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ABSTRACT 
 

Abiotic stressors may have intricate and varied impacts on the growth and development of forest 
trees. This article provides a comprehensive summary of the effects of abiotic stressors, such as 
flood, drought, severe temperature, salt, heavy metal, combination stresses, and microplastics, on 
the morphological, physiological, and anatomical features of woody plants. The focus is particularly 
on evaluating these effects from the viewpoint of the xylem. During abiotic stress, the ability of 
xylem to transport water declines, which is linked to the control of leaf stomata and the suppression 
of aquaporin (AQP) function. Concurrently, woody plants maintain control over the dimensions and 
structure of their roots and leaves in order to achieve a harmonious equilibrium between water 
intake and evaporation. The anatomical characteristics are modified as well, including increased 
density of leaf stomata, smaller conduits, and thicker cell walls. Furthermore, various types of 
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stressors elicit distinct responses in plants. For instance, flooding leads to the development of 
adventitious roots and aeration tissues, while forest fires cause irreparable damage to the xylem. 
Low temperatures result in tissue freezing, salt stress hinders ion absorption, and exposure to 
heavy metals induces biological toxicity. Woody plants' growth may be periodically enhanced in 
conditions of drought, floods, and exposure to heavy metals. The impact of combined stress on the 
physiological, morphological, and anatomical characteristics of woody plants is not only cumulative. 
The underlying mechanism behind this phenomenon requires additional investigation, particularly in 
natural or near-natural environments. 
 

 
Keywords: Abiotic stressors; anatomical features; combination stresses; harmonious equilibrium. 
 

1. INTRODUCTION 
 
Human beings derive substantial ecological and 
economic benefits from forests. As abiotic 
stresses such as drought, flood, extreme 
temperature, salinity, and heavy metals increase, 
however, the growth and development of forest 
trees are severely hampered [1] (Fig. 1). For 
example, there has been an increase in both the 
occurrence and severity of high temperatures 
events, which has resulted in more severe 
drought conditions and widespread tree mortality 
[2]. The frequency of intense precipitation and 
subsequent flooding is increasing, constituting a 
significant contributing factor to the decline in 
tree productivity [3]. The risk of wildfires and the 
frequency and intensity of heatwaves may 

increase as a result of global warming, which 
could reduce the survival and productivity of 
trees [4,5]. Trees are particularly susceptible to 
tissue chilling and cell membrane injury when 
exposed to extreme cold [6]. This is particularly 
true for tropical and subtropical tree species that 
lack tolerance to cold. The salinity causes ion 
toxicity in trees and osmotic stress, both of which 
are detrimental to soil fertility [7]. Furthermore, 
heavy metal contamination of the soil is caused 
by industrial exhaust, extraction of minerals, and 
the excessive application of chemical fertilizers 
and pesticides [8]. These metals are persistently 
toxic to woody vegetation, impeding their ability 
to absorb nutrients and leading to developmental 
abnormalities, stunted growth, and potential 
mortality [9]. 

 

 
 

Fig. 1. In response to various abiotic stresses, woodland trees might face mortality and a 
decline in yield 
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Woody plant water transport is affected by abiotic 
stressors, which vary water availability. The 
xylem conduit transports water in woody plants 
via a negative pressure gradient from leaf 
transpiration [10]. In abiotic stress, leaf stomatal 
control balances water loss and carbon uptake 
[11]. Woody plants also have sophisticated 
signaling networks to perceive environmental 
challenges, and plant hormone control is crucial 
to their responses to abiotic stresses [12].                 
Under abiotic stress, abscisic acid (ABA) 
stimulates stomatal closure, and its interaction 
with other hormones helps plants evolve    
complex and effective stomatal regulatory 
systems [13]. 
 
Woody plants change morphologically and 
anatomically under stress. To absorb water and 
nutrients more effectively, they increase root 
length, density, and depth when soil water supply 
diminishes [14]. Woody plants' water transport 
and abiotic stress response depend on leaf 
shape. Thicker cuticle and epidermis reduce 
water permeability, helping plants adapt to 
changing water conditions [15]. Woody plants 
may also vary leaf size, quantity, and thickness 
to respond to varied moisture, temperature, and 
nutrients [16,17,18]. In response to abiotic 
challenges, woody plants may modify their xylem 
anatomy to control hydraulic performance. For 
water transport safety, they may build thinner 
conduits with thicker walls [19]. 
 
