
Citation: Ballis, D.; Brodo, L.; Falaschi,

M. Modeling and Analyzing Reaction

Systems in Maude. Electronics 2024,

13, 1139. https://doi.org/10.3390/

electronics13061139

Academic Editor: Josep Silva

Received: 15 February 2024

Revised: 7 March 2024

Accepted: 15 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Modeling and Analyzing Reaction Systems in Maude
Demis Ballis 1,∗ , Linda Brodo 2 and Moreno Falaschi 3

1 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine,
33100 Udine, Italy

2 Dipartimento di Scienze Economiche e Aziendali, Università di Sassari, 07100 Sassari, Italy; brodo@uniss.it
3 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena, 53100 Siena, Italy;

moreno.falaschi@unisi.it
* Correspondence: demis.ballis@uniud.it

Abstract: Reaction Systems (RSs) are a successful computational framework for modeling systems
inspired by biochemistry. An RS defines a set of rules (reactions) over a finite set of entities (e.g.,
molecules, proteins, genes, etc.). A computation in this system is performed by rewriting a finite set
of entities (a computation state) using all the enabled reactions in the RS, thereby producing a new set
of entities (a new computation state). The number of entities in the reactions and in the computation
states can be large, making the analysis of RS behavior difficult without a proper automated support.
In this paper, we use the Maude language—a programming language based on rewriting logic—to
define a formal executable semantics for RSs, which can be used to precisely simulate the system
behavior as well as to perform reachability analysis over the system computation space. Then, by
enriching the proposed semantics, we formalize a forward slicer algorithm for RSs that allows us
to observe the evolution of the system on both the initial input and a fragment of it (the slicing
criterion), thus facilitating the detection of forward causality and influence relations due to the
absence/presence of some entities in the slicing criterion. The pursued approach is illustrated by
a biological reaction system that models a gene regulation network for controlling the process of
differentiation of T helper lymphocytes.

Keywords: reaction systems; natural computing; Maude; rewriting logic; slicing; formal methods

1. Introduction

Reaction systems (RSs) [1,2] are a computational framework inspired by the func-
tioning of living cells and by biochemistry. Their constituents are a finite set of entities (a
background set) and a finite set of reactions. Each reaction is a triple that consists of a set of
entities whose presence is needed to enable the reaction, called reactants; a set of entities
whose absence is needed to enable the reaction, called inhibitors; and a set of entities that
are produced when the reaction takes place, called products. All entities must be included in
a fixed background set. Applications of RSs are very general and range from the modeling
of biological phenomena [3–5] to molecular chemistry [6]. The classical behavior of RSs
is defined as a rewriting system whose states are sets of entities (those produced at the
previous step, possibly joined with others provided by an external context that models the
interaction with the environment).

1.1. Problem Statement

The number of entities in the reactions and in the computation states can be large
and difficult to verify for its correctness by the users. Thus, automated verification and
debugging tools can be very helpful.

The design of RSs for modeling some natural phenomenon is often conducted by
domain experts to validate their hypotheses and requires some degree of abstraction. False

Electronics 2024, 13, 1139. https://doi.org/10.3390/electronics13061139 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061139
https://doi.org/10.3390/electronics13061139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1048-1739
https://orcid.org/0000-0002-4455-2419
https://orcid.org/0000-0002-6659-3828
https://doi.org/10.3390/electronics13061139
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061139?type=check_update&version=1

Electronics 2024, 13, 1139 2 of 23

assumptions or inaccuracies may be introduced as early as the design stage. Moreover, writ-
ing reactions is an error-prone activity, and verifying their behavior can be difficult even for
RSs with just a few dozens of entities and reactions. For example, if some mistake is made
at the design level and some inexplicable result is observed during the simulation, then an
analysis of the computation may be necessary to understand the nature of the problem.

1.2. The Approach

Program slicing is a traditional method used to circumscribe the key parts of a program
that may be responsible for a specific unexpected outcome. Originally, slicing was defined
as a static technique by [7]. Later, [8] expanded upon this concept by introducing dynamic
program slicing, which aids in the debugging process by identifying—at runtime—those
fragments of a program containing the flawed code. Dynamic program slicing has been
applied to several programming paradigms (see Silva [9] for a survey).

The idea explored in this paper is to define and implement a novel dynamic slicing
technique, which builds on top of a formal executable semantics for RSs, suitable for
analyzing RS processes. Both the RS semantics and the slicing algorithm will be specified in
Maude [10]: a high-level programming language and system based on the rewriting logic
framework of [11]. Maude [12] supports functional, concurrent, logic, and object-oriented
computations and provides equational rewriting and reasoning modulo user-defined
equations and algebraic axioms such as associativity, commutativity, and identity. Maude
is well-suited to specify software systems. In fact, a Maude specification combines a set
of rewrite rules R, which specifies the state transitions of a system, with an equational
theory E that specifies system states as terms of an algebraic data type. The equations
in E are implicitly oriented from left to right as rewrite rules and operationally used as
simplification rules to perform rewriting modulo equations and axioms.

1.3. Contribution

The main contributions of this paper are listed below.

1. We provide an elegant and concise Maude specification that rigorously formalizes
an executable semantics for reaction systems. We also prove correctness of our
implementation with regard to the usual set-theoretic reaction system characterization.

2. We apply the previous formalization to a biological model for gene regulation and
we take advantage of the rich Maude development environment [12] to support and
simplify the analysis phase. More specifically, we first illustrate how the Maude
built-in search facility can be used to perform reachability analysis on the model.
Then, we employ the ANIMA system [13]—a visual program explorer for Maude com-
putations that we developed in a previous work—to provide an incremental view
of the evolution of a reaction system. In ANIMA, system biologists can explore the
computation space of RSs in a stepwise manner by expanding state transitions one at
a time, thereby focusing on selected aspects of the biological processes.

3. By enriching the reaction system semantics, we also define a forward slicing algorithm
for RSs and we formally prove its correctness. Forward slicing is a powerful tool
to detect (forward) causality and influence relations among the entities produced
in a biological model. It shows how (parts of) an initial input affect the production
of (parts of) the output and helps estimate which input data need to be modified
to accomplish a change in the outcome. Similarly to [2,14], our approach considers
context-independent RSs (that is, RSs where the environment only provides a set of
initial entities C0). More precisely, our forward slicing methodology requires the user
to select a subset C′

0 of the initial input C0 specifying the entities to be observed. Then,
it proceeds by producing a computation that encodes two reaction system processes
that progress in parallel: the original process that stems from C0 and a secondary
process (the sliced one) that originates from C′

0 and that includes only the entities and
reactions which are related to the partial input C′

0. This way, the two processes can be
easily compared to detect errors and/or causality relations.

Electronics 2024, 13, 1139 3 of 23

4. By applying our forward slicing technique to a gene regulation model, we show how
computation states can be drastically reduced in size, favoring the system comprehen-
sion and detection of influence relations among entities.

1.4. Organization

In Section 2, we recall the basics of RSs. In Section 3, we introduce some prelimi-
nary notions on rewriting logic and Maude. We assume some basic knowledge of term
rewriting [15] and some familiarity with the Maude language. In Section 4, we define
a Maude specification that provides a precise execution model for RSs and we formally
prove its correspondence with regard to the set-theoretic representation of reaction systems
presented in Section 2. In Section 5, the Maude specification in Section 4 is used to explore
and analyze an RS that specifies a gene regulation network. In Section 6, we first define
a forward slicing algorithm for RSs and prove its correctness. Then, we show how our
forward slicing method works in practice using the gene regulation example in Section 5.
We discuss some related work in Section 7 and future work in Section 8, together with
concluding remarks.

2. Reaction Systems

Let us recall some basic notions about reaction systems that are relevant to this work.
For a full discussion on this topic, it is possible to consult [1,2].

An entity is a generic element (e.g., molecules, ions, atoms, and other chemicals) that
may be present in biochemical reactions. Let S be a finite set of entities (the background
set). A reaction in S is a triple (R, I, P), where R,I, and P are finite sets of entities such that
R, I, P ⊆ S and R ∩ I = ∅. The sets R, I, P, respectively, model sets of reactants, inhibitors,
and products of the reaction. By rac(S), we denote the set of all reactions on S.

Informally, a reaction can take place whenever all of its reactants are present in a given
state while none of its inhibitors are present. If this happens, the reaction is enabled and
creates its products. More formally, given a set T ⊆ S, a reaction a = (Ra, Ia, Pa) is enabled
by T, denoted ena(T), if and only if T ⊆ Ra and T ∩ Ia = ∅. The result (or outcome) of a on
T is defined by

resa(T) =

{
Pa if ena(T)
∅ otherwise

We assume that for each reaction (R, I, P), R, I, and P are non-empty. This guarantees that,
for each reaction a, there is always at least one product of a that is produced by at least one
reactant of a. Note that, if an entity in a state is not sustained by at least one reaction which
produces it, then it will disappear in the following state. This behavior reflects one of the
core assumption of RSs, namely, the no permanency principle [2]. In other words, an entity
from a current state vanishes unless it is produced by the system.

Given a set of reactions A ⊆ rac(S) and a set of entities T ⊆ S, the result (or outcome)
of A on T is

⋃
a∈A resa(T). This definition assumes that there is no conflict on the available

resources. Indeed, RSs enjoy the threshold supply principle [2]: either an entity is present in
the state and there is “enough” of it, or an entity is not present. To put it differently, two
or more reactions that are enabled by T always generate their products, even if they share
some entities, because there is always a sufficient amount of reactants in T to activate all
the enabled reactions. Note that this assumption implies a major difference with standard
models of concurrent systems, such as Petri nets.

Definition 1. A reaction system (RS, in short) is a pair A = (S, A) such that S is a finite set of
entities and A ⊆ rac(S).

