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Abstract

In this paper, system of equations for ion sound and Langmuir waves (ISLWs) is studied to construct novel
exact solutions of the coupled nonlinear system. The extended F-expansion method is applied to get exact
solutions of ISLWs model. These solutions include many different expressions in hyperbolic, trigonometric,
rational and Jacobi elliptic function solutions, dark and bright solitary wave solutions. Geometrical shape for
some of the obtained results are plotted under the selection of proper parameters. Furthermore, we employed
the Lie point symmetry to investigate the conservation laws for the system.
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1 Introduction

Many physical phenomena that arising in various fields of science can be described by nonlinear evolution
equations (NLEEs) for instance optics, plasma wave, solid state physics, chemical physics, and mathematical
physics. To understand these nonlinear phenomena, many physicist and mathemati-cians have made efforts to
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get various exact solutions of them. The investigation of the exact solutions of NLEEs are important to provide
better information, know the mechanism and their applications. With the aid of symbolic computation software
such as Mathematica or Maple abundant methods are extensively studied to obtain exact solutions, for example
the Bäcklund transform [1, 2], the extended tanh-function method [3], the F-expansion method [4], sine-cosine
method [5], the extended F-expansion method [6], Jacobi elliptic function method [7], the Kudryashov method
[8], the extended Kudryashov method [9, 10], the lie point symmetry method [11]- [13] and other methods
[14]-[17]. The dynamical behavior for a famous class of NLEEs is presented in [18]. Two-step modified natural
decomposition method is proposed to determine the approximate closed form solutions or rather exact solutions
for the nonlinear Klein- Gordon equation [19].

In this study, we construct several kinds of exact solutions of the ISLWs model by applying the extended
F-expansion method. The ISLWs model [20]-[26] has the form as:

i Et + 1
2
Exx − nE = 0,

ntt − nxx − 2 (|E|2)xx = 0,
(1.1)

where the normalized electric field of the Langmuir oscillation is E e−iwpt and the normalized density perturbation
is n, x denotes the spatial and t denotes the time variables. The physical natures of ISLWs model is useful to
seek plasma physics and the effect on incoherent structures. The above system of Eq. (1.1) was formulated by
Zakharov [27] in 1972. Recently, many researchers used different techniques to find exact solutions of ISLWs
model. Demiray and Bulut [21] applied generalized Kudryashov method to get travelling wave solutions of
the ISLWs model. Also, soliton solutions of this system was considered by Seadawy et. al.[22], Alam and
Osman [23] and Mohammed et. al. [24]. The graphical of some specific solutions are useful to understand the
physical phenomena of Eq. (1.1). Moreover, conservation laws are great important in physics and mathematics.
Mathematical expressions of physical laws are the coservation laws, such as coservation of mass, energy and
momentum. The coservation laws can be used to study the properties of the existance, uniqueness and stability
of solutions.

The outline of this paper is as the following : Firstly, we summarized the analytical method that we will use to
construct novel exact solutions of the ISLWs model in section 2. In section 3, we get the solutions of the studied
model with Jacobi elliptic functions (JEFs) via the extended F-expansion method. The geometrical shape of
some solutions in the form of two-dimentional and three-dimentional have been plotted. Furthermore, the Lie
point symmetry and the conservation laws for (1.1) are obtained in section 4. Section 5 is results and discussion.
Finally, conclusions of the paper are presented in the latest section.

2 Summary of the Extended F-expansion Method

In this section, the extended F-expansion method [6], will summarize as follows:
Consider NLEEs

P (u, ut, ux, utt, uxx, ....) = 0. (2.1)

1- Suppose that u(x, t) = u(ξ) and ξ = c t+ k x+ ξ0, such that c and k are constants to be evaluated later and
ξ0 is an arbitrary constant. Then (2.1) is transformed to the following equation:

G(u, u′, u′′, ...) = 0, (2.2)

2- Suppose that the solutions of (2.2) in the form

u(x, t) = u(ξ) = A0 +

N∑
i=1

[AiF
i(ξ) +Bi F

−i(ξ)], (2.3)

where N is a positive integer and A0, Ai, Bi (i = 1, 2, ..., N) are constants to be determined. The function F (ξ)
satisfies the following ordinary differential equation (ODE):
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(F ′(ξ))2 = q0 + q2F
2(ξ) + q4F

4(ξ), (2.4)

and the values q0, q2 and q4 are constants.