From roots to leaves, xylem transports water via 
a complex multicellular network of tracheary 
components, parenchyma cells, fibers, and other 
cells [20,21]. These cells store nutrients, transfer 
solutes, and sustain mechanical movements. 
Gymnosperm xylem conducting tissue is mostly 
tracheids, whereas angiosperm has vessels [22]. 
Tracheids and vessel elements are lengthy, 
lifeless cells with lignified secondary walls. Pit 
pairs created by unequal secondary wall 
thickening transport water between conduits [23]. 
Vessels convey water more efficiently than 
tracheids because they are broader and                    
have perforated plates. Xylem cells—axial               
and ray—store and transport nutrients and water 
[24]. 
 
We conducted a literature review to describe 
woody plant physiological, morphological, and 
anatomical responses to environmental stress. 
We also discussed our latest research on how 
heavy metals, drought, and salt impact                  
woody plants' physiological and anatomical 
features. 

2. WOODY PLANTS RESPONSE UNDER 
SINGLE ABIOTIC STRESS 

 

• Drought: 
 

Tree mortality and drought shown a positive 
correlation in forest ecosystems [25]. Forest 
ecosystems characterized by low tree population 
densities demonstrate greater tolerance and 
resilience to drought [26]. Functional features 
elucidate the diverse reactions of plants to 
drought stress and are important for 
comprehending patterns of tree death caused by 
drought [25]. Xylem serves as the primary 
conduit for the long-distance movement of water 
in trees. This movement, known as xylem sap 
ascent, occurs in a state of metastability and may 
be disrupted by the presence of air bubbles in 
the xylem network, resulting in embolism 
[20,27,28]. During drought circumstances, air 
bubbles from blocked channels may move 
across adjacent channels via small openings 
called pits. This can disrupt the continuous flow 
of water, leading to a failure in the transfer of 
water through the xylem and ultimately causing 
the death of trees [27,29]. 
 

• Physiological Responses of Plants 
under Drought: 

 

Woody plants have many reactions to drought 
stress, including fast physiological changes in the 
short term [30] as seen in Fig. 2. More precisely, 
several leaf physiological traits, such as xylem 
water potential, stomatal conductance [31], and 
transpiration rate, have the tendency to decrease 
when exposed to drought circumstances [32]. 
 

Furthermore, the process of photosynthesis is 
impeded due to a reduction in both the quantity 
and effectiveness of enzymes involved in this 
biological process [32]. As drought severity 
worsens, there is a corresponding rise in the 
percentage loss of xylem hydraulic conductivity 
(PLC). This reduction in xylem hydraulic 
conductivity may occur in various plant organs or 
tissues, depending on the amount of drought 
stress [33,34]. More precisely, when plants 
experience moderate drought stress, the 
decrease in water flow inside the leaves is mostly 
caused by a reduction in the ability of the outer 
layer of tissue to conduct water. Only when 
plants face severe drought conditions does a 
significant blockage of the water-conducting 
vessels within the leaves occur. During mild 
drought stress, the resistance to water transport 
in riparian trees is mostly caused by the twig 
xylem. However, during severe drought, the 
resistance is mainly due to the root xylem [35]. 
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Fig. 2. Under drought stress responses of plants in physiology, anatomy, and morphology 
 
Angiosperms and Gymnosperms exhibit 
contrasting response patterns in terms of their 
susceptibility to drought (resistance) and their 
ability to recover from drought (resilience). 
Gymnosperms exhibit enhanced resilience to 
drought and possess a broader hydraulic safety 
margin [29,36,37]. They also prefer to seal 
stomata earlier in order to minimize transpiration 
[38,39], so showcasing a significantly more 
secure hydraulic function. On the other hand, 
angiosperms have a higher rate of recovering 
from drought after being watered again [36,29]. 
They also have a tendency to sustain leaf 
transpiration and photosynthesis in order to 
absorb carbon, resulting in a more effective 
hydraulic function. Angiosperms exhibit no 
permanent harm until they have a decline in stem 
conductivity ranging from 88% to 98.6% [40]. 
Gymnosperms often experience deadly effects 
when their hydraulic conductivity is reduced by 
50% to 80%, as shown in many species [41,42]. 
 