The dynamics of reaction systems is defined through the notion of interactive process,
that is, a process that may react to external stimuli. More formally,

Electronics 2024, 13, 1139 4 of 23

Definition 2. Let A = (S, A) be a reaction system and let n ≥ 0 be an integer, an n-step interactive
process in A is a pair π = (γ, δ) such that γ = C0, C1, . . . , Cn and δ = D0, D1, . . . , Dn where

1. Ci, Di ⊆ S, for i = 0, . . . , n;
2. D0 = ∅;
3. Di = resA(Di−1 ∪ Ci−1), for i = 1, . . . , n.

The sequence γ is called context sequence and represents the environment that may
interact with the RS, while δ is the result sequence which is completely determined by
reactions in A and contexts in γ.

It is worth noting that Definition 2 models reaction systems as open systems that may
react to external inputs which are provided by the context sequence. Therefore, distinct
context sequences may lead to distinct outcomes for the same RS A, as illustrated in the
following example.

Example 1. Let A = (S, A) be a RS such that S = {a , b , c } and A = {a1, a2} where

a1 = ({a , b }, {c }, {a }),
a2 = ({a }, {b }, {c }).

Consider a three-step interactive process π = (γ, δ) where γ = C0, C1, C2 with C0 = {a , b },
C1 = {c } and C2 = {b }. Then, δ = D0, D1, D2 = ∅, {a }, {c }.

Now, consider the three-step interactive process π′ = (γ′, δ′), where the context sequence γ′ =
C′

0,
C′

1, C′
2 = {a , b }, {b , c }, {b } is a slight mutation of γ. Then, we obtain δ′ = D′

0, D′
1, D′

2 = ∅,
{a }, ∅.

Given an interactive process π = (γ, δ) such that γ = C0, C1, . . . , Cn and δ = D0,
D1, . . . , Dn, we say that π is a context-independent process if Ci ⊆ Di, for i = 1, . . . , n. In this
special case, the result sequence δ is completely determined by the initial context C0. More
specifically, D1 only depends on C0, and Di+1 only depends on Di, with i = 1, . . . , (n − 1).
For this reason, we often denote a context-independent process as π = (C0, δ).

3. Software Systems in Maude

The Maude system [10,12] is a formal language and tool set based on rewriting logic.
Rewriting logic [11] is a logical formalism that is based on two simple ideas: states of a
system are represented as terms of an algebraic data type, specified in a Maude equational
theory, and the behavior of a system is given by local transitions between states described
by rewrite rules.

An equational theory specifies data types by declaring operators whose composition
builds complex data structures from simpler ones. Maude equational theories are order-
sorted: this means that operators have a typed structure over a set of sorts Γ, and there
exists a (possibly empty) poset (Γ,<) that models subsort relations between the sorts
in Γ. An operator f in an equational theory is specified in prefix notation by using the
syntax op f : s1 . . . sn → s, n ≥ 0, where s1 . . . sn denotes the sequence of argument sorts
(i.e., the arity of f), and s is the sort of the return value (the keyword ops can be used to
declare multiple operators with the same type structure: e.g. ops f g h : s1 → s2.) When
the arity of f is the empty sequence, f is called constant. An operator can be specified
in mixfix notation by using underscores as place holders for the input arguments (e.g.,
_ ⊗ _ : s1s2 → s). Binary operators may have attached an axiom declaration that specifies
any combinations of algebraic laws such as associativity (assoc), commutativity (comm),
and identity (id). By Ax, we denote the set of all axioms attached to the operators in
the equational theory. Variables are introduced together with their sort by means of the
keyword var for a single variable declaration or the keyword vars for multiple declarations
on a single line.

Electronics 2024, 13, 1139 5 of 23

Equations in an equational theory define functions that can be used in term simplifi-
cation. A term is a variable or an application of an operator to a list of terms. Assuming
the equations fully define all the specified functions, each term t has a canonical form
(modulo Ax), which is denoted by t↓E . The canonical form t↓E is obtained by using the
equations, oriented left to right, to rewrite t (modulo Ax) until no more rewrites are possible.
Equations are specified by using the following syntax: eq l = r, where l and r are terms
whose sorts belong to the same connected component of (Γ,<). An equational theory E
in Maude is specified by a functional module, which is delimited by keywords fmod and
endfm, that contains sort, variable, operator and equation definitions.

Example 2. The functional module of Listing 1 specifies an equational theory that models sets of
entities. Line 4 defines three atomic entities via the constants a, b, c of sort Entity. Sets are terms
of sort Entities whose form is e1 . . . en, where each ei is a term of sort Entity. Sets are built
using the associative and commutative operator _ _ with identity empty, plus the equation in Line
10 that models idempotence to allow for multiple occurrences of the same entity to be automatically
simplified. The identity empty specifies the empty set. Note that, thanks to the subsort relation of
Line 3, each term of sort Entity is also a term of sort Entities; hence, atomic entities can be also
interpreted as singletons.

Finally, Lines 11–12 provide an equational definition for the Boolean function isEmpty(E)
that verifies whether the set E is empty. Note that the attribute owise in Line 12 applies the equation
in Line 12 whenever equation in Line 11 cannot be applied (that is, when E is not empty).

Canonical forms of a term t in Maude can be computed via the red command, that simplifies
t using the equations and axioms in the functional module. For instance,

Maude> red a b a a c .
reduce in ENTITYSET : a b a a c .
rewrites: 2 in 0ms cpu (0ms real) (2000000 rewrites/second)
result Entities: a b c

and

Maude> red isEmpty(a b a a c) .
reduce in ENTITYSET : isEmpty(a b a a c) .
rewrites: 3 in 0ms cpu (0ms real) (3000000 rewrites/second)
result Bool: false

Listing 1. An equational theory for modeling sets of entities.

1 fmod ENTITYSET is
2 sorts Entity Entities .
3 subsort Entity < Entities .
4 ops a b c : -> Entity .
5 op empty : -> Entities .
6 op __ : Entities Entities -> Entities [assoc comm id: empty] .
7 op isEmpty : Entities -> Bool .
8 var x : Entity .
9 var E : Entities .

10 eq x x = x .
11 eq isEmpty(empty) = true .
12 eq isEmpty(E) = false [owise] .
13 endfm

A conditional rewrite rule is an expression of the form crl [lbl] l => r if C, where lbl
is a label that identifies the rule, l and r are terms whose sorts belong to the same connected
component of (Γ,<), and C is a (possibly empty) conjunction of Boolean expressions. When
the condition C is empty, we simply write rl [lbl] : l => r.

Electronics 2024, 13, 1139 6 of 23

A rewrite theory R consists of an equational theory E plus a set of rewrite rules R.
Rewrite theories in Maude are specified by system modules (delimited by keywords mod
and endm), which include a sequence of rewrite rules and one or more functional modules
encoding a given equational theory. A rewrite theory is also called Maude specification.

Concurrent as well as nondeterministic software systems can be formalized through
rewrite theories.

A software system, modeled as a rewrite theory, evolves by rewriting terms using
equational rewriting, i.e., rewriting with the rewrite rules in R modulo the equations and
axioms in E [11]. More precisely, (system) computations correspond to (possibly infinite)
rewrite sequences t0

r0−→R,E t1
r1−→R,E . . ., where t

r−→R,E t′ denotes a transition (modulo
E) from term t to t′ via the rewrite rule of R that is uniquely labeled with r. The length
of a finite computation C is the number of transitions it includes. Hence, the length of the
computation t0

r0−→R,E t1 . . .
rn−1−→R,E tn is n.

Note that each single transition t
r−→R,E t′ is actually implemented as a rewrite chain

t →∗
E (t↓E)

r−→ t′, where the prefix t →∗
E t↓E is an equational simplification sequence that

rewrites t into its canonical form t↓E using E ; then, t↓E is rewritten to t′ using a rewrite
rule r in R. Although advisedly omitted in our notation, all rewrites in the chain (either
applying r or any of the equations in E) are performed modulo the equational axioms of E .
Terms in a computations are also called states.

Example 3. Consider the toy rewrite theory Rtoy that is encoded in the Maude system module of
Listing 2. Rtoy includes the equational theory Etoy of Listing 1 via the import command pr at Line
2. Etoy is used to model states as sets of entities. The rewrite theory also contains three rewrite rules
that allow for the current set (state) to be modified by removing an entity (a, b or c) from it. For
instance, the following one-step computation can be produced in Rtoy:

b b a c a
del-a−→ Rtoy,Etoy b c

which is implemented by first simplifying the initial state b b a c a into the canonical form a b c

by using the equation eq x x = x, associativity and commutativity of the binary operator _ _.
Then, the rewrite rule del-a is applied to the canonical form a b c to obtain b c. In symbols,
b b a c a →∗

E a b c
del-a−→ b c

Listing 2. A toy rewrite theory.

1 mod TOY is
2 pr ENTITYSET .
3 var S : Entities .
4 rl [del-a] : (a S) => S .
5 rl [del-b] : (b S) => S .
6 rl [del-c] : (c S) => S .
7 endm

The transition space of all computations in R from the initial state t0 can be repre-
sented as a computation tree TR(t0) whose branches specify all of the computations in R
that originate from t0.

4. Formalizing Reaction Systems in Maude

In this section, we show how the set-theoretic representation of reaction systems of
Section 2 can be encoded in Maude. More precisely, given an RS A, we formulate a rewrite
theory RA that provides an executable model for A. We call RA the (Maude) encoding of
A. To achieve this goal, we proceed in two steps. First, we formulate an equational theory
EA that implements the basic data structures and functionality which are required to model

Electronics 2024, 13, 1139 7 of 23

system states. Subsequently, we introduce a set of rewrite rule RA, which acts on top of EA,
to specify the system behavior of A.

For the sake of readability, this section only describes the main code snippets of our
Maude encoding. For the full implementation, please visit [16].

