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Abstract: In the field of behavioral detection, deep learning has been extensively utilized. For example,
deep learning models have been utilized to detect and classify malware. Deep learning, however, has
vulnerabilities that can be exploited with crafted inputs, resulting in malicious files being misclassified.
Cyber-Physical Systems (CPS) may be compromised by malicious files, which can have catastrophic
consequences. This paper presents a method for classifying Windows portable executables (PEs)
using Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). To generate
malware executable adversarial examples of PE, we conduct two white-box attacks, Jacobian-based
Saliency Map Attack (JSMA) and Carlini and Wagner attack (C&W). An adversarial payload was
injected into the DOS header, and a section was added to the file to preserve the PE functionality. The
attacks successfully evaded the CNN model with a 91% evasion rate, whereas the RNN model evaded
attacks at an 84.6% rate. Two defense mechanisms based on distillation and training techniques are
examined in this study for overcoming adversarial example challenges. Distillation and training
against JSMA resulted in the highest reductions in the evasion rates of 48.1% and 41.49%, respectively.
Distillation and training against C&W resulted in the highest decrease in evasion rates, at 48.1% and
49.9%, respectively.

Keywords: adversarial example; artificial intelligence; malware analysis; security; cyber-physical systems

1. Introduction

As Internet technologies have grown and improved, malicious activities and threats
have also increased, and consequently, defensive approaches are facing increasing chal-
lenges. One of the advantages of deep learning (DL) approaches is the ability to automati-
cally extract features from raw data such as malware binary files, which helps in building
byte-based malware classification models. Despite the success of DL in several fields,
recent studies have proven that adversarial examples are effective against DL models [1–6].
For instance, by using X-Adv, Liu et al. created physically printable metals capable of
deceiving X-ray detectors when placed inside luggage [7] and Li et al. proposed a novel
structured-light attack against structured-light-based 3D face recognition [8]. Moreover,
when adversarial examples are attacked, this can also compromise the stability and relia-
bility of cyber-physical systems (CPS), causing malfunctions or failures in critical systems
or operations. Furthermore, according to [9], small perturbations added to any waveform
can attack voice recognition systems. In the literature, many approaches have been devel-
oped to generate adversarial examples (x∗), such as fast gradient sign method (FGSM),
L-BFGS, Carlini and Wagner (C&W), and Jacobian-based saliency map attack (JSMA).
These studies open the door to investigating the effectiveness of adversarial attacks against
malware classifiers by considering domain-specific characteristics in the malware domain.
For instance, binary adversarial examples were generated for Android [10], and portable
executable (PE) [11–14]. Because of the semantic structure of PE and the independence
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of bytes introducing another factor in generating crafted samples, few empirical studies
have successfully generated executable PE adversarial examples as shown in Table 1. Most
adversarial attacks against malware detection systems have been exclusively carried out
through continuous features such as pixels in malware images. Meanwhile, perturbing
different types of features (e.g., API, string, URL) in cybersecurity has varying difficulty
levels. For instance, perturbing pixels have the same difficulty level, as the binary itself is
not modified, only its intensity. These attacks on malware images cannot preserve malware
functionality. Therefore, attackers need effective adversarial attack techniques to perturb
malware samples while preserving the PE binary file functionalities. To perturb malware
files, an attacker must apply practical manipulations on the input x without breaking the
binary files’ semantics. We denoted practical manipulations by a h : Z× T → X, which
is the output, which is an executable program without losing its malicious functionality.
Here, x ∈ X is an input program and a vector τ ∈ T, indicating the function h’s parameters.
As a result, we determine how likely the adversarial example x∗ is classified to the target
label y∗ from a labeled space Y = {0, 1, 2, . . . n} where Z ⊆ Rd represents the feature space.
The function f : Z → R is used for prediction. This function provides a probability of
the input sample being classified as malware family y∗. However, previous studies have
primarily concentrated on the FGSM approach, although FGSM is a random starter attack
that modifies a large portion of input features [11,12,15]. To design robust models, several
practical countermeasures have been proposed, including training [1], distillation [16], and
feature squeezing [17]. However, to date, none of these countermeasures can be treated
as a one-stop solution. Due to the nonlinear nature of DL models, it is difficult to prove
these countermeasures theoretically. Moreover, these proposed countermeasures are not
adaptive to all types of attacks that use adversarial examples (x∗). Each mechanism has
shown various impacts on different attack types. For example, most attack types are fooled
by distillation mechanisms, with the exception of the C&W approach.

Table 1. Summery of adversarial examples articles.
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[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[11] ✓ ✓ ✓ ✓ ✓ ✓ 71% No

[12] ✓ ✓ ✓ ✓ ✓ ✓ 99.21% L2, L∞
Yes, without
verification

[13] ✓ ✓ ✓ ✓ ✓ 60% No

[14] ✓ ✓ ✓ ✓ ✓ 86.6% Yes, without
verification

[17] ✓ ✓ ✓ ✓ ✓ ✓ L2 No ✓ ✓ ✓ ✓

[10] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 96%, 83% Yes
[19] ✓ ✓ ✓ ✓ ✓ 69% 67%, 38.5% L1 No ✓ ✓

[15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 27%, 100% L0 No ✓ ✓ ✓ ✓

[20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% L0, L2, L∞ No
[21] ✓ ✓ ✓ ✓ ✓ ✓ 99.45% 26.12% L2 No ✓