The control of stomata in leaves is an efficient 
process that allows plants to deal with drought 
stress and prevent hydraulic collapse. The 

response of tree stomata to drought exhibited a 
broad spectrum of anisohydric and Isohydric 
behavior at both the intra- and inter-specific 
levels [43]. Isohydric species exhibit a significant 
reduction in stomatal conductance when faced 
with drought conditions, specifically within a 
narrow range of leaf water potential. This 
reduction is done to prevent additional xylem 
embolism. On the other hand, an isohydric 
species aims to maintain a higher photosynthetic 
rate by keeping their stomata open even at a 
lower water potential. [44,45]. ABA has a crucial 
role in the control of stomata during periods of 
drought stress. ABA synthesis-controlling 
enzymes in leaves are upregulated, leading to an 
increase in ABA content and the release of 
anions and K+ by guard cells. This causes a 
reduction in turgor of guard cells and subsequent 
stomatal closure [46]. Conversely, water stress 
triggers the interaction between ABA and 
phytohormones such jasmonic acid and 
ethylene, leading to the stimulation of stomatal 
closure. This closure slows the uptake of CO2 
and the process of transpiration [47]. 
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• Responses of Plants Morphology and 
Anatomy Under Drought: 

 
During prolonged periods of drought, woody 
plants experience not only physiological changes 
but also a range of morphological and anatomical 
changes. These include the development of 
smaller leaves [48,49], the growth of deep and 
large roots [50,17] and a reduced increase in tree 
height and basal area (Rais, 2014; Yang, 2021). 
During periods of drought stress, narrower 
conduits with thicker cell walls are often built 
[51,52]. These conduits exhibit reduced hydraulic 
efficiency [53] but increased resistance to 
embolism [54]. The escalation in drought severity 
is strongly associated with the reduction in 
conduit width and enlargement of the conduit cell 
walls, ultimately resulting in conduit deformation 
[55]. Pinus edulis was shown to develop cost-
effective and highly efficient xylem structures in 
response to drought stress, however these 
structures may be less secure [56]. Furthermore, 
it has been observed that alterations in conduit 
density and wood density in response to drought 
stress vary depending on the species [57]. 
Previous studies have shown that trees with 
greater wood density exhibited increased survival 
rates during drought events [58], suggesting that 
higher wood density may serve as a beneficial 
adaptation in drought conditions. The leaf 
anatomy of trees is modified during conditions of 
drought stress. The severity of dryness leads to 
an increase in the thickness of leaf tissue and 
palisade tissue structural tightness, while 
reducing the intercellular air gap [59,60]. 
Additionally, the mesophyll cells may undergo 
deformation in the presence of extreme drought 
conditions [61]. 
 
Hormone control is a system that induces 
morphological and anatomical alterations in 
woody plants [62]. Under drought conditions, the 

concentration of ABA in the roots of Populus 
trees rises, which stimulates the transport of 
indoleacetic acid in the tips of the roots and 
therefore enhances root development [17]. 
Furthermore, the reduction in auxin concentration 
in the xylem under drought conditions might 
impede the activity of meristems and hinder the 
proliferation of tracheary components, ultimately 
leading to a decrease in the tree's conduit 
diameter [63,64]. 
 
Phenolic compound and Enzymes generated 
under drought conditions may have a substantial 
impact on both cell wall structure and xylem 
structure. Enzymes such phenylalanine 
ammonia-lyase and caffeoyl-CoA 3-O-
methyltransferase are crucial for the production 
of lignin, and the corresponding genes may be 
activated in response to drought stress [65]. 
Lignin deposition may result in the thickening of 
the secondary wall, enhancing the cell wall's 
strength and preventing its collapse under 
drought conditions [66]. Furthermore, when 
plants experience drought stress, phenolic 
compounds have the ability to attach themselves 
to cell walls, resulting in the walls becoming 
water-repellent, rigid, and dense. This adaptation 
enables cells to retain their internal pressure 
even when water availability is low, thereby 
preventing water loss. [67,68,69]. 
 
Flood: 
 
Flood stress, which may manifest as 
waterlogging or even submersion in cases of 
extreme flooding, is common for woody plants 
cultivated in areas close to water sources, such 
as lakes, coastlines, or riparian zones (Fig. 3). 
Flood stress lowers species diversity, stand 
density, forest productivity, tree height, and tree 
basal area, and above-ground biomass. 
[70,71,71]. 

