problem
that was difficult to deal with before. Partial differential
equations can also be used for music signal segmentation.
The model proposed by Ando [14] integrates a variety of
music signal segmentation algorithms, causing many new
problems in theory and practice. Some scholars also have a
great influence on music signal segmentation algorithms
based on active boundaries. Later, many scholars extended
their work with geometric partial differential equations
[15–17]. Scholars used stochastic differential equations to
study the noise spectral density of switched capacitor cir-
cuits, linear and nonlinear time-varying circuits, and sto-
chastic differential equations to study the phase noise
model of oscillators [18–20]. Some researchers have used
stochastic differential equations to study the noise model in
mixers, stochastic differential equations to study the noise
problems in radio frequency circuits, and stochastic differen-
tial equations to study the noise problems in nonlinear time-
varying circuits. This type of research is so extensive because
the Brownian motion model can naturally correspond to
noise and can easily establish related stochastic differential
equations. Partial differential equations can also be used in
music signal inpainting. It is synonymous with music signal
interpolation. It was originally spread from artists who
repaired broken artworks by hand in museums. At present,
music signal inpainting technology is used in music signals.
There are many applications in processing, auditory analy-
sis, and digital technology, such as music signal restoration,
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music signal amplification, music signal superresolution
analysis, and error concealment in wireless music signal
transmission [21].

It can be seen that the basic equations used in music sig-
nal processing include impact filters, partial differential
equations, anisotropic diffusion, and active boundaries,
which can realize the recovery, enhancement, and segmenta-
tion of music signals. In the smoothing process, the strength
and direction of the music signal characteristics are detected
at the same time, and the smoothing result is a good combi-
nation of noise elimination and feature preservation, which
is a better music signal smoothing technology. Compared
with the thermal diffusion model, the anisotropic diffusion
model is actually a nonlinear parabolic partial differential
equation, whose diffusion speed is determined by the gradi-
ent of the music signal, which can take into account both
noise elimination and feature preservation. The algorithms
based on impact filters, partial differential equations, and
anisotropic diffusion studied in this paper are important
components of many music signal processing methods
based on partial differential equations, and they have posi-
tive significance for the improvement of these models and
numerical calculations.

3. Construction of a Model for Identifying
Music Signals Based on Partial
Differential Equations

3.1. The Solution Set Space of Partial Differential Equations.
According to the actual situation of music signal processing,
if the problem is transformed into a linear equation system,
the spectrum value of the coefficient matrix is generally
small, the linear equation system is often weakly conditional,
and the solution obtained at this time is often ill-posed. The
condition in the theorem is a sufficient condition for solving
the problem of definite solution, but it is not necessarily a
necessary condition, regardless of whether AðtÞ satisfies the
condition, but as long as it can satisfy the series.

f xð Þ = x ið Þ, i = 1,⋯,n ∣ n ∈ Zf g:
0 <min p xð Þ < f xð Þ − f x − 1ð Þ,
0 < 1 + að Þ × f xð Þ + f x − 1ð Þ <max p xð Þ:

( ð1Þ

For this reason, a variety of regularization methods for
solving ill-posed problems have been proposed by the
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Figure 1: The spatial distribution of the solution set of partial differential equations.
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academic community. These methods focus on maintaining
stability while maintaining solution information and use sta-
tistical methods, iterative methods, and variational methods
to obtain regularized solutions to inverse problems. Figure 1
shows the spatial distribution of the solution set of partial
differential equations.

The linear isotropic diffusion filter is the simplest of the
music signal smoothing algorithms based on partial differen-
tial equations. It has a distinct physical meaning. It can be
seen as a process of balancing internal concentration differ-
ences when the substance does not produce and die. Its
mathematical formula can be expressed as

lin
n⟶∞

〠
n

i=1
p xð Þ × x ið Þ − 〠

n

j=1
s i, jð Þ × x jð Þ

 !
= R i, jð Þ,

g xð Þ − 〠
n

i,j=1

∑j
k=1s k, ið Þ
s i, jð Þ = 0:

ð2Þ

In music signal processing, the diffusion rate of the linear
isotropic diffusion filter is constant; the diffusion rate of the
nonlinear isotropic diffusion filter corresponds to the local
structure of the music signal; the diffusion rate of the nonlin-
ear anisotropic diffusion filter corresponds to the local struc-
ture of the music signal. In the anisotropic diffusion
equation, the conductivity at each point is a matrix.