4.1. The Equational Theory EA
Given a reaction system A = (S, A), the equational theory EA defines the type struc-

ture of the components of A via the sorts and subsort relations of Listing 3.

Listing 3. The sorts and sort poset of EA.

1 sorts Bool Entity Entities Reaction Reactions Sequence MSequence State .
2 subsort Entity < Entities < Sequence < MSequence .
3 subsort Reaction < Reactions .

The equational theory EA is then populated with operators and equations that specify
the building blocks of A = (S, A) according to the sort poset of Listing 3.

Assuming that EA includes a constant s of sort Entity for each entity s ∈ S, Listing 4
specifies the operators required to build the following data structures: set of entities,
sequences of set of entities, and multisets of sequences of set of entities.

Listing 4. Equational definition for entities.

1 var x : Entity .
2 vars A B S S’ : Entities .
3 --- Sets of entities
4 op empty : -> Entities .
5 op __ : Entities Entities -> Entities [assoc comm id: empty] .
6 eq x x = x .
7 op _in_ : Entity Entities -> Bool .
8 eq x in (x A) = true .
9 eq x in A = false [owise] .

10 op _subset_ : Entities Entities -> Bool .
11 eq empty subset A = true .
12 eq (x A) subset B = (x in B) and (A subset B) .
13 op intersection : Entities Entities -> Entities .
14 eq intersection(A,empty) = empty .
15 eq intersection(A,B) = $intersect(A, B, empty) .
16 op $intersect : Entities Entities Entities -> Entities .
17 eq $intersect(empty, S’, A) = A .
18 eq $intersect((x S), S’, A) = $intersect(S, S’, if x in S’ then (x A) else A fi) .
19 op isDisjoint : Entities Entities -> Bool .
20 eq isDisjoint(empty,A) = true .
21 eq isDisjoint((x A), B) = if x in B then false else isDisjoint(A,B) fi .
22 --- Sequences of set of entities
23 op _,_ : Sequence Sequence -> Sequence [assoc] .
24 op empty : -> Sequence .
23 --- Multisets of Sequences
24 op _+_ : MSequence MSequence -> MSequence [comm assoc] .

More specifically, a set of entities is specified as already illustrated in Example 2, that
is, using the associative and commutative operator __ with identity empty and the idempo-
tence equation of Line 5. Hence, a set of entities is either a term e0 e1 . . . en, with ei of sort
Entity, or the constant empty. Furthermore, Listing 4 provides the equational definition

Electronics 2024, 13, 1139 8 of 23

of some usual functions that operate over sets and whose names are self-explanatory: in,
subset, intersection, and isDisjoint.

Sequences of sets of entities are specified via the associative infix operator _,_ and the
constant empty. Non-empty sequences are thus terms of the form C0, C1, . . . , Cm, with Ci of
sort Entities, while empty denotes the empty sequence. Terms of sort Sequence will be
used to define context sequences that feed reaction system processes.

Similarly, the commutative and associative operator _+_ defines multisets of sequences
of sort MSequence; hence, several context sequences can be encoded in a single term of
sort MSequence. Note that the subsort relations in Listing 3 allow for a single entity e to be
interpreted as a set of entities, a sequence of sets of entities, and a multiset of sequences of
sets of entities.

Reactions and their interaction with entities are specified by Listing 5.

Listing 5. Equational definition for reactions.

1 vars R I P T : Entities .
2 var a : Reaction .
3 var As : Reactions .
4 --- A reaction is a triple of terms of sort Entities
5 op [_,_,_] : Entities Entities Entities -> Reaction .
6 op _;_ : Reactions Reactions -> Reactions [assoc id: empty] .
7 op empty : -> Reactions .
8 op en : Reaction Entities -> Bool .
9 eq en([R,I,P],T) = (R subset T) and isDisjoint(I,T) .

10 op apply : Reaction Entities -> Entities .
11 eq apply([R,I,P],T) = if en([R,I,P],T) then P else empty fi .
12 op applyAll : Reactions Entities -> Entities .
13 eq applyAll(empty,T) = empty .
14 eq applyAll((a ; As),T) = apply(a,T) applyAll(As,T) .
15 op <_|_|_> : Reactions MSequence Entities -> Conf .

A reaction is a term of the form [R,I,P] of sort Reaction, where R, I, P are sets
of entities that, respectively, identify reactants, inhibitors, and products of the specified
reaction. Lists of reactions are then modeled by means of the associative infix operator
; that builds terms of sort Reactions. An empty list of reactions is specified by the
constant empty. Again, note that any reaction is also a list of reactions by the subsort
relation Reaction < Reactions.

The application of a reaction (R, I, P) on a given set of entities T is defined at an
equational level by means of the function apply([R,I,P],T) (Lines 10-11) that returns
P if the function call en([R,I,P],T) is evaluated to be true; otherwise, it returns empty.
This is a direct and straightforward encoding of the notion of reaction activation that we
presented in Section 2, which is based on the set operators of Listing 4. For instance, the
enabling predicate ena(T), with a = (R, I, P), is specified by the equation in Line 9 that
verifies reactant inclusion R ⊆ T via (R subset T) and absence of inhibitors I ∩ T = ∅
via isDisjoint(I,T). Therefore, given an RS A = (S, A), a reaction a = (R, I, P) ∈ A and
T ⊆ S, the function apply([R,I,P],T) computes a term representing resa(T).

The function applyAll(A, T) computes the set of entities resA(T) by applying all the
reactions in the reaction list A to the set of entities encoded by the term T.

Example 4. Consider the RS A = (S, A) of Example 1. Then, reactions in A are encoded by the
term [a b,c,a] ; [a,b,c] and the function

applyAll([a b,c,a] ; [a,b,c], a b)

yields the term a, which is the term encoding the unique product created by the reaction set A on
{a, b} (in symbols, resA({a, b}) = {a}).

Electronics 2024, 13, 1139 9 of 23

Finally, the ternary operator <_|_|_> in Listing 5 defines states of a reaction system as
terms of sort State with form < A | M | D >, where A is a list of reactions, M is a multiset
of context sequences, and D is a set of the entities that are currently present in the system.
Roughly speaking, a term of sort State provides a snapshot of the whole configuration of
the reaction system at a given time instant.

4.2. The Set of Rewrite Rules RA

The dynamics of a RS A = (S, A) involves state transitions orchestrated by the rewrite
rules process and choice of Listing 6.

Listing 6. Rewrite rules of RA.

1 var A : Reactions .
2 vars C D : Entities .
3 vars Cs : Sequence .
4 var M : MSequence .
5 rl [choice] : < A | Cs + M | D > => < A | Cs | D > .
6 rl [process] : < A | C,Cs | D > => < A | Cs | applyAll(A, C D) > .

The process rule implements state transitions obtained by reaction applications. More
precisely, given a configuration < A | C,Cs | D > where A encodes a list of reactions,
(C,Cs) is a term encoding a context sequence, and D encodes the set of entities currently
present in the system state, process consumes the first context C of (C,Cs) and generates
a new configuration < A | Cs | D′ >, where D′ encodes the set of entities obtained by
applying the reactions specified by A to the set of entities C ∪ D encoded by the term (C D)
(in symbols, D′ = applyAll(A, C D)).

It is worth noting that the process rule precisely captures the notion of interactive
process of Definition 2, as stated by the following proposition:

Proposition 1. Let A = (S, A) be an RS and let RA be the Maude encoding of A.

(i) If π = (γ, δ) is an n-step interactive process in A, n ≥ 0, such that γ = C0, C1, . . . , Cn and
δ = D0, D1, . . . , Dn, then there exists the computation CA of length n in RA

< A | C0, C1, . . . , Cn | empty >
process−→ RA ,EA < A | C1, . . . , Cn | D1 >

...

< A | Cn−1 | Dn−1 >
process−→ RA ,EA < A | Cn | Dn >

where C0, C1, . . . , Cn is a term encoding the context sequence C0, C1, . . . , Cn and D0, D1, . . . , Dn
is a term encoding the result sequence D0, D1, . . . , Dn.

(ii) If

< A | C0, C1, . . . , Cn | empty >
process−→ RA ,EA < A | C1, . . . , Cn | D1 >

...

< A | Cn−1 | Dn−1 >
process−→ RA ,EA < A | Cn | Dn >

is a computation of length n in RA, n ≥ 0, then there exists an n-step interactive process
π = (γ, δ) in A, with γ = C0, C1, . . . , Cn, δ = ∅, D1, . . . , Dn where C0, C1, . . . , Cn and
empty, D1, . . . , Dn are the terms encoding the sequences C0, C1, . . . , Cn and ∅, D1, . . . , Dn.

Proof. (i) Let A = (S, A) be an RS and let RA be the Maude encoding of A. Let π = (γ, δ)
be an n-step interactive process in A such that n ≥ 0, γ = C0, C1, . . . , Cn and
δ = D0, D1, . . . , Dn. To prove the proposition, we proceed by induction on n.

Electronics 2024, 13, 1139 10 of 23

n = 0. This case is straightforward. We have π = (γ, δ) = (C0, D0) = (C0, ∅) and
the initial state < A | C0 | empty >, where C0 is the term encoding C0 and empty

the term encoding D0. Now, it suffices to consider the computation in RA of
length 0 that originates from < A | C0 | empty >.

n > 0. Let π = (γ, δ) with γ = C0, . . . , Cn and δ = D0, . . . , Dn = ∅, . . . , Dn be an
n-step interactive process in A. We consider the (n − 1)-step interactive process
π′ = (γ′, δ′) with γ′ = C0, . . . , Cn−1 and δ′ = D0, . . . , Dn = ∅, . . . , Dn−1. By
induction hypothesis, there exists a computation C ′

A of length (n − 1) in RA

C ′A = < A | C0, C1, . . . , Cn−1 | empty >
process−→ RA ,EA < A | C1, . . . , Cn−1 | D1 >

...