 

 
 

Fig. 3. Responses of plants in morphology, anatomy and physiology under flood stress 
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3. UNDER FLOOD STRESS 
PHYSIOLOGICAL RESPONSES OF 
PLANTS 

 
For woody plants, flooding is a form of natural 
selection that reduces their capacity to breathe 
and produce oxygen and carbon dioxide [72]. 
This, in turn, stunts their growth, particularly for 
species that aren't able to withstand flooding 
[73,74,75,76]. A reduction in the root phloem's 
capacity to transport photosynthetic assimilates 
may be associated with the physiological 
changes that occur in flood-induced hypoxia, 
including the closing of leaf stomata and a 
slowing of transpiration rate [77]. In particular, 
brief flooding causes an increase in ABA 
concentration in the leaves [78], which in turn 
triggers H2O2 production by the plasma 
membrane NADPH oxidase [79]. This, in turn, 
activates Ca2+ channels, raises the Ca2+ level 
in guard cells, inhibits inward K+ channels, and 
induces the closure of the leaf stomata [80]. At 
the same time, plants rapidly shut their stomata 
to prevent leaf withering in response to flood 
stress, which affects root function and makes it 
harder for trees to absorb water. To protect their 
young leaves from flood stress, Pisum sativum 
sends ABA signals to their older leaves [81]. 
 
 Xylem water potential decreases when plants 
are stressed by flooding [82]. The xylem 
hydraulic function of woody plants is also 
inhibited by flood stress. The xylem sap flow of 
mangroves was inhibited by early spring flooding 
[83], and after 46 days of flood stress, the PLCs 
of Ulmus laevis and U. minor were four times 
greater than the control group [74]. When root 
sap pH drops due to flood stress in Carrizo 
citrange, the activity of aquaporins (AQPs) is 
inhibited and xylem hydraulic conductivity 
decreases [84,85]. 
 

4. UNDER FLOOD STRESS 
ANATOMICAL AND 
MORPHOLOGICAL RESPONSES OF 
PLANTS 

 
Morphological and anatomical changes occur in 
trees as a response to flooding stress [86]. 
Reduced plant development is a common 
morphological consequence of reduced 
photosynthesis. Two species of Quercus, for 
instance, showed stunted root and leaf 
development after 90 days of flooding stress, and 
lateral roots could only begin and extend in the 
top layer of soil [87]. Flood stress caused S. 

viminalis to grow taller [88], however Ormosia 
arborea had its bud height and basal diameter 
severely impacted [89], showing that flooding has 
different impacts on different species' 
morphology. Plus, flooding boosts ethylene 
production, which in turn reduces ABA levels and 
makes plants more sensitive to GA, which 
encourages growth [17]. Under flood stress, for 
instance, mangrove stems elongation was 
enhanced and A. marina biomass was enhanced 
[90]. Under flood stress, the root-shoot ratio and 
biomass of the flood-tolerant Senna reticulata 
increased compared to non-flood circumstances 
[91]. 
 
Woody plants may be able to sustain aerobic 
respiration and water absorption via adventitious 
roots or aerenchyma induced by auxin and 
ethylene signals [92,93,94]. An example of a tree 
species that can withstand flooding is Larix 
laricina. In floods, this species can still produce 
adventitious roots with high xylem hydraulic 
conductivity. These roots exhibit nearly identical 
stomatal conductance, net photosynthetic rate, 
and aboveground water potential as the 
unflooded samples [95]. Trees may be less 
affected by flood stress if they have adventitious 
roots instead of regular ones since the former 
can carry more oxygen and the latter express 
AQPs more consistently [96,75]. As an example, 
found that during the early stage of acclimation, 
root water absorption was hindered by flooding in 
Campsiandra laurifolia. However, as the process 
progressed, adventitious root aeration increased 
and hydraulic conductivity eventually recovered 
[73]. 
 

Wetland plants often contain unique 
sclerenchyma that shields the root system from 
damage [97]. A decrease in the diameter and 
density of xylem conduits, among other structural 
changes, might occur in trees as a result of 
flooding [98]. In response to flooding, L. laricina 
produces adventitious roots with a reduced 
number of secondary tissues, an 
underdeveloped endodermis, and tracheids with 
a smaller diameter compared to control roots. 
Additionally, the cortex of these flooded 
adventitious roots contains more starch grains 
than control roots, leading to an increase in their 
flood tolerance [95]. Even though woody plants 
have developed a lot of ways to deal with flood 
stress, they may still get ultrastructural damage 
from prolonged flooding. Root dysfunction was 
caused by the disintegration of parenchyma cells 
and the loss of organelles after 15 days of 
waterlogging stress, which distorted poplar leaf 
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palisade cells as well [99]. Cell wall 
polysaccharides may degrade, pectin 
concentration drops, lignification goes down, and 
thinning of cell wall goes up when plants are 
flooded [69]. 
 