〠
n

i=1
∣x ið Þ − f xð Þ∣ = n × f xð Þ,

σ x, yð Þ = 1
E × ε x, xð Þð − 1 + tð Þ ε y, yð Þð Þ :

ð3Þ

Considering that the degradation of the music signal is
mainly caused by noise and the noise is regarded as a small
target with a large curvature of its contour line, let the iso-
density contour line of the noise part with large curvature
shrink to a point or even disappear over time, and the music
signal part with small curvature evolves into the contour of
the music signal and remains.

T = arg min f x, tð Þf g − arg min exp ið Þ
exp tð Þ
� �

,

σ x, xð Þ, σ y, yð Þ, σ z, zð Þf g⟶ ε x, yð Þ, ε y, zð Þ, ε z, xð Þf g:
ð4Þ

Let y be a music signal space, which is defined as a set of
piecewise smoothing functionals whose domain is f . In this
set, only the edges of the steps are discontinuous. The diffi-
culty in extending the energy functional defined in this
music signal space is that the gradient amplitude is discon-
tinuous on the edge of the step.

ε x, xð Þ = ∂f x, y, zð Þ
∂x

,

ε y, yð Þ = ∂f x, y, zð Þ
∂y

,

ε z, zð Þ = ∂f x, y, zð Þ
∂z

:

8>>>>>>><
>>>>>>>:

ð5Þ

Because the diffusion coefficient is nonzero, it represents
a forward degrading diffusion orthogonal to the gradient
direction. Since the direction of the edge is perpendicular
to the gradient, the well-defined smooth operator that pro-
tects the edge trend has received extensive attention.

ð ∂f xð Þ
∂x

dx = p′ xð Þ
p xð Þ − 1,

U = 1
2 ×

ð
Ω

σ z, xð Þσ x, yð Þσ y, zð ÞdΩ:

ð6Þ

Usually by setting each element of the thermal conduc-
tivity matrix, the diffusion effect is related to the direction
of strength. Along the gradient direction, the diffusion effect
should be set weaker, especially where the gradient value is
large. Along other directions, the diffusion effect should be
set stronger, so as to achieve the effect of smoothing and
denoising. The design of the thermal conductivity matrix
depends on the gradient of the music signal at the current
point. Therefore, the diffusion tensor changes with the posi-
tion of the space.

3.2. Music Signal Recognition Algorithm. The research on the
evaluation of the quality of music signal processing is one of
the basic researches in the discipline of music signal infor-
mation. For music signal processing or music signal com-
munication forms, the main body of the information is the
music signal, and an important indicator to measure this
system is the quality of the music signal. Music signal recog-
nition is to improve the subjective auditory display quality of
music signals.

W xð Þ =

∂2 f xð Þ
∂x2

0 0 0

0 ∂2 f xð Þ
∂y2

0 0

0 0 ⋯ 0

0 0 0 ∂2 f xð Þ
∂z2

2
66666666664

3
77777777775
: ð7Þ

The principle of music signal restoration is to compen-
sate for the degradation of the music signal so that the
restored music signal is as close as possible to the quality
of the original music signal. All of these require a reasonable
method for evaluating the quality of music signals.
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〠
i

<α 1ð Þ, u ið Þ >j j2 +〠
j

<α 2ð Þ, u jð Þ >j j2 = u i, jð Þj j2,

u x, yð Þ = �u x, yð Þ
v x, yð Þ = �v x, yð Þ

(
, x, y ∈ �S uð Þ:

ð8Þ

The meaning of music signal processing quality includes
two aspects: one is the fidelity of the music signal, that is, the
degree of deviation between the evaluated music signal and
the original standard music signal; the other is the intelligi-
bility of the music signal, which refers to the ability of the
music signal to provide information to people or machines.