< A | Cn−2, Cn−1 | Dn−2 >
process−→ RA ,EA < A | Cn−1 | Dn−1 >

where C0, C1, . . . , Cn−1 is a term encoding the context sequence C0, C1, . . . , Cn−1
and D0, D1, . . . , Dn−1 is a term encoding the result sequence D0, D1, . . . , Dn−1.
Now, observe that, for any state transition

< A | Ci, Ci+1, . . . , Cn−1 | Di >
process
−→ RA ,EA < A | Ci+1, . . . , Cn−1 | Di+1 >

that occurs in C ′
A, there also exists the state transition

< A | Ci, Ci+1, . . . , Cn−1, Cn | Di >
process
−→ RA ,EA < A | Ci+1, . . . , Cn−1, Cn | Di+1 >

where Cn is the term encoding the n-th context Cn of γ. This is because the
application of the process rule only consumes the head of the context sequence
Ci, . . . , Cn−1; thus, adding the context Cn at the end of the current context se-
quence Ci, . . . , Cn−1 does not alter (or disable) the rule application. Thus, we
also have the following computation C ′′

A of length n − 1:

C ′′A = < A | C0, C1, . . . , Cn−1, Cn | empty >
process−→ RA ,EA < A | C1, . . . , Cn−1, Cn | D1 >

...

< A | Cn−2, Cn−1, Cn | Dn−2 >
process−→ RA ,EA < A | Cn−1, Cn | Dn−1 >

where C0, C1, . . . , Cn−1, Cn is a term encoding the context sequence
C0, C1, . . . , Cn−1, Cn and D0, D1, . . . , Dn−1 is a term encoding the result sequence
D0, D1, . . . , Dn−1.
To conclude the proof, just note that there exists the state transition

cn = < A | Cn−1, Cn | Dn−1 >
process−→ RA ,EA < A | Cn | Dn >

since it is immediate to observe that the function call applyAll(A, Cn−1 Dn−1)
yields Dn, which is the encoding of the result set Dn in δ. Therefore, by concate-
nating the computation C ′′

A with the state transition cn, we obtain a computation
CA such that

CA = < A | C0, C1, . . . , Cn | empty >
process−→ RA ,EA < A | C1, . . . , Cn | D1 >

...

< A | Cn−1 | Dn−1 >
process−→ RA ,EA < A | Cn | Dn >

where C0, C1, . . . , Cn is a term encoding the context sequence C0, C1, . . . , Cn and
D0, D1, . . . , Dn is a term encoding the result sequence D0, D1, . . . , Dn.

Electronics 2024, 13, 1139 11 of 23

(ii) Proof of (ii) is similar to (i) and proceeds by induction on the length n of the computation
< A | C0, C1, . . . , Cn | empty >

process−→ RA ,EA < A | C1, . . . , Cn | D1 >

...

< A | Cn−1 | Dn−1 >
process−→ RA ,EA < A | Cn | Dn >

Note that the reaction set A and the context sequence γ of an RS A totally determine
any interactive process on A. In other words, when A and γ are fixed, there is only one
computation of length n in RA that specifies an n-step interactive process on A.

The choice rule introduces non-determinism into reaction systems by allowing for
multiple context sequences to be specified within a single state. By doing so, one has
the possibility to feed a reaction system with distinct external inputs as already illus-
trated in Example 1. More specifically, given a state < A | Cs + M | D >, the choice rule
non-deterministically selects a context sequence Cs within the multiset Cs + M, thereby
yielding a new configuration < A | Cs | D > which only contains the selected context
sequence Cs. Therefore, in this more general scenario, a computation in RA has typically
the following form:

CA = < A | (C00 . . . Cn0) + . . . + (C0m . . . Cnm) | empty >
choice−→ RA ,EA < A | (C0i . . . Cni) | empty >
process−→ RA ,EA < A | (C1i . . . Cni) | D1i >

...
process−→ RA ,EA < A | Cni | Dni >

with integers m ≥ 0, i ∈ {0, . . . , m}, ni ≥ 0. Intuitively, the first state transition uses the
choice rule to select a context sequence (C0i . . . Cni) among the ones that are available in
the initial state, and then the reaction system evolves, using its reactions and the selected
context sequence, by repeatedly applying the process rule.

Example 5. Consider the RS A = (A, S) of Example 1. Let RA be the Maude encoding of A.
Then, the two interactive processes π and π′ of Example 1 are, respectively, simulated by the

following two computations in RA:

< [a b, c, a]; [a, b, c] | (a b, c, b) + (a b, b c, b) | empty >
choice−→RA ,EA

< [a b, c, a]; [a, b, c] | (a b, c, b) | empty >
process−→RA ,EA

< [a b, c, a]; [a, b, c] | (c, b) | a >
process−→RA ,EA

< [a b, c, a]; [a, b, c] | b | c >

and
< [a b, c, a]; [a, b, c] | (a b, c, b) + (a b, b c, b) | empty >

choice−→RA ,EA

< [a b, c, a]; [a, b, c] | (a b, b c, b) | empty >
process−→RA ,EA

< [a b, c, a]; [a, b, c] | (b c, b) | a >
process−→RA ,EA

< [a b, c, a]; [a, b, c] | b | empty >

5. Exploring Computations in a Reaction System

The Maude formalization of Section 4 provides a generic, abstract framework for the
execution and exploration of computations in a reaction system. Arbitrary reaction systems
as well as arbitrary external context sequences can be plugged into the framework and then
analyzed using the tools available in the Maude ecosystem. In the following, we illustrate
such Maude capabilities using a more realistic biological example.

Example 6. Let us consider the RS AGR = (SGR, AGR) of [17] that models a network for gene
regulation. Roughly speaking, these networks represent the interactions among genes regulating

Electronics 2024, 13, 1139 12 of 23

the activation of specific cell functions. The considered RS specifies a fragment of the network for
controlling the process of differentiation of T helper lymphocytes, which play a fundamental role in
the immune system. Entities in SGR represent genes, gene expression levels, and other functional
molecules. High and medium expression levels for the same gene are specified by two distinct
constants, e.g., tbeth and tbetm represent high expression level and medium expression level for
the tbet gene, respectively. Listing 7 illustrates the list of the 32 reactions that specifies AGR.

Listing 7. Reactions for controlling the differentiation of T helper (Th) lymphocytes.

op GR : -> Reactions [ctor] .
eq GR = [stat4 , irak s4ir tbeth, ifngammam] ;

[tbetm, irak s4ir, ifngammam] ;
[tbetm, s4ir tbeth, ifngammam] ;
[stat4 tbetm , s4ir , ifngammam] ;
[stat4 tbetm, irak tbeth, ifngammam] ;
[stat4 irak, empty, ifngammah] ;
[tbeth, empty, ifngammah] ;
[gata3, stat1h stat1m, il4] ;
[ifngammam, empty, ifngammarm] ;
[ifngammah socs1, empty, ifngammarm] ;
[ifngammah, socs1, ifngammarh] ;
[il4, socs1, il4r] ;
[il12, stat6, il12r] ;
[il18, stat6, il18r] ;
[ifnbeta, empty, ifnbetar] ;
[ifnbetar, ifngammarh, stat1m] ;
[ifngammarm, empty, stat1m] ;
[ifngammarh, empty, stat1h] ;
[il4r, empty, stat6] ;
[il12r, gata3, stat4] ;
[il18r, empty, irak] ;
[stat1h, empty, socs1] ;
[stat1m, empty, socs1] ;
[tbeth, empty, socs1] ;
[tbetm, empty, socs1] ;
[stat6, tbeth tbetm, gata3] ;
[gata3, tbeth tbetm, gata3] ;
[tbetm, tbeth gata3 stat1h, tbetm] ;
[stat1m, tbeth gata3 stat1h, tbetm] ;
[tbeth, gata3, tbeth] ;
[stat1h, gata3, tbeth] ;
[il12r il18r, gata3, s4ir] .

Given the Maude encoding RAGR of AGR, interactive processes can be directly gen-
erated in RAGR using the Maude built-in command rew, that produces rewrite sequences
(computations) in RAGR . More specifically, the n-step interactive process π = (γ, δ), with
γ = C0, . . . , Cn and δ = D0, . . . , Dn is simulated in RAGR by executing the command
rew [n] < GR | C0, . . . , Cn | empty >, where GR specifies the reactions in Listing 7.

Example 7. Consider the following initial state

init = < GR | ifngammah, empty, empty, stat1h il4, empty, empty, empty | empty >

where the external input is provided by the first context ifngammah and the fourth context
stat1h il4, while the remaining contexts are empty. Then, the command

Maude> rew [7] init .

Electronics 2024, 13, 1139 13 of 23

rewrite [7] in RS : < GR | ifngammah,empty,empty,stat1h il4,empty,empty,empty |
empty > .

rewrites: 1626 in 0ms cpu (0ms real) (8603174 rewrites/second)
result State: < [stat4,irak s4ir tbeth,ifngammam] ;

[tbetm,irak s4ir,ifngammam]
...

[il12r il18r, gata3,s4ir] |
empty |

tbeth stat1m ifngammarm socs1 ifngammah >

generates a computation of length 7 that models a seven-step interactive process, whose final state
contains the entities tbeth, stat1m, ifngammarm, socs1, ifngammah. In particular, we can observe
that the provided context sequence enforces the presence of the tbet gene (entity tbeth) at step 7.