3- Putting (2.3) with (2.4) in (2.2), we obtain a polynomial in F (ξ). Setting all coefficients of it to zero, we get
an algebraic equations for A0, k, Ai, Bi(i = 1, 2, ..., N) and c.
4- Setting the values of q0, q2, q4 and the corresponding JEFs F (ξ), we get many exact JEF solutions of Eq. (2.1).

The JEFs can be written as snξ = sn(ξ,m), cnξ = cn(ξ,m) and dnξ = dn(ξ,m), where m (0 < m < 1) is the
modulus of the elliptic function. The functions snξ, cnξ and dnξ become tanhξ, sechξ and sechξ, respectively
when m −→ 1. Also, snξ, cnξ and dnξ become sinξ, cosξ, 1, respectively when m −→ 0.

3 The Exact Solution of the ISLWs Model by the Extended
F-expansion Method

Suppose that the solution of (1.1) as the following:

E(x, t) = U(ξ) ei θ, n(x, t) = V (ξ), ξ = c t+ k x+ ξ0, θ = Ωx+ µ t, (3.1)

where c, Ω, k and µ are constants. Putting (3.1) in (1.1) and splitting the imaginary and the real parts, we get

(c+ Ω k)U ′ = 0 ⇒ c = −Ω k, (3.2)

k2 U ′′ − (2µ+ Ω2)U − 2U V = 0, (3.3)

(c2 − k2)V ′′ − 2 k2 (U2)′′ = 0. (3.4)

By integrating (3.4) twise and putting the integration constant to zero, we obtain

V (ξ) =
2 k2

c2 − k2
U2(ξ). (3.5)

Substituting (3.5) into (3.3), we obtain

k2(Ω2 − 1)U ′′ − (Ω2 − 1)(Ω2 + 2µ)U − 4U3 = 0. (3.6)

By using balancing procedure, we have N = 1. Then (3.6) has solution as

U(ξ) = A0 +A1 F (ξ) +
B1

F (ξ)
, (3.7)

where A0, A1, B1 are undetermined constants. Putting (3.7) into (3.6) and using (2.4), we get a polynomial in
the function F (ξ). Setting all coefficients of F (ξ) to zero, we have cases as follows:

Case 1

k = ±

√
Ω2 + 2µ

q2
, Ω = Ω, µ = µ, A0 = 0, A1 = ±

√
q4 (Ω2 + 2µ) (Ω2 − 1)

2 q2
, B1 = 0. (3.8)

Substituting (3.8) into (3.7), we have

U(ξ) = ±

√
q4 (Ω2 + 2µ) (Ω2 − 1)

2 q2
F (ξ), ξ = ±

√
Ω2 + 2µ

q2
x+ c t+ ξ0. (3.9)

Putting q0, q2, q4 and the JEFs solution for F (ξ) in (3.9) with (3.5) and (3.1). Therefore, we construct the exact
solutions of (1.1) as follows:
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Case 1.1: When q0 = 1, q2 = −1 − m2, q4 = m2 and F (ξ) = snξ. So, periodic wave solutions of (1.1)
given as,

E(x, t) = ±m

√
(Ω2 + 2µ) (1− Ω2)

2 (1 +m2)
eiΘ snξ, n(x, t) =

−m2 (Ω2 + 2µ)

(1 +m2)
sn2ξ, (3.10)

Case 1.2: Setting q0 = 1−m2, q2 = 2m2 − 1, q4 = −m2 and F (ξ) = cnξ, we have the JEFs solutions of (1.1)

E(x, t) = ±m

√
(Ω2 + 2µ) (Ω2 − 1)

2 (1− 2m2)
eiΘ cnξ, n(x, t) =

m2 (Ω2 + 2µ)

(1− 2m2)
cn2ξ, (3.11)

Case 1.3: Putting q0 = m2 − 1, q2 = 2 −m2, q4 = −1 and F (ξ) = dnξ. Thus, the periodic wave solutions of
(1.1) obtain as follows:

E(x, t) = ±

√
(Ω2 + 2µ) (Ω2 − 1)

2 (m2 − 2)
eiΘ dnξ, n(x, t) =

(Ω2 + 2µ)

(m2 − 2)
dn2ξ, (3.12)

Case 1.4: Putting q0 = 1
4
, q2 = m2−2

2
, q4 = m4

4
, we have F (ξ) = snξ

1±dnξ
. Thus, we construct solutions of (1.1)

expressed by rational expressions of JEFs:

E(x, t) = ± m2

2

√
(Ω2 + 2µ) (Ω2 − 1)

(m2 − 2)

snξ

1± dnξ
eiΘ, n(x, t) =

m4 (Ω2 + 2µ)