p x, tð Þ+∇∗ ∇u x,tð Þk
∣∇u x, tð Þk ∣

 !
= 0: ð9Þ

The level set method is to regard the music signal as a set
composed of equidensity contours, consider that the degra-
dation of the music signal is mainly caused by noise, and
regard the noise as mostly small targets with larger curvature
of the equidensity contour. So the contour line of the high
curvature noise part shrinks to a point or disappears over
time, and the low curvature music signal part develops into
the contour of the music signal and remains. Figure 2 shows
a schematic diagram of the music signal recognition algo-
rithm. Although the most ideal situation is to be able to find
out a quantitative description method of the fidelity and
intelligibility of the music signal, as a basis for evaluating
the music signal and designing the music signal system.

In the real world, music signals captured by photo-
graphic equipment are often noisy music signals. For music
signals contaminated by noise, it is necessary to denoise the
music signals before using traditional music signal recogni-
tion algorithms. Then, from the actual situation of music
signal processing, when the problem is transformed into a
linear equation system, the general spectrum value of the
coefficient matrix is small, the linear equation system is often
weakly conditional, and the solution is generally ill-posed.
The difference between using partial differential equations
for music signal processing and traditional methods for
music signal processing is that traditional music signal pro-
cessing methods, such as filters, when performing music sig-
nal processing, only need to perform operations on the
music signal to get the result, but partial differential equa-
tions need to iterate repeatedly on the music signal when
processing the music signal, until a stable solution is
obtained after several iterations. In the iteration, the music
signals of each layer constitute a scale space. To this end,
various regularization methods for solving ill-posed prob-
lems have been proposed. These methods focus on main-
taining stability while maintaining solution information
and use statistical methods, iterative methods, and intersec-
tion methods to obtain regularized solutions to inverse prob-
lems. Some models that use partial differentiation can
enhance the edges of the image while removing the noise
of the music signal, and the processing speed is fast and
the processing accuracy is high.

3.3. Model Weight Factor Replacement. We use the function
to represent the music signal, where the music signal domain
Q is often taken as a rectangle (2-dimensional), and the
function value sweet (x) represents the grayscale (or bright-
ness) of the music signal at the image point x. In the com-
puter, the music signal function uðxÞ processed in the
process is a discretized music signal. The points (saraple)
are discretely sampled in the music signal domain Q. It
can be seen that the discovery probability information
entropy H begins to decrease with the increase of noise var-
iance D, and when it reaches the bottom, it increases with
the increase of noise variance D. The gray value on each
pixel is also discrete, often divided into 128 or 256 levels.
For the convenience of theoretical discussion, it may be
assumed that the music signal function uðxÞ is a continuous
music signal, that is, assuming that x takes points continu-
ously in the music signal domain, and the gray value at each
point is also continuously taken. In order to be able to effec-
tively process music signals, we first need to know how to
understand and represent music signals from a mathemati-
cal point of view. The music signal model and its representa-
tion method determine the music signal processing model to
a large extent.

The forward difference format is used in the time dimen-
sion. In order to maintain the peak of the music signal, the
forward (or backward) difference can be used to calculate I
-x and I-y. However, the center difference cannot be used
because the signal peaks will be smoothed. Finally, four diag-
onal gradient estimates are added to make the algorithm
more sensitive to edge information. Figure 3 shows the
two-dimensional scattered point distribution of the sensitiv-
ity of the extreme points of the music signal. Due to the
small number of iterations, the overall increase in calcula-
tions is not much. We can also see that the derived music
signal extreme points in the scale space are no more than
those obtained in the music signal, which satisfies the
requirement of continuous compression and simplification
in the scale space representation causality when the scale
parameter increases. In this sense, the Gauss convolution
kernel is the only one in the continuous scale space of the
music signal; that is, the repaired music signal correspond-
ing to the inner scale of the coarse resolution level can be
obtained by the convolution operation of the music signal
corresponding to the inner scale of the fine resolution level.