The Maude system is also endowed with a search facility that allows one to explore
(following a breadth-first strategy) the reachable state space originating from an initial
state. Reachability queries can be specified via the search command by means of the
following syntax:

search [n, m] st =>∗ sp such that Cond (1)

where n, m are, respectively, (optional) upper bounds on the number of solutions to be
found and the depth of the search, st is an initial state, sp is a state pattern that models the
form of the terms that must be reached, cond is an optional Boolean condition that must
be satisfied by the reached states. When there is no condition, the syntax is simplified in
search [n, m] st =>∗ sp. A solution of the reachability query (1) is any computation from
the initial state st to a state st′ that matches the pattern sp and meets the condition Cond.

Example 8. Consider the initial state init of Example 7 whose initial context includes ifngammah.
The following reachability query

search [1, 7] init =>∗ < Rs : Reactions | Cs : Sequence | tbetm T :Entities >

verifies whether there exists a computation (up to length 7) that starts from init and reaches a state
that contains the entity tbetm in its products. The outcome of the query is the following:

No solution.
states: 7 rewrites: 1625 in 0ms cpu (0ms real) (5584192 rewrites/second)

Since there is no solution, we can derive that we cannot reach a medium gene expression level
for tbet (tbetm), if we start from an initial context that includes a highly expressed gene ifngamma
(ifngammah) using the context sequence encoded in init.

On the contrary, from ifngammah, we are always able to reach tbeth, as witnessed by the
execution of the following reachability query:

search [1, 7] init =>∗ < Rs : Reactions | Cs : Sequence | tbeth T :Entities >

whose solution is

Solution 1 (state 3)
states: 4 rewrites: 788 in 0ms cpu (0ms real) (4581395 rewrites/second)
Rs --> [stat4,irak s4ir tbeth,ifngammam] ;

[tbetm,irak s4ir,ifngammam] ;
...
[il12r il18r,gata3,s4ir]

Cs --> stat1h il4,empty,empty,empty
T:Entities --> socs1

Therefore, starting from init, the system evolves to a state that contains tbeth and socs1 in
exactly four steps.

Electronics 2024, 13, 1139 14 of 23

Although Maude rew and search commands are two powerful tools for the execution
and exploration of reaction systems, they definitely lack a user-friendly interface that
facilitates the inspection of reaction system behavior. A valid solution to this problem is
offered by the ANIMA system [13]—a visual program explorer for Maude computations that
we developed in a previous work. In ANIMA, system biologists can explore the computation
space of RSs in a stepwise manner by expanding state transitions one at a time with a
simple point-and-click interface, thereby producing an incremental visual representation of
the whole computation tree with regard to a given initial state. Let us see an example.

Example 9. Consider the Maude encoding RAGR of AGR together with the following initial state:

init = < GR | ifngammah,empty,empty,empty,empty+ ifngammam,empty,empty,empty,empty | empty >

that includes two distinct context sequences, respectively, modeling a high gene expression level
ifngammah and a medium gene expression level ifngammam in their initial contexts. By feeding
ANIMA with RAGR and init, we can interactively generate the computation tree with regard to
init by clicking on the node tree to be expanded. Figure 1a zooms into the first (non-deterministic)
transition that applies the choice rule to select one of the two context sequences available in init,
while Figure 1b illustrates a partial expansion of the two possible evolutions of the system that
depend on the chosen context sequence.

Note that the reader can fully reproduce this example by simply accessing ANIMA at
the http://safe-tools.dsic.upv.es/anima, (accessed on 18 March 2024) and selecting
Gene-Regulation-RS from the list of pre-loaded examples.

(a) (b)

Figure 1. Visual exploration of reaction system computations in ANIMA.

As witnessed by Example 9, computations in a Maude specification RA can be tex-
tually large, hindering the comprehension and analysis of the reaction system behav-
ior. The next section specifies a forward slicing technique that drastically reduces the
complexity of system computations and facilitates the detection of causality relations in
context-independent processes.

6. Forward Slicing of Context-Independent Processes

In this section, we present a forward slicing technique for context-independent pro-
cesses. Although the generalization of the proposed slicing technique to generic interactive
processes is not technically difficult, we prefer to focus on context-independent processes,
since their behavior is totally defined by a single input context C0 and having such a limited
input allows one to precisely study the forward causalities of a reaction system. This

http://safe-tools.dsic.upv.es/anima

Electronics 2024, 13, 1139 15 of 23

approach is also advocated by [2], where a rigorous notion of minimal influence distance
between entities is formalized within all possible context-independent state sequences.

Given a reaction system A = (S, A) and a context-independent process π = (C0, δ)
in A, with δ = D0, . . . , Dn, forward slicing aims at producing a partial view of π that only
depends on a selected subset C′

0 of C0 which is called slicing criterion. Forward slicing
allows one to evaluate the impact of a set of input entities across the whole process, thereby
giving answers to questions such as does the presence (or the absence) of an entity e in the slicing
criterion affect the production of the entity e′ in a later stage of π?

The forward slicing of context-independent processes can be specified by a rewrite
theory R▷

A that slightly modifies and improves the Maude encoding RA of Section 4. R▷
A

includes an extended version E▷
A of the equational theory EA that provides a richer algebraic

data type for system states, as well as a new set of rewrite rules R▷
A that implements an

augmented reaction system semantics that models both a context-independent process
and its sliced counterpart. We say that R▷

A is the forward slicing encoding for A. In the
following, we present the main data structures and core functions included in R▷

A. The full
specification is available at [16].

6.1. The Equational Theory E▷
A

The code snippet in Listing 8 illustrates the key modifications introduced by E▷
A, with

respect to EA.

Listing 8. Equational theory E▷
A: main changes with regard to EA.

1 sort Result .
2 op {_|_} : Reactions Entities -> Result .
3 vars A A’ : Reactions .
4 var Res : Result .
5 vars P P’ T : Entities .
6 op fail : -> Reaction .
7 op apply : Reaction Entities -> Reaction .
8 eq apply([R,I,P],T) = if en([R,I,P],T) then [R,I,P] else fail fi .
9 op applyAll+ : Reactions Entities -> Result .

10 eq applyAll+(A,T) = $applyAll(A,T,{ empty | empty }) .
11 op $applyAll : Reactions Entities Result -> Result .
12 eq $applyAll(empty,T,Res) = Res .
13 eq $applyAll(([R,I,P] ; A), T , { A’ | P’ }) =
14 $applyAll(A, T, if apply([R,I,P],T) =/= fail then
15 {[R,I,P] ; A’ | P P’}
16 else
17 { A’ | P’ }
18 fi
19) .
20 op <_|_|_|_|_> : Reactions Entities Reactions Entities Reactions -> State .
21 op +<_|_> : Reactions Entities -> State .
22 op -<_|_> : Reactions Entities -> State .

Roughly speaking, E▷
A extends EA into two main directions.

Firstly, the function applyAll(A, T) in EA, which computes the set of entities resA(T),
has been replaced by the function applyAll+(A, T) (see Lines 9–19 of Listing 8) whose
resulting outcome is now a pair {A′ | T′} that keeps track of both the entities T′ produced by
applying A on T and the sublist of reactions A′ which only includes the reactions of A that are
enabled by T and thus are responsible for the production of T′. Note that, to implement this
extension, we also need to slightly modify the function apply([R, I, P], T) (Lines 7–8), which
now uses the special constant fail to explicitly signal that the reaction [R, I, P] cannot be
applied to T. Let us see an example.

Electronics 2024, 13, 1139 16 of 23

Example 10. Consider the RS AGR = (SGR, AGR) of Example 6, whose reaction list is specified by the
term GR. The execution of the function call applyAll+(GR,stat1h gata3) yields the following outcome:

Maude> red applyAll+(GR,stat1h gata3) .
reduce in FORWARDSLICER-RS : applyAll+(GR, gata3 stat1h) .
rewrites: 341 in 0ms cpu (0ms real) (341000000 rewrites/second)
result Result: {[gata3,tbeth tbetm,gata3] ; [stat1h,empty,socs1] |

gata3 socs1}

which shows that only two reactions of GR (out of 32) are enabled by stat1h and gata3, thereby
creating the new entities gata3 and socs1.

Secondly, E▷
A refines the notion of state, which we introduced in E▷

A, by means of three
novel operators (Lines 20–22) that allow system states to have multiple forms. A system
state now can be

1. A term of the form < A | D | Au | D′ | Au′ >, where A, Au, Au′ are terms of sort Reactions
and D and D′ are terms of sort Entities. Intuitively, a state of this form stores the
current configuration of a context-independent process together with its sliced coun-
terpart. More formally, given a reaction list A, D represents the entities which are
currently present in the system, and Au is a list of reactions —included in A— that
have been used to produce D. Similarly, D′ is the set of entities currently observed in
the sliced counterpart that were produced by using the reactions in Au′.

2. A term of the form -< A′ | P′ >, where A′ is a term of sort Reactions and P′ is a term
of sort Entities. This data structure is used to extract, from the current state, the
entity set P′ of those entities that cannot be computed from the slicing criterion C′0
since the reactions in A′ did not take place. In other words, this state highlights the
missing entities, that is, those entities that can be computed from the initial context C0
but cannot be computed from the slicing criterion C′0.

3. A term of the form +< A′ | P′ >, where A′ is a term of sort Reactions and P′ is a term
of sort Entities. This data structure is used to extract, from the current state, the
entity set P′ of those entities that can be only computed from the slicing criterion C′0
since the reactions in A′ did not take place in the original process. Put differently, this
state identifies the spurious entities, that is, those entities that can be computed from
the slicing criterion C′0 but cannot be computed from the initial context C0. Generation
of spurious entities is typically caused by the absence of one or more inhibitors in C′0
that are instead present in C0. This fact allows for a given reaction to take place in the
sliced process, but it is blocked in the original process.

6.2. The Set of Rewrite Rules R▷
A

The forward slicing algorithm of context-independent processes is implemented by
the three rewrite rules of Listing 9.

Listing 9. Rewrite rules of R▷
A.