2 (m2 − 2)

(
snξ

1± dnξ

)2

, (3.13)

Case 1.5: If q0 = m2−1
4

, q2 = m2+1
2

, q4 = m2−1
4

we get F (ξ) = dnξ
1±m snξ . Then, we have the solutions of (1.1)

as

E(x, t) = ± 1
2

√
(m2−1)(Ω2+2µ) (Ω2−1)

(m2+1)
dnξ

1±m snξ e
iΘ,

n(x, t) = (m2−1)(Ω2+2µ)

2 (m2+1)

(
dnξ

1±m snξ

)2

,

(3.14)

Case 1.6: When q0 = 1−m2

4
, q2 = m2+1

2
, q4 = 1−m2

4
and F (ξ) = cnξ

1±snξ , we obtain

E(x, t) = ± 1
2

√
(1−m2)(Ω2+2µ) (Ω2−1)

(m2+1)
cnξ

1±snξ e
iΘ,

n(x, t) = (1−m2)(Ω2+2µ)

2 (m2+1)

(
cnξ

1±snξ

)2

,

(3.15)

Case 1.7: When q0 = −(1−m2)2

4
, q2 = m2+1

2
, q4 = −1

4
and F (ξ) = (m cnξ ± dnξ), we have

E(x, t) = ± 1
2

√
(Ω2+2µ) (1−Ω2)

(m2+1)
(m cnξ ± dnξ) eiΘ,

n(x, t) = −(Ω2+2µ)

2 (m2+1)

(
m cnξ ± dnξ

)2

,

(3.16)

Case 1.8: When q0 = 1
4
, q2 = m2+1

2
, q4 = (1−m2)2

4
and F (ξ) = snξ

cnξ±dnξ
, thus the solutions of (1.1) are

E(x, t) = ± 1−m2

2

√
(Ω2+2µ) (Ω2−1)

(m2+1)
snξ

cnξ±dnξ
eiΘ,

n(x, t) = (1−m2)2 (Ω2+2µ)

2 (m2+1)

(
snξ

cnξ±dnξ

)2

,

(3.17)
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Fig. 1. (a-f) 3D and 2D the periodic wave solution (3.10) are plotted when (+) sign is
taken with the parameters Ω = 1.5,m = 0.2, µ = −2.43 and ξ0 = 1 for 3D figure and t = 1 for

2D figure
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Fig. 2. The periodic wave solution (3.13) are plotted when (+) sign is taken for (a-f) 3D
and 2D with the choice of parameters Ω = 1.5,m = 0.2, µ = −2.43 and ξ0 = 1 for 3D figure

and t = 1 for 2D figure
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Fig. 3. The periodic wave solution (3.16) are plotted when (+) sign is taken for (a-f) 3D
and 2D with the choice of parameters Ω = 0.5,m = 0.6, µ = 1 and ξ0 = 1 for 3D figure and

t = 1 for 2D figure

Case 2

k = ±

√
Ω2 + 2µ

q2
, Ω = Ω, µ = µ, A0 = 0, A1 = 0, B1 =

√
q0 (Ω2 + 2µ) (Ω2 − 1)

2 q2
. (3.18)

Substituting (3.18) into (3.7), we obtain the general solutions as,

U(ξ) = ±

√
q0 (Ω2 + 2µ) (Ω2 − 1)

2 q2

1

F (ξ)
, ξ = ±

√
Ω2 + 2µ

q2
x+ c t+ ξ0. (3.19)

Putting q0, q2, q4 and the JEFs solution for F (ξ) in (3.19) with (3.5) and (3.1). Therefore, we have the exact
solutions of (1.1) as
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Case 2.1: When q0 = 1, q2 = −1 − m2, q4 = m2, and F (ξ) = snξ. So, the periodic wave solutions of
(1.1) given as

E(x, t) = ±
√

(Ω2 + 2µ) (1− Ω2)√
2 (1 +m2)

eiΘ nsξ, n(x, t) =
−(Ω2 + 2µ)

(1 +m2)
ns2ξ, (3.20)

Case 2.2: When q0 = 1−m2, q2 = 2m2 − 1, q4 = −m2 and F (ξ) = cnξ, then, the exact JEFs solutions of Eq.
(1.1) are

E(x, t) = ±
√

(1−m2)(Ω2 + 2µ) (Ω2 − 1)√
2 (2m2 − 1)

eiΘ ncξ, n(x, t) =
(1−m2)(Ω2 + 2µ)