Table 1 shows the noise smoothing parameter distribu-
tion of music signals. The improved fourth-order partial dif-
ferential equation has obvious noise smoothing ability.
However, the relatively small edges in the music signal are
smoothed out together with the impulse noise, especially
the details where the edge length is small but the gray level
changes on both sides of the edge are large. In a large smooth
area, the noise points spread into blocks with similar gray
levels, and the smoothing ability needs to be strengthened.
Then, group shift Fourier transform is used to transform this
partial differential equation into a homogeneous linear dif-
ferential equation group. Finally, the time-dependent solu-
tion of the probability density function of the noise
frequency modulation interference signal after the radar
intermediate frequency filter is obtained. On the one hand,
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it performs anisotropic antidiffusion effect on the music sig-
nal contaminated by noise; on the other hand, it performs
adaptive statistical filtering on the music signal between each
antidiffusion, which well removes the obvious pulse points
left behind after antidiffusion. We improve the accuracy of
the next antidiffusion gradient estimation, greatly reduce
the number of iterations of the overall algorithm, and reduce
the model’s misjudgment of noise points and edge points so
that the new algorithm outputs music signals in various
areas that are properly smoothed while the edges are still
compared sharp and clear.

4. Application and Analysis of Music Signal
Recognition Model Based on Partial
Differential Equation Method

4.1. Music Signal Data Extraction. The input music signal
used in the experiment is a music signal with a = 0, b = 0:1
Gaussian noise and 10% salt and pepper noise, and the size
is 404 × 271 and 199 × 199, respectively. We analyze the out-
put results of various algorithms to compare the perfor-
mance of the P-M model, forward/backward anisotropic
diffusion model, and the proposed partial differential equa-

tion algorithm. The objective indicators used for analysis
are peak signal-to-noise ratio (PSNR) and mean square error
(MSE). The music signals shown in the following are output
in the sense of the best PSNR of various algorithms and basi-
cally match the output in the sense of the minimum MSE.
When the weights of the pixels are the same in each direc-
tion, it is the 4-point average smoothing method. It can be
seen that partial differential equations can express this iso-
tropic Gaussian smoothing method. In order to ensure the
characteristics of the music signal in all directions, it is nec-
essary to improve the partial differential equation into an
anisotropic distribution form.

Although the stable range of the parameter is known, in
the experiment, an exhaustive method is used to iterate in
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Figure 2: Schematic diagram of music signal recognition algorithm.
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Table 1: Music signal noise smoothing parameter distribution.

Parameter index Signal size (dB) Smoothing resolution Weight

1 19.71 1.32 0.13

2 20.46 1.81 0.52

3 17.61 0.97 0.09

4 17.13 1.37 0.26
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the stable range (0, 0.25) with a step size of 0.01 to find the
value of that can obtain the best PSNR. Figure 4 shows the
music signal peak signal-to-noise ratio matchstick graph.
The experimental results show that as long as is selected
within the stable range, the best PSNR output will not vary
greatly, but the best value is about 0.15. The numerical
results can be seen that compared with the soft stop value
method, the method proposed in this paper has a better
suppression effect on Gaussian noise in music signals; we
can obtain a higher signal-to-noise ratio, effectively reduce
noise interference, and better retain the edge part. Informa-
tion improves the quality of the music signal. A small value
will make the algorithm converge more slowly, but it can
always converge within 10 iterations. It can be seen that
the signal (music signal) is layered using wavelet for a sim-
ple hard threshold will cause obvious edge artifacts, which
will distort the results. It is worth noting that this method
does not increase the amount of calculations. Because the
decomposition and reconstruction of wavelets can be com-
pleted in a short time using algorithm and the data set in
the detail image is sparse, its scale diffusion will be carried
out quickly, so the amount of calculations in the whole
process will not increase. The partial differential equation
is better than the wavelet threshold in this respect, and
the processed music signal has a better auditory effect.
But the partial differential equation is that the signal is
processed as a whole. We can expect the signal (music sig-
nal) to be layered and then diffused, which will achieve
better results.