5. EXTREME TEMPERATURE 
 

• Heat: 
 

One of the primary causes of forest mortality as a 
result of climate change is heat stress, which is 
often accompanied by drought [100]. Forests 
may move to higher altitudes when subjected to 
severe temperature stress, which may also 
diminish their water storage capacity, decrease 
tree basal areas, and heighten the danger of fires 
in forests [101,102,103,104]. Fires in forests 
have the potential to reduce the total height of 
the forest canopy, the biomass of trees inside the 
forest, and the basal area of the forest. These 
losses may have long-lasting impacts on the 
forest's health and structure [105,106]. 
 

• Under Heat Stress Physiological 
Responses of Plants: 

 

When temperatures are just right, trees can grow 
and develop at a rapid clip, but when they're too 
hot, they can't (Fig. 4). Tissues may become 
dehydrated and the balance between respiration 
and photosynthesis can be upset when 
temperatures rise too high. As a result of enzyme 
inactivation, trees' physiological activities 
decrease when leaf temperatures above the 
maximum growth temperature [107]. 
 
While raising stomatal conductance helps reduce 
leaf temperature and get photosynthesis back to 
where it should be, it also makes plants more 
transportive and more sensitive to water deficit, 
which can cause more damage to their functions 
and longer times for hydraulic recovery 
[108,18,109]. Pseudotsuga menziesii and other 

kinds of trees that use water conservatively may 
mitigate this impact [110].  When leaves are 
subjected to high temperatures, their water 
potential and hydraulic conductivity tend to 
decrease [18,111]. Additionally, following 
heatwaves, tree leaves exhibit enhanced thermo-
tolerance [112]. 
 
To put it simply, forest fires are one of the most 
disruptive natural events that plants in forests 
may face. Fires may harm trees' tissues, which 
can impede their carbon and water interactions 
even if they don't kill them right away [113]. After 
forest fires, trees may die out due to carbon 
deprivation and hydraulic failure, two processes 
that hinder their function [114]. One side of the 
coin is that fire damage limits carbon flow to 
roots, which dampens root physiological 
processes and eventually causes carbon famine 
[113,115]. Meanwhile, heating renders the xylem 
water transport function useless, which in turn 
causes stomatal closing, xylem embolism, 
growth inhibition, photosynthetic inhibition, 
hydraulic failure, and reduced xylem water 
potential [116,114]. 
 

• Morphological and Anatomical 
Responses of Plants Under Heat Stress: 

 
While raising stomatal conductance helps reduce 
leaf temperature and get photosynthesis back to 
where it should be, it also makes plants more 
transportive and more sensitive to water deficit, 
which can cause more damage to their functions 
and longer times for hydraulic recovery 
[108,18,109]. Pseudotsuga menziesii and other 
kinds of trees that use water conservatively may 
mitigate this impact [110].  When leaves are 
subjected to high temperatures, their water 
potential and hydraulic conductivity tend to 
decrease [18,111]. Additionally, following 
heatwaves, tree leaves exhibit enhanced thermo-
tolerance [112]. 

 

 
 