1 vars D D’ D-new D-new’ : Entities .
2 vars A Au Au’ Au-new Au-new’ : Reactions .
3 crl [process-fs] : < A | D | Au | D’ | Au’ > =>
4 < A | D-new | Au-new Au | D-new’ | Au-new’ Au’ > if
5 { Au-new’ | D-new’ } := applyAll+(A,D’) /\
6 { Au-new | D-new } := applyAll+(A,D) .
7 rl [slice+] : < A | D | Au | D’ | Au’ > => +< (Au’ \ Au) | D’ \ D > .
8 rl [slice-] : < A | D | Au | D’ | Au’ > => -< (Au \ Au’) | D \ D’ > .

Electronics 2024, 13, 1139 17 of 23

The process-fs rule is the backbone of the whole forward slicing algorithm. It allows
the system to transition from a state

< A | Di| Aui | D′i | Au′i >

to a state
< A| Di+1| Aui+1 | D′i+1 | Au′i+1 >

where

• A is a reaction list that models the reactions in the RS A = (S, A);
• Di+1 is a term encoding the set of entities obtained by applying the reaction list A on

the set of entities encoded by Di;
• Aui+1 is a reaction list that contains all and only the reactions used to produce Di+1;
• D′i+1 is a term encoding the set of entities obtained by applying the reaction list A on

the set of entities encoded by D′i;
• Au′i+1 is a reaction list that contains all and only the reactions used to produce D′i+1;

Note that the process-fs rule uses the function applyAll+ to generate the entities and
reactions at step (i + 1) by exploiting the information at step i.

In this scenario, all the computations of the form

< A | C0| empty | C′0 | empty >
process-fs

−→ R▷
A ,E▷

A
. . .

process-fs
−→ R▷

A ,E▷
A
< A | Dn| An | D′n | A′n >

define two context-independent processes in A that evolve concurrently: π = (C0, δ), with
δ = D0, . . . , Dn and π′ = (C′

0, δ′), with δ′ = D′
0, . . . , D′

n. When C′
0 ⊆ C0, we say that π′ is a

sliced version of π. Basically, a sliced version π′ of π encodes the behavior of an RS A on the
reduced set of input entities specified by the slicing criterion C′

0.

Proposition 2. Let A = (S, A) be an RS and let R▷
A be the forward slicing encoding of A. Let

C0, C′
0 be two sets of entities such that C′

0 ⊆ C0. Let C0 and C′0 be two terms, respectively, encoding
C0 and C′

0. If

< A | C0| empty | C′0 | empty >
process-fs−→ R▷

A ,E ▷
A
< A | D1| A1 | D′1 | A′1 >

...

< A | Dn−1| An−1 | D′n−1 | A′n−1 >
process-fs−→ R▷

A ,E ▷
A
< A | Dn| An | D′n | A′n >

is a computation of length n in R▷
A, n ≥ 0, then there exist two n-step context-independent

processes π = (C0, δ), with δ = D0, . . . , Dn and π′ = (C′
0, δ′), with δ′ = D′

0, . . . , D′
n such that

D0, . . . , Dn and D′0, . . . , D′n are the terms encoding the result sequences D0, . . . , Dn and D′
0, . . . , D′

n.
and π′ is a sliced version of π.

Proof. The proof is by induction on the length n of the computation

Cn = < Rs | C0| empty | C′0 | empty >
process-fs−→ R▷

A ,E ▷
A
< A | D1| A1 | D′1 | A′1 >

...

< A | Dn−1| An−1 | D′n−1 | A′n−1 >
process-fs−→ R▷

A ,E ▷
A
< A | Dn| An | D′n | A′n >

n = 0. This case is trivial. The computation C0 does not include any rewrite step and
thus leaves the initial state < Rs | C0| empty | C′0 | empty > unchanged. Note that
this state encodes two 0-step context-independent processes: π0 = (C0, δ0), with
δ0 = D0 = ∅ and π′

0 = (C′
0, δ′0), with δ′0 = D′

0 = ∅.

Electronics 2024, 13, 1139 18 of 23

n > 0. By inductive hypothesis, there is a computation of length n − 1

Cn−1 = < Rs | C0| empty | C′0 | empty >
process-fs−→ R▷

A ,E ▷
A
< A | D1| A1 | D′1 | A′1 >

...

< A | Dn−2| An−2 | D′n−2 | A′n−2 >
process-fs−→ R▷

A ,E ▷
A
< A | Dn−1| An−1 | D′n−1 | A′n−1 >

such that there exist two (n − 1)-step context-independent processes πn−1 = (C0, δn−1),
with δ = D0, . . . , Dn−1, and π′

n−1 = (C′
0, δ′n−1), with δ′ = D′

0, . . . , D′
n−1, where

D0, . . . , Dn−1, and D′0, . . . , D′n−1 are the terms that encode the result sequences D0, . . . ,
Dn−1 and D′

0, . . . , D′
n−1, respectively. Furthermore, π′

n−1 is a sliced version of πn−1.

Observe also that it is always possible to perform the rewrite step

r = < A | Dn−1| An−1 | D′n−1 | A′n−1 >
process-fs

−→ R▷
A ,E▷

A
< A | Dn| An | D′n | A′n >

which uses the function applyAll+ to generate Dn and D′n from Dn−1 and D′n−1. Since Dn−1
and D′n−1 are the terms encoding the set of entities Dn−1 and D′

n−1, we have that Dn and D′n
are the terms encoding the set of entities Dn and D′

n. Therefore, to prove the proposition, it
suffices to consider the computation Cn of length n that concatenates the computation Cn−1
with the rewrite step r.

While the process-fs rule formalizes system progress in R▷
A, the slice- and slice+

rules extract specific pieces of information from a given computation state st that allow for
the original process π and its sliced counterpart π′ to be compared on st.

More precisely, given a state st = < A | Di | Ai | D′i | A′i >, the slice- rule uses the
set difference operator (To be more precise, \ is an overloaded operator that can be applied
to both entity sets and reaction lists.)\ to compute the new state -< (Ai\ A′i) | Di\ D′i >
that isolates

• The entities (Di \ D′i) in st that can be computed in (the i-th step of) π but not in (the
i-th step of) π′.

• The reactions (Ai \ A′i) in st that were enabled in π but not in π′ until the i-th step.

Note that (Ai \ A′i) represents the reason of the missing information (Di \ D′i): in other
words, entities encoded by (Di \ D′i) cannot be produced in the i-th step of π′ because
reactions (Ai \ A′i) were never enabled in π′ up to the i-th step.

Dually, the slice+ computes the new state +< (A′i\ Ai) | D′i\ Di > that isolates:

• The entities (D′i \ Di) in st that can be computed in (the i-th step of) π′ but not in (the
i-th step of) π.

• The reactions (A′i \ Ai) in st that were enabled in π′ but not in π until the i-th step.

Intuitively, slice+ collects the spurious entities (D′i \ Di) of st, that is, those entities of
st computed in π′ by using the reactions (A′i \ Ai) that are not enabled in π (up to the
i-th step).

It is worth noting that, all the three rules process-fs, slice-, and slice+ can be
non-deterministically applied to each system state. Therefore, at each state, the system
can (i) evolve via the process-fs rule, (ii) compute the missing entities in π′ by applying
slice-, or (iii) compute the spurious entities by applying slice+. Let us see an example.

Example 11. Let AGR = (SGR, AGR) be the RS of Example 6. Let C0 = {ifngammh, gata3} be
an initial context and let C′

0 = {ifngammah} be a slicing criterion for C0. Given the initial state

init =< GR | C0| empty | C′0 | empty >

where GR is the reaction list encoding the 32 reactions in AGR, C0 and C′0 are terms encoding C0 and
C′

0, the (fragment of the) computation tree TR▷
AGR

(init) of Figure 2 can be computed in R▷
AGR

.
Note that each tree level i (except for the root level) contains three states:

Electronics 2024, 13, 1139 19 of 23

(i) The current state si which is produced by the application of the process-fs rule on the
previous state s(i−1);

(ii) Two states s(i−1)− and s(i−1)+ that specify the states which are computed by, respectively,
applying the slice- and slice+ rules to the state s(i−1).

Compact state views, which are produced by slice- and slice+, allow one to immediately grasp
what is going on in the process and its sliced counterpart.

For instance, by inspecting all the applications of slice+ in the tree, we can immediately note
that only state s3 introduces a spurious entity (up to level 3); concretely, the entity tbeth which
appears in the state

s3+ = +< [stat1h,gata3,tbeth] | tbeth >

Hence, we can infer that the gene expression tbeth can be computed for the slicing criterion
C′

0 but not for the full initial context C0 in the considered tree fragment. Indeed, the reaction
[stat1h,gata3,tbeth], which occurs in s3+ , is enabled in the sliced process π′ but not in the
original one π. Since gata3 belongs to C0 but not to C′

0, we can safely say that gata3 blocks the
creation of tbeth in π.

Also, by looking at the applications of the slice- rule, we can easily detect the information
that the slicing criterion C′

0 cannot produce for a given computation state. For example, the state
s3− tells us that gata3, il4r, and stat6 are missing entities that cannot be created in the sliced process
π′ that reaches state s3. This is due to the fact that reactions [gata3,tbeth tbetm,gata3] ,
[il4r,empty,stat6], and [il4,socs1,il4r] take place only in π but not in π′.

Finally, note that the ANIMA system, which we presented in Section 5, can also be used
to interactively execute the proposed forward slicing algorithm, allowing system biologists to
visually explore system states and their associated compact views in a more user-friendly and
incremental way. In this regard, Figure 3 illustrates the generation of the computation tree
of Figure 2 within ANIMA. To reproduce this experiment, the reader can access ANIMA at the
http://safe-tools.dsic.upv.es/anima (accessed on 18 March 2024) and select Forward
Slicing of Gene-Regulation-RS from the list of pre-loaded examples.