4.2. Model Simulation Realization. For two-dimensional
grayscale music signals, the effect of median filtering on
music signals is usually to take a rectangular window with
an odd side length and slide the window along the rows
and columns of the music signal point by point. The music
signal is at any pixel. The filtered output value is equal to
the median value of the gray value of all pixels in the window
when the center of the window moves to this point. It is
especially important that this method can strengthen the
edge and remove noise, while the scale space where the edge
is located is more stable than the linear scale space. Obvi-
ously, the most important parameter for blurring boundaries
in scale space is K . If K is too large, the music signal becomes
very blurred, which is similar to linear diffusion. If K is
small, it can protect the edge well. Therefore, we assume that
K = 0, which is called the stable inverse diffusion equation
(SIDES). If each frame of the sequence music signal or video
music signal is treated as a separate static music signal, due
to this correlation, it can be used to construct the informa-
tion of several frames of the music signal before and after
the music signal to be processed in the continuous video
sequence. Based on the anisotropic diffusion model of the
sequence music signal to improve the quality of the restored
music signal, this section only considers the situation of two
frames of images.

The proposed partial differential equation model can
output the best music signal in only 4 iterations, and a cer-
tain degree of smoothness is obtained in each area, while
the edges remain clear and sharp, and there is basically no

noise left. Figure 5 shows the histogram of the music signal
output recognition rate. The output PSNR has been greatly
improved to 21.51 dB, and the MSE is reduced by a mini-
mum of 40% to 0.356. It should be noted that comparing
the small gray area above each music signal, the output
music signal effects of other models almost smooth it out,
while the output music signal of the partial differential equa-
tion model can be well preserved. Moreover, the edges are
more obvious and accurate, and it can be seen that the
reproduction of the output music signal of the partial differ-
ential equation model is more accurate. With the input of
about the size of model, the partial differential equation
model requires iterative operations to output the best PSNR
music signal generally in about 5 times, and the best PSNR
can be improved by about 3 dB compared with the other
algorithms mentioned above.

Figure 6 shows a line graph of the music signal denoising
error rate comparison. If the music signal contains a lot of
noise, it can be processed by the threshold first, then the
appropriate scale diffusion, and finally superimposed to gen-
erate the coarse-scale music signal of the original music sig-
nal (when the noise is small, the music signal may not be
thresholded deal with). It preserves the boundary while
removing noise. It is worth noting that this method does
not increase the amount of calculation, because the decom-
position and reconstruction of wavelet can be completed in
a short time by algorithm, and the data set in the detailed
music signal is sparse, and its scale is diffused. It will be able
to proceed quickly, so the amount of calculations in the
entire process will not increase. Wavelet transform uses
wavelet coefficients to describe the changes of signals in dif-
ferent scale spaces. If the correct wavelet basis is selected, the
signal will be described by some important wavelet coeffi-
cients, and at the same time, Gaussian self-noise will con-
taminate part of the wavelet coefficients. Experiments show
that this method can not only improve the efficiency of the
algorithm and the signal-to-noise ratio of the music signal
but also achieve better auditory effects. It can be seen that
the coefficients of each direction are related to the gradient
at the point. When the gradient of the point is large (at the
edge), the corresponding weight is small, so the degree of
smoothness in this direction is small so that the directional
feature is retained.

4.3. Example Application and Analysis. First, we perform
bicubic interpolation on the low-resolution signal; the inter-
polation process will bring noise, which is filtered by equa-
tions to enhance the graphics while smoothing the noise.
The parameters are selected as c = 1, t = 0:2, and s = 0:8;
the iteration step size is 0.02, iterate 80 times. The experi-
ment successively added Gaussian white noise with a noise
variance of 0.02 to the standard image and used the
fourth-order partial differential equation method and the
method of this article to denoise the image. Among them,
the wavelet selects the wavelet to decompose the noisy image
in three layers, and N is the total number of pixels of the
image. It can be seen from the experimental results that
the auditory effect after filtering is more clear. At the same
time, it is found through calculation that the signal-to-
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noise ratio of the filtered music signal is also improved. It
can be seen that the result is obtained after first filtering
the music signal with the partial differential equation
method and then performing the watershed method for seg-
mentation. The original music signal is filtered, and the time
step is t = 0:02 seconds in the iteration process, and this gen-
eration is performed 100 times. It can be seen that when a
linear partial differential equation is used to amplify the
music signal, no matter how many times it is magnified,
the spots and the deviation of bright and dark areas are
not obvious, and the effect is better in areas where the gray
value of the image changes greatly. However, the edges of
objects in the music signal are small enough to be clear,
and the overall image looks excessively smooth.

