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)e energy of electrons and holes in cylindrical quantum wires with a finite potential well was calculated by two methods. An
analytical expression is approximately determined that allows one to calculate the energy of electrons and holes at the first discrete
level in a cylindrical quantum wire.)e electron energy was calculated by two methods for cylindrical layers of different radius. In
the calculations, the nonparabolicity of the electron energy spectrum is taken into account.)e dependence of the effective masses
of electrons and holes on the radius of a quantum wires is determined. An analysis is made of the dependence of the energy of
electrons and holes on the internal and external radii, and it is determined that the energy of electrons and holes in cylindrical
layers with a constant thickness weakly depends on the internal radius. )e results were obtained for the InP/
InAs heterostructures.

1. Introduction

In recent years, a lot of work has been done on calculating
the energy of electrons and holes in quantum wells based on
InP/InAs/InP heterostructures, due to the fact that today, for
the creation of new-generation devices, it largely depends on
semiconductor nanostructures.

In [1, 2], various technologies for growing quantum
wires were presented, and nanowires of various sizes were
obtained. In [3], core-shell nanowires were experimentally
obtained, and it was shown that the cross-sectional area is in
the shape of a hexagon. Optical properties of InAs/InP-based
quantum wires were studied by photoluminesce spectros-
copy [4].)e optical properties of core-multishell nanowires
based on InP/InAs/InP were experimentally studied in
[5–8]. )e relaxation time of electron spin in semiconductor
quantum wires has been experimentally investigated.

In type III-V semiconductors and in heterostructures
based on them, electron dispersion is strongly nonparabolic;
the Kane model was used to study the spectrum of charge
carriers of these materials [9]. In [10], the energy spectrum of
an electron with a nonparabolic dispersion law in quantum

wires with a rectangular cross-sectional shape was theo-
retically investigated. )e authors of [11, 12] also theoret-
ically studied the energy spectrum of an electron with a
nonparabolic dispersion law in quantum wires, but with a
hexagonal and triangular cross-sectional shape. )e influ-
ence of electronic, polaron, and coulomb interactions on
energy states in quantum nanowires was studied [13–16].
)e I-V characteristic of nanowires was considered taking
into account the tunneling of electrons in quantum states
[17, 18]. )e effect of temperature on the energy levels
[19, 20] and optical absorption [21] of quantum dots are
studied. )e energy levels of InAs/InP quantum dots have
been studied [22]. In [23–28], to determine the energy
spectrum and wave function of an electron in quantumwires
with a rectangular cross-sectional shape, solutions of the
Schrödinger equation were obtained using various mathe-
matical methods. )e effect of an electric field on the energy
spectrum of a rectangular quantum wire is investigated [29].

)e authors of [30–33] obtained analytical solutions of
the Schrödinger equation for cylindrical quantumwires with
a finite potential and a parabolic dispersion law.)e solution
of the Schrödinger equation is obtained by the finite
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difference method (shooting method) for rectangular [34]
and cylindrical [35, 36] quantum wires.

In this paper, two methods are used to calculate the
energy of electrons and holes for a cylindrical quantum wire
and a quantum nanorod with a finite potential well. In this
case, the nonparabolicity of the dispersion of electrons and
holes is taken into account. )e relationship between the
effective mass of charge carriers and the radius of a quantum
wire is determined.

2. An Analytical Method for Calculating the
Electron Energy in a Cylindrical Quantum
WirewithaFiniteHeightof thePotentialWell

Figure 1 shows the geometric and potential diagram of a
cylindrical quantum wire with a finite potential well. )e
potential energy of an electron of a cylindrical quantum wire
with a finite depth has the form:

U(r) � U(ρ) �
0, 0≤ ρ≤R,

W, ρ>R.
􏼨 (1)

)e Schrödinger equation in a cylindrical coordinate
system is as follows:
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We seek a solution to this equation in the following form:

f(r) � e
ikzz

e
ilϕψ(ρ), (3)