Fig. 4. Heat stress and forest fire affect the morphology and physiology of plants. The up 
arrow represents a rise, and the down arrow a fall 
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To put it simply, forest fires are one of the most 
disruptive natural events that plants in forests 
may face. Fires may harm trees' tissues, which 
can impede their carbon and water interactions 
even if they don't kill them right away [113]. After 
forest fires, trees may die out due to carbon 
deprivation and hydraulic failure, two processes 
that hinder their function [114]. One side of the 
coin is that fire damage limits carbon flow to 
roots, which dampens root physiological 
processes and eventually causes carbon famine 
[113,115]. Meanwhile, heating renders the 
decreased leaf area, xylem water transport 
function useless, which in turn causes stomatal 
closing, xylem embolism, Reduced biomass, 
growth inhibition, and abscission may result from 
heat stress in trees; heatwaves have a greater 
detrimental impact on growth than higher 
temperatures [117,118,119]. Trees may modify 
their leaf angles to decrease radiation burdens 
from heat, thicken their leaves to make them 
more reflective, or both [120,121]. Under heat 
stress, the rate of development of fine roots also 
diminishes [122]. Q. pubescens and Fagus 
sylvatica both showed a considerable decrease 
in their xylem conductive area, even under 
conditions of sufficient soil moisture. In                     
cultures of Eucalyptus camaldulensis                
maintained at varying temperatures for several 
weeks, the water viscosity reduces with 
increasing temperature, leading to a reduction in 
conduit lumen area and an increase in wood 
density. Also, unlike the control plants, Picea 
mariana showed no change in the core                         
region of the tree rings under high-temperature 
conditions in terms of tracheid lumen                 
diameter, cell wall thickness, or wood density 
[123]. 

 
Damage to the xylem structure, including phloem 
and cambium necrosis and distorted xylem 
conduits caused by the softening of 
hemicellulose and lignin in the cell wall, may 
occur as a result of fire. An example of this is the 
effect of fire on Nothofagus pumilio, which, 
according to [124], reduced the number and 
width of vessels close to burnt                             
wounds. Q. pubescens that had been burned 
had more xylem radial development than 
unburned plants, according to [125].                       
Strangely, xylem water transport function and 
xylem deformation were both unaffected                    
by the complete destruction of Pinus               
ponderosa's phloem and cambium by fire           
[124]. 

 

• Cold 
 
High-altitude, temperature and high-latitude 
boreal and temperate woods face a significant 
abiotic stress due to the cold winter temperatures 
[126]. Decreased forest productivity may be the 
end consequence of ice storms and freezes 
reducing tree basal areas, stand density, and leaf 
area index [127,128]. Due to species-specific 
differences in cold stress sensitivity, the structure 
of forest communities may change as a result of 
many freezes [128,129]. 
 

• Plants Physiological Responses Under 
Cold Stress: 

 
Woody plants are less able to absorb water, 
have reduced hydraulic conductivity, and 
experience cell dehydration as a result of cold 
stress because it inhibits the action of AQPs in 
their roots [130,131,132]. As a result of an 
increase in the contribution of AQPs and an 
elevation of AQP gene expression, some cold-
tolerant species may be able to progressively 
restore hydraulic conductivity under cold but not 
below-freezing conditions [133]. Also, since soil 
might freeze and water supply issues can arise in 
cold weather, evergreen trees block their 
stomata in winter to save water [134]. 
 
An embolism [135] or a significant impairment of 
xylem water movement might result from freeze-
thaw cycles in the xylem sap when temperatures 
drop below its freezing point [136,137,138]. As 
the xylem water freezes, bubbles will develop in 
the conduits from gases that are insoluble in ice 
[139]. Thawing causes certain gas bubbles to 
increase [113] and others to disintegrate [140]. 
These gases in the conduits clash several times 
during repeated freeze-thaw cycles, which 
ultimately produce xylem embolism [141]. 
Because more bubbles tend to occur in a wider 
conduit, its width was thought to be a significant 
anatomical feature influencing susceptibility to 
freeze-thaw embolism [142]. Recent research 
that has avoided invasive procedures has cast 
doubt on this theory [143,144]. 
 

Physiological reactions allow trees to withstand 
or prevent freeze-thaw embolisms (Fig. 5). In 
order to avoid tissue freezing, some trees may 
stimulate the production of xylem embolism by 
applying pressure to their roots and stems [145, 
146]. This embolism is made from soluble sugars 
in the phloem [147,148]. 
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Fig. 5. Cold stress and freeze-thaw caused xylem embolism: anatomical and physiological 
responses of plants. A rise is represented by the up arrow and a decrease by the down arrow 

 
Furthermore, supercooling is a method that 
certain trees use to combat cold stress. This 
technique involves reducing the freezing point of 
the cellular liquid below the ambient temperature, 
which prevents tissue freezing [149,150]. In 
addition, stomata closure throughout the night 
may lessen the likelihood of ice nucleation on 
leaf surfaces and their subsequent intrusion into 
the plant [151]. On the other hand, Olea 
europaea is able to reduce the harm that freezing 
may do by increasing its supercooling capacity 
and decreasing its ice nucleation temperature 
[152]. This is because it increases its stomatal 
conductance in the winter, which allows xylem 
embolism and continuous water loss to occur. 
 