The signal-to-noise ratio and subjective perception
determine the quality of a music signal. During the experi-
ment, we compared the signal-to-noise ratio of the music
signal before and after processing and extracted the edge of

the music signal with the same method to judge the influ-
ence of denoising on the edge information. Figure 7 shows
a ladder diagram of the filter resolution of the music signal.
It can be seen that the number of iterations required for the
P-M model to achieve the best PSNR output music signal
has reached 147. The output music signal is relatively fuzzy
and the best PSNR is only 17.141 dB, and the MSE is
0.941, which is higher. For the P-M model, if the size of
the input music signal is about partial differential equation,
it generally requires about 110 iterations, and the best output
PSNR does not exceed 18 dB. The number of iterations
required for the forward/backward anisotropic diffusion
model is greatly reduced to 49 (the input of partial differen-
tial equation size is generally less than 60 times), the edge
clarity of the output music signal is improved, but a lot of
noise is left. There are still chromatic aberrations in each
area, which results in the final PSNR which is still only
18.119 dB.
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The overall output of the P-M model is too blurry, and
the edges are not clear enough. The best PSNR is only
17.47 dB, and the MSE is high, 0.9176. The output noise of
the forward/backward diffusion model is more, but because
of the backward diffusion component, the music signal is
not too blurred, and the best output PSNR does not exceed
20 dB. The overall situation of partial differential equation
output has been improved, but there is a little error in the
music signal, such as dark spots on the larger white area in
the main part of the music signal, and the best output PSNR
still does not exceed 20 dB. The output of the proposed par-
tial differential equation model suppresses noise very well,
and the edges of many small areas can be kept clear without
leaving obvious noise. This algorithm effectively improves
the results after denoising and improves the peak signal-to-
noise ratio. Theoretically speaking, the noise is mainly con-
centrated in the high-frequency part. In order to combine
the advantages between the two and eliminate their short-

comings, this paper proposes a denoising method combining
partial differential equations and wavelet closed values. The
best output PSNR of the partial differential equation model
is 22.74 dB, which is significantly improved compared with
other algorithms, while the MSE is reduced to 0.306.

5. Conclusion

Based on the theory of partial differential equation method,
this paper proposes a model of music signal recognition,
uses the finite difference method to discretize the continuous
model, and discusses the influence of parameter changes on
the noise reduction effect in the new model. The original
music signal recognition algorithm based on forward and
backward diffusion has been improved so that the processed
image has better denoising and enhancement effects. Then,
according to the characteristics of the inherent mode func-
tion music signal and the residual function music signal
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decomposed by the EMD music signal, different stochastic
differential filtering strategies are adopted to filter each
layer, and the underwater music signal is simulated. Finally,
the inverse group shift Fourier transform is used to obtain
the time-dependent solution of the probability density
function of the noise FM interference signal after passing
the pulse intermediate frequency filter. The results show
that the method proposed in this paper has a good sup-
pression effect on nonlinear noise interference. The experi-
mental results show that this model has the enhanced edge
characteristics of the antidiffusion algorithm; the addition
of numerical statistical filtering not only eliminates the
instability of the antidiffusion but also removes the impulse
noise in the music signal well and has a good enhancement
edge and noise elimination ability. This paper proposes a
new music signal denoising algorithm based on the princi-
ple of threshold denoising, which performs initial denoising
on the original music signal. On this basis, the relationship
of the partial differential equation in the denoising process
of music signals was studied, a new threshold denoising
method was obtained, and a higher signal-to-noise ratio
was obtained. Numerical test results show that by using
this method to denoise the music signal, the purpose of
protecting edges and removing noise is achieved. The use
of partial differential equations for music signal processing
not only puts forward new research topics for the theoret-
ical research of partial differential equations but also plays
an important role in promoting the development of music
signal processing, signal analysis, and other issues, so it
has important theoretical value and has broad application
prospects.
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