Here, the parameters kx and l are independent of co-
ordinates. )erefore, equation (2) will be solved for the
radial wave function. )us, equation (2) in region 0≤ ρ≤R

for the radial wave function ψ(ρ) takes the following form:
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In this case, equation (4) takes the following form:
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􏼐 􏼑ψ(ρ) � 0. (6)

)e general solution to this equation is in the form of a
linear combination of the Bessel function Jl(ξ) and the
Neumann function Nl(ξ) of the l-th order [37]:

ψ1(ρ) � A1Jl kAρ( 􏼁 + B1Nl kAρ( 􏼁, 0≤ ρ≤R. (7)

Equation (2) for the radial wave function ψ(ρ) in region
ρ>R takes the following form:
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Figure 1: Geometric and potential diagram of a cylindrical
quantum wire with a finite potential well.
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)e solution of equation (8) gives a linear combination
of the imaginary argument Il(ζ) of the Bessel function and
the Macdonald function Kl(ζ) of the l-th order [37]:

ψ2(ρ) � A2Kl cBρ( 􏼁 + B2Il cBρ( 􏼁, ρ>R. (10)

)erefore, ψ(ρ) for a radial wave function is appropriate for
the following:

ψ(ρ) �
A1Jl kAρ( 􏼁 + B1Nl kAρ( 􏼁, 0≤ ρ≤R,

A2Kl cBρ( 􏼁 + B2Il cBρ( 􏼁, ρ>R.
􏼨 (11)

If we take into account that the wave function inside the
cylinder is finite and equal to zero at an infinite distance
from the center of the cylinder, expression (11) takes the
following form:

ψ(ρ) �
A1Jl kAρ( 􏼁, 0≤ ρ≤R,

A2Kl cBρ( 􏼁, ρ>R.
􏼨 (12)

Here, A1 and A2 are constant values. We select relation
A1/A2 in such a way that the following boundary conditions
are satisfied:

ψ1(ρ)|ρ�R � ψ2(ρ)|ρ�R,
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1
mB

dψ2(ρ)

dρ
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(13)

From (12) and (13), we obtain the following transcen-
dental equation:

Jl
′ kAR( 􏼁Kl cBR( 􏼁

Jl kAR( 􏼁Kl
′ cBR( 􏼁

�
mA

mB
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Solving the transcendental equation (14), we can
determine the electron energy in a cylindrical quantum
wire.

When the argument is too small under condition
l � 0, expanding the imaginary argument of the Bessel
function Il(ζ) and MacDonald Kl(ζ) in a row, we get the
first terms and an analytical formula for calculating the
energy:
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If we take into account (5) and (9), expression (15) gives
very close results to the exact results of equation (14) when
calculating the energy of electrons and holes in cylindrical
nanowires with larger radii (Figures 2–4).

3. The Analytical Method for Calculating the
Electron Energy in a Cylindrical Quantum
Nanorod with a Finite Height of the
Potential Well

Figure 5 shows the geometric and potential diagram of a
cylindrical quantum nanorod with a finite potential well. Let

the potential energy of an electron in a cylindrical quantum
nanorod with a finite depth be given by the following
expression:

U(r) � U(ρ) �

W, 0< ρ<R1,

0, R1 ≤ ρ≤R2,

W, R2 < ρ.

⎧⎪⎪⎨

⎪⎪⎩
(16)

)e Schrödinger equation in a cylindrical coordinate
system in this case is as follows:
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Figure 2: )e dependence of energy on the radius of a cylindrical
nanowire for electrons and holes with the parabolic and non-
parabolic dispersion law.
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)e solution to the radial part of the equation will be

ψ(ρ) �
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If we take into account that the wave function inside a
cylindrical quantum nanorod is finite and equal to zero at an
infinite distance from the center of the quantum nanorod,
then expression (18) takes the following form:

ψ(ρ) �
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For the continuity of the wave function, the following
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ψ1(ρ)|ρ�R1
� ψ2(ρ)|ρ�R1

,

1
mB

dψ1(ρ)

dρ
|ρ�R1

�
1

mA

dψ2(ρ)

dρ
|ρ�R1

,

ψ2(ρ)|ρ�R2
� ψ3(ρ)|ρ�R2

,

1
mA

dψ2(ρ)

dρ
|ρ�R2

�
1

mB

dψ3(ρ)

dρ
|ρ�R2

.