< [stat4,irak s4ir tbeth,ifngammam] ; ... ; [il12r il18r,gata3,s4ir] |
 gata3 ifngammarh il4 |
 [gata3,tbeth tbetm,gata3] ; [ifngammah,socs1,ifngammarh] ; [gata3,stat1h stat1m,il4] |
 ifngammarh |
 [ifngammah,socs1,ifngammarh] >

< [stat4,irak s4ir tbeth,ifngammam] ; ... ; [il12r il18r,gata3,s4ir] |
 gata3 ifngammah | empty | ifngammah | empty >

< [stat4,irak s4ir tbeth,ifngammam] ; ... ; [il12r il18r,gata3,s4ir] |
 gata3 il4 il4r stat1h |
 [gata3,tbeth tbetm,gata3] ; [ifngammarh,empty,stat1h] ; [il4,socs1,il4r] ;
 [gata3,stat1h stat1m,il4] |
 stat1h | [ifngammarh,empty,stat1h] >

< [stat4,irak s4ir tbeth,ifngammam] ; ... ; [il12r il18r,gata3,s4ir] |
 gata3 il4r socs1 stat6 |
 [gata3,tbeth tbetm,gata3] ; [stat1h,empty,socs1] ; [il4r,empty,stat6] ;
 [il4,socs1,il4r] |
 socs1 tbeth | [stat1h,gata3,tbeth] ; [stat1h,empty,socs1] >

< [stat4,irak s4ir tbeth,ifngammam] ; ... ; [il12r il18r,gata3,s4ir] |
 gata3 il4 stat6 | [gata3,tbeth tbetm,gata3] ; [stat6,tbeth tbetm,gata3] ;
 [il4r,empty,stat6] ; [gata3,stat1h stat1m,il4] |
 ifngammah socs1 tbeth | [tbeth,gata3,tbeth] ; [tbeth,empty,socs1] ;
 [tbeth,empty,ifngammah] >

-< empty | gata3 >

-< [gata3,tbeth tbetm,gata3] ;
 [gata3,stat1h stat1m,il4] |
 gata3 il4 >

-< [gata3,tbeth tbetm,gata3] ;
 [il4,socs1,il4r] ;
 [gata3,stat1h stat1m,il4] |
 gata3 il4 il4r >

-< [gata3,tbeth tbetm,gata3] ;
 [il4r,empty,stat6] ;
 [il4,socs1,il4r] |
 gata3 il4r stat6 >

+< empty | empty >

+< empty | empty >

+< empty | empty >

+< [stat1h,gata3,tbeth] |
 tbeth >

slice+

slice+

slice+

slice-

slice-

slice-

process-fs

process-fs

process-fs

s0

s1

s2

s3

s4

s0+

s1+

s2+

s3+

s0-

s1-

s2-

s3-

slice+ slice- process-fs

Figure 2. Fragment of the computation tree TR▷
AGR

(init)

http://safe-tools.dsic.upv.es/anima

Electronics 2024, 13, 1139 20 of 23

Figure 3. Forward slicing of context-independent processes in ANIMA

7. Related Work

Several tools are already available to simulate RSs or to verify that certain properties
are met. In [18,19], some authors developed BioReSolve [20]: a PROLOG interpreter for
reaction system analysis. The verification capabilities integrated into BioReSolve have been
crafted from scratch. In contrast, our approach offers a rewriting-based modeling of RSs,

Electronics 2024, 13, 1139 21 of 23

leveraging the extensive functionalities of the Maude environment, which provides multiple
built-in functions and third-party tools for program analysis. Other implementations of RSs
include brsim [21], a Basic Reaction System Simulator written in Haskell and distributed
under the terms of GNU GPLv3 license [22] whose online version WEBRSIM makes all the
features of brsim available through a friendly web interface [23]; HERESY [24], a GPU-based
Highly Efficient REaction SYstem simulator, that exploits the large number of computational
units inside GPUs to boost performance [25]; cl-rs [26], an optimised Common Lisp
simulator for RSs presented in [27].

Model checking has been deeply studied in the context of reaction systems. [28]
defines rsCTL, a temporal logic for reaction systems. The logic is interpreted over the
models for the context-restricted reaction systems that generalize standard reaction systems
by controlling context sequences. In [29,30], a variant of Linear Time Temporal Logic that is
interpreted over models of reaction systems with discrete concentrations is presented: the
approach adopts a suitable encoding in SMT together with bounded model checking for
the formal verification of temporal properties over RSs. The verification technique has been
implemented into the ReactICS system [31]. A more theoretical work that investigates model
checking of reaction systems through computational complexity lenses is also presented
in [32]. This work provides several complexity results for decision procedures related
to properties of central interest in biomodeling (e.g., mass conservation, steady states,
stationary processes).

We believe that model-checking and (trace and program) slicing may be success-
fully combined together to improve the analysis and comprehension of counter-examples
generated by model-checkers when properties of interest are refuted.

Notably, the Maude language has already been successfully used in the analysis of
biological systems. For instance, Pathway Logic [33] is a symbolic approach to the modeling
and analysis of biological systems that is implemented in Maude. This logical framework
allow metabolic pathways to be simulated and formally verified.

Dynamic program slicing has been applied previously to other programming paradigms,
such as imperative programming [8], functional programming [34], and term rewriting
and its extensions [35,36]. None of these approaches are suitable for RSs, which have a
completely different computation behavior based on the non-monotonic enabling mecha-
nism of reactions. In [37], we extended BioReSolve with a slicing algorithm which proceeds
backwards. Some entities in the last state of a computation of an RS are selected and
then the algorithm proceeds backwards, simplifying the computation and leaving only the
entities which are essential to derive the selected ones. Unfortunately, this way we cannot
know in advance which entities of the initial state of the computation will be left in the
backward sliced computation. In this paper, we define a dual forward slicing algorithm
in which we observe some entities in the initial state and we proceed forward. The two
(backward and forward) slicing methodologies clearly derive different information as they
focus on input information from different states and apply different algorithms. While the
forward slicing results in a form of impact analysis that identifies the scope and potential
consequences of changing the program input, backward slicing allows for provenance
analysis to be performed in search of the origins of the selected entities.

8. Conclusions and Future Work

In this paper, we have defined the first implementation of reaction systems in Maude, a
language based on rewriting logic, which has a very well-developed environment with tools
for program analysis and verification. Our Maude implementation provides an interpreter
for RSs that supports exploration capabilities via Maude built-in commands as well as
third-party systems such as the ANIMA system. Also, we have defined an algorithm for
forward slicing of context-independent processes. Our implementation of forward slicing
gives a parallel execution of the standard and the sliced computation, so that users can
compare each state of the original computation with the corresponding sliced one, and
obtain useful information to analyze and possibly debug RS processes. To evaluate the

Electronics 2024, 13, 1139 22 of 23

feasibility and usefulness of the proposed approach, our forward slicing algorithm has
been used to analyze an example of a gene regulatory network.

As future work, we want to study the combination of the forward slicing algorithm
with the backward one which we have defined in [37]. We believe that this integration can
improve the quality of the analysis, allowing for more erroneous/unexpected behaviours
to be detected. We also want to extend the forward slicing algorithm to a language for
concurrent multiparty communications [38], and investigate possible extensions that exploit
static analysis techniques [39–41] as well as dynamic verification methodologies [42,43].

Author Contributions: Methodology, D.B., L.B. and M.F.; Investigation, D.B., L.B. and M.F.; Writing –
original draft, D.B., L.B. and M.F.; Writing – review & editing, D.B., L.B. and M.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This research has been partially supported by the Italian MUR PRIN 2022 project “MEDICA”
(2022RNTYWZ), by the Italian MUR PRIN PNRR 2022 project “DELICE” (P20223T2MF), by the Next
Generation EU programme project PNRR ECS00000017—“THE—Tuscany Health Ecosystem”—Spoke
3—CUP I53C22000780001, and by the Department Strategic Plan (PSD) of the University of Udine-
Interdepartmental Project on Artificial Intelligence (2021-25).

Data Availability Statement: The data presented in this study are available in this article.

Acknowledgments: We thank the anonymous reviewers for their careful reading of the paper and
suggestions that helped us to improve our paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ehrenfeucht, A.; Rozenberg, G. Reaction Systems. Fundam. Informaticae 2007, 75, 263–280.
2. Brijder, R.; Ehrenfeucht, A.; Main, M.G.; Rozenberg, G. A Tour of Reaction Systems. Int. J. Found. Comput. Sci. 2011, 22, 1499–1517.
3. Azimi, S.; Iancu, B.; Petre, I. Reaction System Models for the Heat Shock Response. Fundam. Informaticae 2014, 131, 299–312.

https://doi.org/10.3233/FI-2014-1016.
4. Corolli, L.; Maj, C.; Marini, F.; Besozzi, D.; Mauri, G. An excursion in reaction systems: From computer science to biology. Theor.

Comput. Sci. 2012, 454, 95–108. https://doi.org/10.1016/j.tcs.2012.04.003.
5. Azimi, S. Steady States of Constrained Reaction Systems. Theor. Comput. Sci. 2017, 701, 20–26. https://doi.org/10.1016/j.tcs.2017

.03.047.
6. Okubo, F.; Yokomori, T. The computational capability of chemical reaction automata. Nat. Comput. 2016, 15, 215–224.

https://doi.org/10.1007/s11047-015-9504-7.
7. Weiser, M. Program slicing. IEEE Trans. Softw. Eng. 1984, 10, 352–357. https://doi.org/10.1109/TSE.1984.5010248.
8. Korel, B.; Laski, J. Dynamic Program Slicing. Inf. Process. Lett. 1988, 29, 155–163.
9. Silva, J. A Vocabulary of Program Slicing-based Techniques. ACM Comput. Surv. 2012, 44, 12:1–12:41. https://doi.org/10.1145/

2187671.2187674.
10. Durán, F.; Eker, S.; Escobar, S.; Martí-Oliet, N.; Meseguer, J.; Rubio, R.; Talcott, C.L. Programming and symbolic computation in

Maude. J. Log. Algebraic Methods Program. 2020, 110, 100497.
11. Meseguer, J. Conditional Rewriting Logic as a Unified Model of Concurrency. Theor. Comput. Sci. 1992, 96, 73–155.
12. Clavel, M.; Durán, F.; Eker, S.; Escobar, S.; Lincoln, P.; Martí-Oliet, N.; Meseguer, J.; Rubio, R.; Talcott, C. Maude Manual (Version

3.2.1); Technical Report; SRI International Computer Science Laboratory, 2022. Available online: https://maude.lcc.uma.es/
maude321-manual-html/maude-manual.html (accessed on).