(2m2 − 1)
nc2ξ, (3.21)

Case 2.3: If q0 = m2 − 1, q2 = 2−m2, q4 = −1 and F (ξ) = dnξ, thus yeilds the periodic wave solutions of Eq.
(1.1) as follows:

E(x, t) = ±
√

(m2 − 1)(Ω2 + 2µ) (Ω2 − 1)√
2 (2−m2)

eiΘ ndξ, n(x, t) =
(m2 − 1)(Ω2 + 2µ)

(2−m2)
nd2ξ, (3.22)

Case 2.4: Putting q0 = 1
4
, q2 = m2−2

2
, q4 = m4

4
and F (ξ) = snξ

1±dnξ
. We construct solutions of (1.1) expressed

by rational expressions of JEFs

E(x, t) = ±
√

(Ω2 + 2µ) (Ω2 − 1)

m2 − 2

1± dnξ

2 snξ
eiΘ, n(x, t) =

(Ω2 + 2µ)

2 (m2 − 2)

(
1± dnξ

snξ

)2

, (3.23)

Case 2.5: If q0 = m2−1
4

, q2 = m2+1
2

, q4 = m2−1
4

, then F (ξ) = dnξ
1±m snξ . Thus, we have the solutions of (1.1) as

E(x, t) = ±
√

(m2−1)(Ω2+2µ) (Ω2−1)

m2+1

(1±m snξ)
2 dnξ

eiΘ,

n(x, t) = (m2−1)(Ω2+2µ)

2 (m2+1)

(
1±m snξ

dnξ

)2

,
(3.24)

Case 2.6: When q0 = 1−m2

4
, q2 = m2+1

2
, q4 = 1−m2

4
and F (ξ) = cnξ

1±snξ , we obtain

E(x, t) = ±
√

(1−m2)(Ω2+2µ) (Ω2−1)

m2+1

(1±snξ)
2 cnξ eiΘ,

n(x, t) = (1−m2)(Ω2+2µ)

2 (m2+1)

(
(1±snξ)

cnξ

)2

,
(3.25)

Case 2.7: If q0 = −(1−m2)2

4
, q2 = m2+1

2
, q4 = −1

4
, and F (ξ) = (m cnξ ± dnξ). Then, the exact solutions of

Eq. (1.1) given as,

E(x, t) = ± (1−m2)
√

(Ω2+2µ) (1−Ω2)

2
√

(m2+1) (m cnξ±dnξ)
eiΘ,

n(x, t) = −(1−m2)2 (Ω2+2µ)

2 (m2+1) (m cnξ±dnξ)2
,

(3.26)

Case 3

k = ±

√
Ω2 + 2µ

q2 ± 6
√
q0 q4

, Ω = Ω, µ = µ, A0 = 0, A1 = ±

√
q4 (Ω2 + 2µ) (Ω2 − 1)− ∗

2 (q2 ± 6
√
q0 q4)

,

B1 = ∓

√
q0 (Ω2 + 2µ) (Ω2 − 1)

2 (q2 ± 6
√
q0 q4)

. (3.27)

Substituting (3.27) into (3.7), we obtain the general solutions in the form,
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Fig. 4. (a-f) 3D and 2D are plotted for the periodic wave solution (3.24) when (+) sign is
taken with the choice of parameters Ω = 0.5, m = 0.6, µ = 1 and ξ0 = 1 for 3D plots and

t = 1 for 2D plots

U(ξ) = ±

√
q4 (Ω2 + 2µ) (Ω2 − 1)

2 (q2 ± 6
√
q0 q4)

F (ξ)∓

√
q0 (Ω2 + 2µ) (Ω2 − 1)

2 (q2 ± 6
√
q0 q4)

1

F (ξ)
,

ξ = ±

√
Ω2 + 2µ

q2 ± 6
√
q0 q4

x+ c t+ ξ0. (3.28)

We can find many JEF solutions of Eq. (3.28) by setting q0, q2, q4 and the JEFs solution for F (ξ). Hence, the
solutions of Eq. (1.1) written as the following:
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Case 3.1: When q0 = 1, q2 = −1−m2, q4 = m2 and F (ξ) = snξ. So, we obtain the following combined JEFs
solutions of (1.1):

E(x, t) =

√
(Ω2+2µ) (Ω2−1)

2 [−(1+m2)±6m]

(
±m snξ ∓ nsξ

)
eiΘ,

n(x, t) = (Ω2+2µ)

[−(1+m2)±6m]

(
m snξ − nsξ

)2

,

(3.29)