(20)

Applying boundary conditions (20) to expression (19),
we obtain the following system of equations:
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Solving the system of equation (21), we obtain the fol-
lowing transcendental equation:
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Figure 5: )e geometric and potential scheme of a cylindrical
quantum nanorod with a finite potential well.
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Transcendental equation (22) allows us to calculate the
energy of electrons and holes in cylindrical nanolayers with a
finite potential well.

4. The Shooting Method for Calculating the
Electron Energy in a Cylindrical Quantum
Wire and in aQuantumNanorodwith aFinite
Height of a Potential Well

Given the effective mass, the Schrödinger equation will be as
follows:

−
Z
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2ρ
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zρ
ρ

m(ρ)

z

zρ
ψ(ρ) + V(ρ)ψ(ρ) � Eψ(ρ). (23)

Equation (23) is used for the parabolic dispersion law,
and it is solved by the finite difference method—the

Shooting method [38]. We will try to solve equation (23) by
the samemethod for the nonparabolic dispersion law. In this
case, we represent the wave function and the derivative of the
effective mass in the following form:

dψ
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Using (23)–(26), we obtain the following:
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From here, we get

ψ(ρ + δρ) �
8 (δρm(ρ))

2/Z2
􏼐 􏼑[V(ρ) − E] + m(ρ)􏽮 􏽯

2m(ρ)(2 +(δρ/ρ)) − m(ρ + δρ) + m(ρ − δρ)􏼈 􏼉
ψ(ρ) −
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(28)

If the values of ψ(ρ − δρ) and ψ(ρ) are known for wave
functions, then using (28), it is possible to determine the value of
ψ(ρ + δρ) for an arbitrary energy. In order to calculate the wave
function and energy of electrons and holes, it is necessary to take
into account the following three boundary conditions:

ψ(∞)⟶ 0,

ψ(0) � 1,

ψ(δρ) � 1.

(29)
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Figure 6: )e band diagram of the InP/InAs heterostructure.
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5. Analysis of the Results

It is known that the lattice constant for InP is 0.5869 nm, and
this value is close to the lattice constant for InAs 0.6058 nm
[39].)is allows you to get the perfect heterostructures using
these materials. Figure 6 shows the band diagram of the InP/
InAs based heterostructures. To take into account the
nonparabolicity of the zone, we use the Kane model [9].
Various approximations for the effective mass are given in
[10, 40–43]; we will use the following expression for the
effective mass:

mInPi(E) � m0/InPi 1 + αInPi(E − V(ρ))( 􏼁,

αInPi �
1

EgInP
1 −

mi

m0
􏼠 􏼡

2

,

αInAsi �
1

EgInAs
1 −

mi

m0
􏼠 􏼡

2

,

(30)

where i � e, hh, lh.

Table 1 shows the necessary parameters for InAs and InP
obtained by various authors. For our calculations, we will
choose the parameters shown in Table 2.

Table 1: Material parameters of InAs and InP.

Parameter InAs InP

Eg (eV)

0.35[39] 1.35[39,44,45]

0.36[44,46] 1.424[47]

0.417[47,48] 1.423[48]

0.42[48] 1.42[48,49]

0.418[49]

me/m0

0.022[39] 0.077[39,47,50]

0.023[44,47,48,50] 0.08[44]

0.024[48] 0.079[48,49]

mhh/m0

0.41[39,48] 0.6[39]

0.6[44] 0.85[44]

0.34[50] 0.65[48]

0.472[50]

mlh/m0

0.026[39] 0.12[39,48]

0.027[44,50] 0.098[44]

0.025[48] 0.096[50]

χ (eV)
4.92[39] 4.38[39]

4.9[45] 4.4[45]

2m0P
2/Z2 (eV)

22.2[39] 20.4[39]

21.5[47,48] 20.7[47,48]

2mnP2/Z2 (eV) 0.5[48] 1.46[48]

Δ0 (eV)
0.38[39,47,49] 0.11[39,49]

0.39[48] 0.108[47,48]

Table 2: Material parameters of InAs and InP.