13. The Anima Website. 2015. Available online: http://safe-tools.dsic.upv.es/anima (accessed on).
14. Brijder, R.; Ehrenfeucht, A.; Rozenberg, G. A Note on Causalities in Reaction Systems. Electron. Commun. Easst 2010, 10.
15. TeReSe. Term Rewriting Systems; Cambridge University Press: Cambridge, UK, 2003.
16. The RS-MAUDE System. 2024. Available online: https://github.com/DemisGIT/RSMaude (accessed on).
17. Barbuti, R.; Gori, R.; Milazzo, P. Encoding Boolean Networks into Reaction Dystems for Investigating Causal Dependencies in

Gene Regulation. Theor. Comput. Sci. 2021, 881, 3–24.
18. Brodo, L.; Bruni, R.; Falaschi, M. Enhancing Reaction Systems: A Process Algebraic Approach. In Art of Modelling Computational

Systems; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11760, pp. 68–85. https:
//doi.org/10.1007/978-3-030-31175-9_5.

19. Brodo, L.; Bruni, R.; Falaschi, M. A logical and graphical framework for reaction systems. Theor. Comput. Sci. 2021, 875, 1–27.
https://doi.org/10.1016/j.tcs.2021.03.024.

20. The BioReSolve System. 2021. Available online: http://www.di.unipi.it/~bruni/LTSRS/ (accessed on).
21. The brsim System. 2014. Available online: https://github.com/scolobb/brsim/ (accessed on).

https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/10.1016/j.tcs.2017.03.047
https://doi.org/10.1016/j.tcs.2017.03.047
https://doi.org/10.1007/s11047-015-9504-7
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/2187671.2187674
https://doi.org/10.1145/2187671.2187674
https://maude.lcc.uma.es/maude321-manual-html/maude-manual.html
https://maude.lcc.uma.es/maude321-manual-html/maude-manual.html
http://safe-tools.dsic.upv.es/anima
https://github.com/DemisGIT/RSMaude
https://doi.org/10.1007/978-3-030-31175-9_5
https://doi.org/10.1007/978-3-030-31175-9_5
https://doi.org/10.1016/j.tcs.2021.03.024
http://www.di.unipi.it/~bruni/LTSRS/
https://github.com/scolobb/brsim/

Electronics 2024, 13, 1139 23 of 23

22. Azimi, S.; Gratie, C.; Ivanov, S.; Petre, I. Dependency graphs and mass conservation in reaction systems. Theor. Comput. Sci. 2015,
598, 23–39. https://doi.org/10.1016/j.tcs.2015.02.014.

23. Ivanov, S.; Rogojin, V.; Azimi, S.; Petre, I. WEBRSIM: A Web-Based Reaction Systems Simulator. In Enjoying Natural Computing—
Essays Dedicated to Mario de Jesús Pérez-Jiménez on the Occasion of His 70th Birthday; Lecture Notes in Computer Science; Díaz,
C.G., Riscos-Núñez, A., Paun, G., Rozenberg, G., Salomaa, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11270,
pp. 170–181. https://doi.org/10.1007/978-3-030-00265-7_14.

24. The HERESY System. 2017. Available online: https://github.com/aresio/HERESY (accessed on 14 March 2024).
25. Nobile, M.S.; Porreca, A.E.; Spolaor, S.; Manzoni, L.; Cazzaniga, P.; Mauri, G.; Besozzi, D. Efficient Simulation of Reaction Systems

on Graphics Processing Units. Fundam. Informaticae 2017, 154, 307–321. https://doi.org/10.3233/FI-2017-1568.
26. The cl-rs System. 2020. Available online: https://github.com/mnzluca/cl-rs (accessed on).
27. Ferretti, C.; Leporati, A.; Manzoni, L.; Porreca, A.E. The Many Roads to the Simulation of Reaction Systems. Fundam. Informaticae

2020, 171, 175–188. https://doi.org/10.3233/FI-2020-1878.
28. Meski, A.; Penczek, W.; Rozenberg, G. Model Checking Temporal Properties of Reaction Systems. Inf. Sci. 2015, 313, 22–42.
29. Meski, A.; Koutny, M.; Penczek, W. Towards Quantitative Verification of Reaction Systems. In Proceedings of the Unconven-

tional Computation and Natural Computation—15th International Conference, UCNC 2016, Manchester, UK, 11–15 July 2016;
Proceedings; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9726, pp. 142–154.

30. Meski, A.; Koutny, M.; Penczek, W. Verification of Linear-Time Temporal Properties for Reaction Systems with Discrete
Concentrations. Fundam. Informaticae 2017, 154, 289–306.

31. ReactICS: Reaction Systems Verification Toolkit. 2023. Available online: https://arturmeski.github.io/reactics/ (accessed on).
32. Azimi, S.; Gratie, C.; Ivanov, S.; Manzoni, L.; Petre, I.; Porreca, A.E. Complexity of Model Checking for Reaction Systems. Theor.

Comput. Sci. 2016, 623, 103–113.
33. Talcott, C. Pathway Logic. In Proceedings of the 8th International School on Formal Methods for the Design of Computer,

Communication and Software Systems (SFM 2008), Bertinoro, Italy, 2–7 June 2008; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2008; Volume 5016, pp. 21–53.

34. Ochoa, C.; Silva, J.; Vidal, G. Dynamic slicing of lazy functional programs based on redex trails. Higher Order Symbol. Comput.
2008, 21, 147–192.

35. Field, J.; Tip, F. Dynamic dependence in term rewriting systems and its application to program slicing. Inf. Softw. Technol. 1998,
40, 609–636.

36. Alpuente, M.; Ballis, D.; Frechina, F.; Sapiña, J. Assertion-based Analysis via Slicing with ABETS. Theory Pract. Log. Program. 2016,
16, 515–532.

37. Brodo, L.; Bruni, R.; Falaschi, M. Dynamic Slicing of Reaction Systems Based on Assertions and Monitors. In Proceedings of
the Practical Aspects of Declarative Languages—25th Int. Symp., PADL 2023; Lecture Notes in Computer Science; Hanus, M.,
Inclezan, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; Volume 13880, pp. 107–124. https://doi.org/10.1007/978-3-031-
24841-2_8.

38. Brodo, L.; Olarte, C. Symbolic Semantics for Multiparty Interactions in the Link-Calculus. In Proceedings of the SOFSEM’17,
Limerick, Ireland, 16–20 January 2017; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017;
Volume 10139, pp. 62–75. https://doi.org/10.1007/978-3-319-51963-0_6.

39. Bodei, C.; Brodo, L.; Focardi, R. Static Evidences for Attack Reconstruction. In Programming Languages with Applications
to Biology and Security—Essays Dedicated to Pierpaolo Degano on the Occasion of His 65th Birthday; Lecture Notes in Computer
Science; Bodei, C., Ferrari, G., Priami, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9465, pp. 162–182.
https://doi.org/10.1007/978-3-319-25527-9_12.

40. Bodei, C.; Brodo, L.; Gori, R.; Levi, F.; Bernini, A.; Hermith, D. A static analysis for Brane Calculi providing global occurrence
counting information. Theor. Comput. Sci. 2017, 696, 11–51. https://doi.org/10.1016/J.TCS.2017.07.008.

41. Alpuente, M.; Ballis, D.; Sapiña, J. Static Correction of Maude Programs with Assertions. J. Syst. Softw. 2019, 153, 64–85.
42. Alpuente, M.; Ballis, D.; Romero, D. A Rewriting Logic Approach to the Formal Specification and Verification of Web Applications.

Sci. Comput. Program. 2014, 81, 79–107.
43. Alpuente, M.; Ballis, D.; Frechina, F.; Sapiña, J. Combining Runtime Checking and Slicing to improve Maude Error Diagnosis. In

Logic, Rewriting, and Concurrency—Festschrift Symposium in Honor of José Meseguer; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2015; Volume 9200, pp. 72–96.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.tcs.2015.02.014
https://doi.org/10.1007/978-3-030-00265-7_14
https://github.com/aresio/HERESY
https://doi.org/10.3233/FI-2017-1568
https://github.com/mnzluca/cl-rs
https://doi.org/10.3233/FI-2020-1878
https://arturmeski.github.io/reactics/
https://doi.org/10.1007/978-3-031-24841-2_8
https://doi.org/10.1007/978-3-031-24841-2_8
https://doi.org/10.1007/978-3-319-51963-0_6
https://doi.org/10.1007/978-3-319-25527-9_12
https://doi.org/10.1016/J.TCS.2017.07.008

	Introduction
	Problem Statement
	The Approach
	Contribution
	Organization

	Reaction Systems
	Software Systems in Maude
	Formalizing Reaction Systems in Maude
	The Equational Theory EA
	The Set of Rewrite Rules RA

	Exploring Computations in a Reaction System
	Forward Slicing of Context-Independent Processes
	The Equational Theory EA
	The Set of Rewrite Rules RA

	Related Work
	Conclusions and Future Work
	References