Case 3.2: Putting q0 = 1 −m2, q2 = 2m2 − 1, q4 = −m2 and F (ξ) = cnξ. Thus, the exact JEFs solutions of
(1.1) are

E(x, t) =
√

(Ω2+2µ) (1−Ω2)

2
(
2m2−1±6m

√
m2−1

)
(
±m cnξ ∓

√
m2 − 1 ncξ

)
eiΘ,

n(x, t) = −(Ω2+2µ)(
2m2−1±6m

√
m2−1

)
(
m cnξ −

√
m2 − 1 ncξ

)2

,

(3.30)

Case 3.3: If q0 = m2 − 1, q2 = 2−m2, q4 = −1 and F (ξ) = dnξ, we obtain the combined solutions of (1.1) as

E(x, t) =
√

(Ω2+2µ) (1−Ω2)

2
(
2−m2±6

√
1−m2

)
(
± dnξ ∓

√
1−m2 ndξ

)
eiΘ,

n(x, t) = −(Ω2+2µ)(
2−m2±6

√
1−m2

)
(

dnξ −
√

1−m2 ndξ

)2

,

(3.31)

Case 3.4: If q0 = 1
4
, q2 = m2−2

2
, q4 = m4

4
, we get F (ξ) = snξ

1±dnξ
, this yeilds the exact solutions of (1.1) as

E(x, t) = 1
2

√
(Ω2+2µ) (Ω2−1)

(m2−2±3m2)

(
± m2snξ

1±dnξ
∓ 1±dnξ

snξ

)
eiΘ,

n(x, t) = (Ω2+2µ)

2 (m2−2±3m2)

(
m2snξ
1±dnξ

− 1±dnξ
snξ

)2

,

(3.32)

Case 3.5: When q0 = m2−1
4

, q2 = m2+1
2

, q4 = m2−1
4

, we have F (ξ) = dnξ
1±m snξ . Thus, the rational JEFs

solutions of (1.1) are

E(x, t) = 1
2

√
(m2−1)(Ω2+2µ) (Ω2−1)

[m2+1±3 (m2−1)]

(
± dnξ

1±m snξ ∓
1±m snξ

dnξ

)
eiΘ,

n(x, t) = (m2−1)(Ω2+2µ)

2 [m2+1±3 (m2−1)]

(
dnξ

1±m snξ −
1±m snξ

dnξ

)2

,

(3.33)

Case 3.6: When q0 = 1−m2

4
, q2 = m2+1

2
, q4 = 1−m2

4
and F (ξ) = cnξ

1±snξ , we obtain

E(x, t) = 1
2

√
(1−m2)(Ω2+2µ) (Ω2−1)

[m2+1±3 (1−m2)]

(
cnξ

1±snξ ∓
1±snξ
cnξ

)
eiΘ,

n(x, t) = (1−m2)(Ω2+2µ)

2 [m2+1±3 (1−m2)]

(
cnξ

1±snξ −
1±snξ
cnξ

)2 (3.34)

Case 3.7: If q0 = −(1−m2)2

4
, q2 = m2+1

2
, q4 = −1

4
and F (ξ) = (m cnξ ± dnξ). Then, the exact solutions of Eq.

(1.1) are

E(x, t) = 1
2

√
(Ω2+2µ) (1−Ω2)

[m2+1±3 (1−m2)]

(
± (m cnξ ± dnξ)∓ 1−m2

m cnξ±dnξ

)
eiΘ,

n(x, t) = −(Ω2+2µ)

2 [m2+1±3 (1−m2)]

(
(m cnξ ± dnξ)− 1−m2

m cnξ±dnξ

)2

.

(3.35)
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We can obtain other JEFs solutions, but we ignored here for simplicity. If m → 1, then the travelling wave
solutions given as

E(x, t) = ±1

2

√
(Ω2 + 2µ) (1− Ω2)

tanhξ

1± sechξ
eiΘ, n(x, t) =

−(Ω2 + 2µ)

2

(
tanhξ

1± sechξ

)2

, (3.36)

E(x, t) = ±1

2

√
(Ω2 + 2µ) (1− Ω2)

1± sechξ

tanhξ
eiΘ, n(x, t) =

−(Ω2 + 2µ)

2

(
1± sechξ

tanhξ

)2

, (3.37)

E(x, t) = ±
√

(Ω2 + 2µ) (1− Ω2)

2
sechξ eiΘ, n(x, t) = −(Ω2 + 2µ) sech2ξ, (3.38)