Material parameters Eg

(eV)
me

m0

mhh

m0

mlh

m0

χ
(eV)

αe

(1/eV)

αhh

(1/eV)

αlh

(1/eV)

Δ0
(eV)

ΔEC

(eV)

ΔEV

(eV)

InAs 0.36 0.023 0.41 0.026 4.91 2.65 0.97 2.63 0.38 0.52 0.47
InP 1.35 0.077 0.65 0.096 4.39 0.63 0.09 0.6 0.11
Eg is the band gap,me/m0 is the effective mass of the electron in the conduction band,mlh/m0 andmhh/m0 are the effective masses of light and heavy holes in
the valence band, χ is the electron affinity, αi is the nonparabolicity coefficient, and Δ0 is spin-orbit interaction.
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Figure 7: )e dependence of the radial wave function of an
electron on the radius of a cylindrical quantum wire with a finite
potential.
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A numerical solution of transcendental equation (14)
determines the wave functions and the energy of electrons
and holes. By an approximate solution of this equation,
equation (15) is obtained. For large radii, the solution of
equation (15) gives results that are close to the exact results
of equation (14). )e energy and wave function of the
particles are calculated using expression (28), which is ob-
tained by the finite difference method. )e calculations were
performed taking into account the nonparabolicity of the
zones using expression (30). )e dependence of the energy
on the radius of a cylindrical nanowire for electrons and
holes is shown taking into account the parabolic and
nonparabolic zones (Figures 2–4). Figure 7 shows the radial
wave function of the electron. Usually, the electron wave
function as ρ⟶∞ is equal to zero. If at the size of the
potential well R, we choose that the wave function at a

distance inside the barrier is R/2, and then the error in
calculating the energy was 0.01meV compared to ρ⟶∞.
)e dependence of the effective masses of electrons and
holes on the radius of a cylindrical nanowire was determined
(Figures 8–10). )e results of the graphs show that the ef-
fective mass of charge carriers decreases with increasing
radius of the nanowires and, at large radii, approaches m0.
)us, the nonparabolicity of the system at small radii is more
noticeable than at large radii.

)e resulting expression (22) allows us to calculate the
energy in cylindrical nanorod with inner and outer radii R1
and R2, respectively. )e results are compared by expression
(22) and expression (28) (Figures 11–13). Figure 14 shows
the radial wave function of the electron. Here, we assumed
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Figure 8: )e dependence of the effective electron mass on the radius of a cylindrical quantum wire with a finite potential.
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that the wave function inside the barrier at a distance R1 is
zero, and the error in this case is 0.01meV.)e results shown
in Figure 15 allow us to draw the following conclusion: for a
constant thickness of cylindrical nanorod, there is a weak
dependence of the particle energy on the internal radius R1,
i.e., with an increase in R1, a slight increase in particle energy
is observed.

6. Conclusion

)e Schrödinger equation for cylindrical nanowires and for
cylindrical nanorods was solved by two methods. An ap-
proximate equation is obtained that determines the first
energy level in cylindrical quantum wires with large radii.
When solving the Schrödinger equation, the change in the
effective masses of electrons and holes was taken into ac-
count. Graphs of the effective mass of electrons and holes
versus nanowire radius are presented. )e energy of elec-
trons and holes in cylindrical nanorods was calculated, and
the effects of parabolicity and nonparabolicity of the zones
were compared. It is shown that, for a constant thickness of
cylindrical nanorods, there is a weak dependence of the
particle energy on the change in the internal radius R1, that
is, with an increase in R1, a slight increase in the particle
energy is observed.
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