Furthermore, trees may be able to withstand very 
cold temperatures better because cells with very 
viscous contents from extreme dehydration may 
"vitrify" the remaining water instead of freezing it 
[151,153]. 
 

• Plants Morphological and Anatomical 
Responses Under Cold Stress: 

 
To protect their leaves from the cold, deciduous 
tree species senesce them and transfer the 
nutrients they had stored to other parts of the 
tree, such as the roots or reproductive tissues 
[154]. The enormous buildup of ABA and 
jasmonate (JA) may be linked to this process 
[155]. Xylem structure is changed by cold stress 
as well. For instance, according to [156], 
lignification at low temperatures thickened the 
xylem secondary cell walls of E. gundal. Pinus 
pinaster had a reduced tracheid lumen diameter 

and an increased tracheid wall thickness [157]. 
When temperature dropped, F. sylvatica's 
hydraulic diameter and relative vessel lumen 
area both reduced [131]. The broader the 
vessels of an organism, the longer it takes for its 
leaves to fall off. This might be due to a greater 
safety-efficiency trade-off, or it could be 
associated with the physiological and 
developmental relationships between wood and 
leaves [158]. 
 
Another successful strategy for trees to prevent 
freeze-thaw embolism is to modify their 
anatomical structure. Angiosperms may directly 
combat cold stress and freeze-thaw embolism by 
developing narrower vasculature [159,160]. 
Thicker vessels are also related with increased 
resistance to freeze-thaw embolism. Thus, xylem 
embolism resistance is higher in diffuse-porous 
species compared to ring-porous species 
because the former have relatively smaller 
vessels [161,162]. Gymnosperms, on the other 
hand, are thought to have a higher embolism 
resistance because their conduits are typically 
narrower, although there is no difference in 
embolism resistance between gymnosperms and 
angiosperms when their conduit diameters are 
the same [134]. 
 
Conduit diameter may not affect a plant's 
resilience to freeze-thaw-induced xylem 
embolism in species that can generate root and 
stem pressure [136]. Contrary to what one would 
expect from angiosperms, gymnosperms exhibit 
a decrease in wood density with decreasing 
temperature [163]. Gymnosperms may be more 
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resistant to freeze-thaw embolisms, and the 
increased growth rates seen in the winter as a 
consequence of competition, as shown by [163]. 
New conduits developed the following spring 
may restore water transport capability in 
angiosperms whose embolized arteries become 
dysfunctional under low temperatures; this is 
particularly true of ring-porous species [164]. 
 

6. RESPONSE OF WOODY PLANTS TO 
COMBINED ABIOTIC STRESSES 

 
However, in nature, most stressors manifest as 
cumulative effects that worsen with time, and 
most studies only examine the impacts of 
individual abiotic stresses on woody plants 
[165,166]. In contrast to the effects of a single 
stress, the cumulative impact of many stressors 
on woody plants may be additive or antagonistic. 
The effects and mechanism of combined 
stressors on woody plants have received greater 
attention than single stresses since their 
response to these combinations cannot be 
deduced from a single stress alone [166]. 
 
Heat, salt, and heavy metals are all stressors 
that occur with drought, and they may all cause 
plants to react differently. When subjected to 
either heat or drought alone, isohydric trees shut 
their stomata; yet, when faced with both stresses 
at once, they often open them to lower leaf 
temperature. They are more likely to die because 
the higher stomatal conductance causes them to 
lose water more rapidly [167]. In response to 
heat and dryness, citrus trees block their 

stomata, which is different from isohydric trees 
[168]. Still, cuticular transpiration causes plants 
to lose water even when stomata are closed 
[111,169]. When heat stress and drought are 
both present, the cuticular conductance rises 
beyond the temperature at which it changes 
phases, which in turn causes more xylem 
embolism and greater cuticular transpiration 
[169]. 
 