E(x, t) = ±1

2

√
(Ω2 + 2µ) (1− Ω2) tanhξ eiΘ, n(x, t) =

−(Ω2 + 2µ)

2
tanh2ξ, (3.39)

E(x, t) = ±1

2

√
(Ω2 + 2µ) (1− Ω2) cothξ eiΘ, n(x, t) =

−(Ω2 + 2µ)

2
coth2ξ, (3.40)

E(x, t) = ±
√

(Ω2 + 2µ) (Ω2 − 1)

2
cschξ eiΘ, n(x, t) = (Ω2 + 2µ) csch2ξ. (3.41)

Also, if m → 0, then we can obtain the triangular function solutions for (1.1) , but we omitted these solutions
for simplicity. The solutions (3.38) and (3.39) are called bright and dark soliton solutions, respectively. The
bright solitary wave solution (3.38) are plotted in Fig. 5 with the parameters Ω = 0.1, µ = 2.43 and ξ0 = 1
for 3D figure and t = 1 for 2D figure. Moreover, in Fig. (5.b), we have studied the intensity profile at different
values of the parameter Ω. We get that with the increase of Ω the width increases and the amplitude decreases.
In addition, multiplying Eq. (3.6) by U ′ and integrating once, we get

1

2
(U ′)2 = C +

(Ω2 + 2µ)

2 k2
U2 +

U4

k2 (Ω2 − 1)
,

where C is an arbitrary constant. We can be written this equation like as an energy equation of classical particle

as 1
2

(U ′)2+f(U) = 0, where f(U) is the potential energy and it is given by f(U) = −[C+ (Ω2+2µ)

2 k2
U2+ U4

k2 (Ω2−1)
].

The physical solution to exist it must satisfy f(U) = 0 and df(U)
dU

= 0 at U = 0. It is clear that (U ′)2 ≥ 0, this
means f(U) ≤ 0. So, there exist a point Uc such that f(Uc) = 0, i.e.,

C +
(Ω2 + 2µ)

2 k2
U2
c +

U4
c

k2 (Ω2 − 1)
= 0.

When C = 0, the amplitude of solitary wave f(Uc) = 0 is Uc = ±
√

(Ω2+2µ) (1−Ω2)
2

.

4 Lie Symmetry Analysis and Conservation Laws

In this section, we derive Lie symmetry analysis of the model (1.1) and investigate the conservation laws by
Ibragimove’s theorem [28]. For this, we consider the transformation

E(x, t) = u(x, t) + i v(x, t). (4.1)

Substituting (4.1) in (1.1) and splitting the result into imaginary and real parts, we get the following system:
F 1 = ut + 1

2
vxx − n v = 0,

F 2 = vt − 1
2
uxx + nu = 0,

F 3 = ntt − nxx − 4

(
u2
x + v2

x + uuxx + v vxx

)
= 0.

(4.2)
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Fig. 5. The bright solitary wave solution (3.38) are plotted in (a-f) 3D and 2D with the
parameters Ω = 0.1, µ = 2.43 and ξ0 = 1 for 3D figure and t = 1 for 2D figure. In Fig. (5.b),

we discuss the intensity profile at different values of Ω
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We can be written this equation in the form

ntt − nxx − 4

[
u2
x + v2

x + 2

(
n (u2 + v2) + u vt − v ut

)]
= 0. (4.3)

The Lie point symmetries for (4.3) is generated by a vector field in the form

X = ξ1(x, t, u, v, n) ∂x + ξ2(x, t, u, v, n) ∂t + η1(x, t, u, v, n) ∂u + η2(x, t, u, v, n) ∂v+

η3(x, t, u, v, n) ∂n.
(4.4)

Appling the prolongation Pr(2)X to (4.3), we have system of linear partial differential equations(PDEs). Solving
it by Maple, we get the infinitesmals as follows:

ξ1 = c3, ξ
2 = c4, η

1 = c1 t+ c2, η
2 =

1

2
v t2 c1 + v t c2 + v c5, η

3 = −1

2
u t2 c1 − u t c2 − u c5. (4.5)

where c1, c2, c3, c4 and c5 are constants. Eq. (4.3) admits the algebra of Lie point symmetries generated as

X1 = t ∂u + 1
2
v t2∂v − 1

2
u t2∂n, X2 = ∂u + v t ∂v − u t ∂n, X3 = ∂x, X4 = ∂t,

X5 = v ∂v − u ∂n.
(4.6)

For simplicity, suppose that a sth-order system of PDEs of r dependent variables
u = (u1, u2, ..., ur) and k independent variables x = (x1, x2, ..., xk), define as

Fα(x, u, u(1), ..., u(s)) = 0, α = 1, 2, ..., r, (4.7)

where, u(1), u(2), ..., u(s) denote the collections of all first, second,...,sth-order partial derivatives. This means
that, uαi = Di(u

α), uαij = DjDi(u
α), ..., respectively, where the total derivative operator with respect to xi given

as

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ ..., i = 1, 2, ..., k. (4.8)

Also, we can define the symmetry operator and the adjoint equation for the system (4.7), respectively as

X = ξi
∂

∂xi
+ ηα

∂

∂uα
, (4.9)

F ∗α(x, u, v, u(1), v(1), ..., u(s), v(s)) =
δ(viF i)

δuα
= 0, α = 1, 2, ..., r. (4.10)

Theorem [28]: Any Lie point, Lie-Bäcklund and non-local symmetry X, that is define in (4.9) admitted by
the system (4.7) provides a conservation law for (4.7) and its adjoint (4.10), then T i that is called the conserved
vector are calculated by

T i = ξi L+Wα

[
∂L

∂uαi
−Dj

(
∂L

∂uαij

)
+DjDk

(
∂L

∂uαijk

)
− ...

]
+

Dj(W
α)

[
∂L

∂uαij
−Dk

(
∂L

∂uαijk

)
+DkDr

(
∂L

∂uαijkl

)
− ...

]
+

DjDk(Wα)

[
∂L

∂uαijk
−Dr

(
∂L

∂uαijkl

)
+ ...

]
+ ..., (4.11)

where, Wα = ηα − ξiuαi and L =
∑r
i=1 v

iF i are the Lie characteristic function and the formal lagrangian,
respectively. Now we will obtain the conservation laws for (1.1), first we can define the Lagrangian formal for
the system (1.1) as

L = ū

(
ut +

1

2
vxx − n v

)
+ v̄

(
vt −

1

2
uxx + nu

)
+ n̄

[
ntt − nxx − 4

(
u2
x + v2

x + uuxx + v vxx

)]
, (4.12)
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where ū, v̄ and n̄ are new dependent variables. By using (4.11) and (4.12), we get
T 1 = ξ1 L+W 1(−8 n̄ ux + 1

2
v̄x + 4 n̄x u+ 4 n̄ ux)− ( 1

2
v̄ + 4 n̄ u)Dx(W 1) + ( 1

2
ū− 4 n̄ v)

Dx(W 2) +W 2(−8 n̄ vx − 1
2
ūx + 4 n̄x v + 4 n̄ vx) + n̄xW

3 − n̄Dx(W 3),

T 2 = ξ2 L+W 1 ū+W 2 v̄ − n̄tW 3 + n̄Dt(W
3).

(4.13)

From the symmetry operators given in (4.6) with (4.13), we get the following cases for the conservation laws:

Case 1: We consider the symmetry operator X1 = t ∂u + 1
2
v t2∂v − 1

2
u t2∂n, we have ξ1 = ξ2 = 0, η1 =

t, η2 = 1
2
v t2, η3 = − 1

2
u t2 and the Lie characteristic functions corresponding to this symmetry are W 1 = t,

W 2 = 1
2
v t2 and W 3 = 1

2
u t2. Thus, the associated conserved vectors are{

T 1 = n̄ ux ( 1
2
t2 − 4 t) + t2 vx( 1

4
ū− 4 n̄ v) + 1

2
t(v̄x − 1

2
t v ūx) + n̄x[4u+ t2 (2 v2 − 1

2
u)],

T 2 = 1
2
t2 (v v̄ + u n̄t) + t (ū− n̄ u),

(4.14)

Case 2: Using the symmetry operator X2 = ∂u+v t ∂v−u t ∂n, we have ξ1 = ξ2 = 0, η1 = 1, η2 = v t, η3 = −u t.
Then W 1 = 1, W 2 = v t and W 3 = −u t. Thus, the associated conserved vectors given as{

T 1 = n̄ ux (t− 4) + t vx ( 1
2
ū− 8 v n̄) + 1

2
v̄x + 1

2
v t ūx + n̄x[4u+ t (4 v2 − u)],

T 2 = ū+ t [v v̄ + u n̄t − n̄ ut]− n̄ u,
(4.15)

Case 3: For the symmetry operator X3 = ∂x, we have ξ1 = 1, ξ2 = η1 = η2 = η3 = 0 and W 1 = −ux,
W 2 = −vx and W 3 = −nx. So, we obtain{