According to [170], trees may be more 
susceptible to xylem embolism if heavy metal 
ions increase the severity of drought stress. 
While A. rubrum's root conduit density rose in 
response to dryness alone, it reduced when 
heavy metals and drought were both applied at 
the same time [171], suggesting a connection 
between the two stresses.  When leaves were 
subjected to both drought and salt stress, 
chlorophyll content and other photosynthetic 
attributes decreased, whereas proline, total 
soluble protein, and sugar levels rose [172,173].  
Plants may experience impaired nutrient 
retranslation and premature leaf senescence due 
to elevated ABA concentration and impaired 
plant metabolism brought on by soil salinity and 
drought [174]. Furthermore, Taxodium distichum 
(L.) Rich. showed an increase in wood density 
and a reduction in xylem embolism resistance 
under salt and drought stress combined, but a 
loss in hydraulic conductivity. In addition, we 
discovered that embolisms in Platycladus 
orientalis were worse when both drought and salt 
stress were present, as compared to when either 
stress was present alone [175]. 

 

 
 

Fig. 6. The responses of physiological, morphological and anatomical traits to abiotic 
stresses. Arrows indicate interactions between the traits 
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Drought is only one of several natural pressures 
that may have an impact on the anatomy, 
physiology, and morphology of woody plants. 
Interactions between various stressor 
combinations cannot always be additive. Populus 
× euramericana's antioxidant defense ability was 
diminished when subjected to both nitrogen 
deprivation and Cd, leading to a decrease in Cd 
tolerance, suppression of xylem growth, and a 
diminished capacity for Cd accumulation [76]. 
When plants were subjected to both salt and Cd 
stress, adding NaCl improved Cd transport from 
roots to shoots but mitigated the relative water 
content decrease produced by Cd stress [176]. 
Salinity also had a greater impact on Populus 
deltoides root biomass reduction than Cd stress 
did; however, when both stresses were present, 
the suppression of root development was not 
substantially different from that under salt stress 
alone [177]. Populus tomentosa had a decline in 
total biomass and total leaf area as well as an 
increase in the percentage of fine roots to total 
root biomass when subjected to a combination of 
drought and salt stress. This combined stress 
was more detrimental than either stress alone 
[178]. Pinus sylvestris tracheid walls thickened 
when subjected to heat or CO2 alone, but they 
thinned when subjected to a combination of the 
two stresses. In conclusion, the fundamental 
processes are still up for debate, and woody 
plants' reactions to mixed pressures may vary 
from those to individual stresses [179-183]. 
 
This work primarily discusses the physiological, 
morphological, and anatomical features that 
woody plants use to respond to the majority of 
abiotic stressors (Fig. 6). As a result of AQP 
inhibition and a drop in xylem hydraulic 
conductivity, leaf photosynthetic indicators fall 
under the majority of abiotic stresses. Woody 
plants primarily protect themselves against 
abiotic pressures by regulating their stomata, 
which are the quickest parts of the plant to react 
to environmental changes. Woody plants 
constrict their stomata to decrease water loss, 
which hinders leaf carbon absorption, in 
response to most abiotic stressors that cause soil 
water uptake to be reduced. 
 

7. CONCLUSIONS AND FUTURE 
PERSPECTIVES 

 
From a morphological standpoint, woody plants 
that are under drought stress often grow roots 
that are longer and deeper in order to absorb 
more water. When woody plants are stressed by 
floods, adventitious roots and aerenchyma help 

increase the amount of oxygen available to the 
plants. Root development in woody plants is 
inhibited by additional harmful conditions, 
including forest fires, salt, and heavy metal 
toxicity. Some species may shed their leaves in 
order to protect themselves from abiotic stress, 
and this morphological adaptation of leaves is 
strongly linked to respiration, photosynthesis, 
and transpiration. Conduits become more-narrow 
and their walls get thicker and lignified in 
response to most abiotic stimuli; this increases 
resistance to embolism and decreases hydraulic 
conductivity. There may be some overlap in the 
way various abiotic stressors affect the structure 
and function of woody plants, but each stress 
has its own distinct physiological impact. Woody 
plans adapt by growing adventitious roots and 
aeration tissues to keep gas exchange and 
nutrient transport going when flooding stress 
causes hypoxia. As a consequence of hydraulic 
failure and carbon hunger, trees may die from 
forest fires, which can inflict irreparable harm. 
Trees undergo supercooling and embolism 
refilling the next year in response to freeze-thaw 
embolisms caused by low-temperature stress. 
 
The molecular processes of xylem development 
and adaptation to abiotic stress remain obscure, 
despite the extensive study of morphological, 
physiological, and anatomical features' 
responses to abiotic stress. 
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