T 1 = ū(ut − n v) + v̄ (vt + nu) + n̄ ntt + 1
2
(ux v̄x + vx ūx)− n̄x(4uux + 4 v vx + nx),

T 2 = n̄t nx − n̄ nxt − ū ux − v̄ vx,
(4.16)

Case 4: Using the symmetry operator X4 = ∂t, we have ξ2 = 1, ξ1 = η1 = η2 = η3 = 0 with W 1 = −ut,
W 2 = −vt and W 3 = −nt. So, we obtain the conserved vectors as

T 1 = 4 n̄ uxut + uxt ( 1
2
v̄ + 4u n̄)− vxt ( 1

2
ū− 4 v n̄) + 1

2
(vtūx − utv̄x) + n̄ (4 vx vt + nxt),

−n̄x [ 4 (uut + v vt) + nt],

T 2 = ū( 1
2
vxx − n v)− v̄( 1

2
uxx − nu)− n̄[nxx + 4 (u2

x + v2
x + uuxx + v vxx)] + n̄t nt,

(4.17)

Case 5: Using the symmetry operator X5 = v ∂v − u ∂n, we have ξ1 = ξ2 = η1 = 0, η2 = v, η3 = −u and
W 1 = 0, W 2 = v and W 3 = −u. So, we obtain the conserved vectors as{

T 1 = 1
2

(ū vx − v ūx) + n̄ (ux − 8 v vx) + n̄x (4 v2 − u),

T 2 = v v̄ + u n̄t − n̄ ut.
(4.18)

5 Results and Discussion

In this section, we have explained the results of the ISLWs model by drawing some 3D and 2D figures of the
obtained solutions with the support of the symbolic calculation software Maple. Also, we have compared our
constructed results with other results in different papers. The 3D and 2D are ploted the absolute, real and
imaginary parts to illustrate the abundant soliton and periodic wave solutions. The graphical illustrations of the
abundant periodic wave solutions and soliton solutions are plotted by taking suitable values of involved unknown
parameters to visualize the mechanism of the ISLWs model that given in Fig. 1 - Fig. 5. The behaviors of
the periodic wave solutions (3.10) and (3.13) are presented in Fig. 1 and Fig. 2, respectively with the same
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parameters Ω = 1.5,m = 0.2, µ = −2.43 and ξ0 = 1 for 3D figure and t = 1 for 2D figure. We can find that the
absolute, real and imaginary parts are periodic wave solutions. The graphical representation of the periodic wave
solutions (3.16) and (3.24) are drawn in Fig. 3 and Fig. 4, respectively under the same choice of parameters
Ω = 0.5, m = 0.6, µ = 1 and ξ0 = 1 for 3D plots and t = 1 for 2D plots. As expected, the absolute, real and
imaginary parts are periodic wave solutions. Fig. 5 plots the behavior of the bright soliton solution (3.38). We
observe that the absolute, real and imaginary parts are bright soliton solutions. Also, we have discussed the
effect of the parameter Ω at different values on the intensity profile of the bright soliton solution (3.38) in Fig.
(5.b). Moreover, many our results are novel and some of them are obtained in research literature such as the
solutions (3.10), (3.11), (3.38) and (3.39) are the same as the results obtained in [24] and the solutions (3.39)
and (3.40) are similar to the solutions given in [20, 25]. Furthermore, we investigate the conservation laws by
the Lie point symmetry. Noteworthy that all obtained solutions are checked by using Maple software program.

6 Conclusion

In this paper, we considered the ISLWs model and we succeeded implementing the extended F-expansion method
in the NLEEs for getting exact traveling wave solutions. As results, several kinds of solutions of the underlying
model including periodic wave solutions with JEFs, hyperbolic function solutions dark and bright solutions have
been obtained in the study, in which many are novel. The computer systems like as Maple is used to solve the
complecated algebraic equations to get these solutions. To the best of our knowledge, the obtained solutions
of ISLWs model contain the known result in [20, 22, 24, 25] and other traveling wave solutions are new. The
geometrical shape for some of the obtained results are plotted for various choices of the parameters that appear
in the results which may help researchers to known some physical meaning of this model. Graphical simulation
of some solutions in the form of two-dimentional and three-dimentional are helpfull to see the behaviour of these
solutions. In addition, the conservation laws for the (1.1) are constructed. We hope that the obtained solutions
are useful in the study of plasma physics and other important equations of mathematical physics.
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[1] Rogers C, Shadwick WF. Bäcklund Transformations, Academic Press, New York; 1982.
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