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 50% L0, L2 No

[23] ✓ ✓ ✓ ✓ ✓ ✓ 91.6% Yes, without
verification

[24] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% Yes

The FGSM approach is one of the most widely used against malware detection systems.
It has been extensively used to evade malware detectors for PE files. Ref. [11] proposed
different append techniques, namely random append, gradient append, benign append,
and FGSM append. In addition, they proposed an FGSM slack-based attack. Their attacks
initialized the adversarial examples using random noises and then perturbed them using
FGSM. They observed that these one-time examples were not transferable between models.
Furthermore, FGSM attack required a large number of bytes to be modified. Ref. [12]
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proposed an injection FGSM attack using a discrete input set to evade a neural network.
Ref. [13] investigated the neural network’s vulnerability against a gradient-based perturba-
tion approach and proposed an append-based attack. Ref. [14] applied the attack presented
in [13] by only perturbing the bytes inside the DOS header. However, Ref. [14] attack can
be easily recognized by a human expert. Ref. [17] presented white-box and gray-box eva-
sion attacks, perturbing 419 API features using JSMA with an L2 distance norm. Ref. [20]
showed and analyzed the vulnerability of convolutional neural network (CNN), support
vector machine (SVM), and random forest (RF) by C&W. To evaluate these detectors, the
Microsoft BIG dataset was converted into binary texture grayscale images. The evasion
rate of C&W was 100% against all presented ML-based malware detectors. In addition, the
highest transferability rate for CNN reached up to 88.5%. This attack was limited by the
lack of verified file executability.

To overcome this limitation, the COPYCAT framework is presented in [21]. C&W is
one of six crafting approaches used by the COPYCAT to generate executable adversarial
malware samples. To ensure the executability of the adversarial examples, they applied
the adversarial examples padding method, with the adversarial examples appended at
the end of the original sample image. These researchers targeted Windows and Internet
of Things (IoT) DL-based malware detectors. The evasion rate for C&W was 99.45%, with
the minimum number of modified pixels being 4.09. After applying the padding, an
overall misclassification rate of 73.5% was achieved. In 2023, fast-generation adversarial
nalware (FGAM) was proposed, introducing a method for quickly generating adversarial
malware [23]. According to the gradient sign, this iteratively perturbs bytes, resulting in
the enhanced adversarial capability of the perturbed bytes. In [24], a novel black-box AE
attack towards the FCG-based malware detection system is presented, called BagAmmo.
BagAmmo adopts the architecture of generative adversarial network (GAN). BagAmmo
achieves an average attack success rate of over 99.9% on MaMaDroid, APIGraph, and GCN.
The attack methodology involves the use of generative models to generate adversarial
examples that successfully evade detection by BagAmmo.

In this work, we contribute to the current literature via the following contributions:

• Investigate the vulnerabilities of DL-based malware classification using two ap-
proaches to crafting adversarial examples: C&W and JSMA. Previous JSMA works
used API calls as input features to indicate how much each input feature’s pertur-
bations would affect the output. On the other hand, although previous works on
C&W investigated the impact of the approach on continuous data, such as image
representations of the malware binaries, we investigate its impact on discrete input,
that is, raw bytes of the PE file. To our knowledge, this is the first work on C&W that
uses discrete data input into the malware classification domain.

• Maintain malware while producing and crafting adversarial examples using C&W
and JSMA. Previous studies mainly focused on malware adversarial images and
differentiable domains, which differ from PE adversarial. This paper presents a
practical functionality-preserving approach to the PE file format based on injecting
the adversarial payload into the DOS header and adding a section of perturbation.

• Evaluate two defense mechanisms for adversarial examples attacks. We investigate
the impact of distillation and training defense mechanisms against nonlinear models
and our generated adversarial examples by JSMA and C&W approaches.

• Propose a practical method for preventing malware detection classifiers from being
evaded. Our approach effectively increases the complexity for hackers attempting
to bypass malware classifiers. This addresses all methods of producing adversarial
examples in the high-security malware industry.

The remainder of this paper is organized as follows. Section 2 presents our methodology.
Section 3 provides the results. Section 4 discuss the results. Finally, Section 5 concludes
this paper.
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2. Materials and Methods

In this section, we discuss the methodology for attacking PE malware detectors using
the JSMA and C&W approaches. In addition, the effects of implementing current defense
mechanisms are discussed. To illustrate our methodology, we have divided it into the fol-
lowing three consecutive modules: normal detection (module 1), generating and detecting
adversarial examples (module 2), and defense mechanisms (module 3). Figure 1 illustrates
the methodology of the three modules. Module 1 is described in Section 2.2; module 2 in
Section 2.3; and module 3 in Section 2.4, while the dataset is described in Section 2.1.

Figure 1. General structure of adversarial attacks. As shown, adversarial attacks consist of three
modules. Module 1 is the malware detectors; and module 2 generates adversarial samples. Module 3
is the defense mechanisms.

2.1. Dataset

The Endgame Malware Benchmark for Research (EMBER) [25], one of the most
widely used open source datasets in cybersecurity research, was used to evaluate our
proposed attacks. To collect raw malware files, we utilized the VirusShare platform
(https://virusshare.com/ (accessed on 1 July 2020)). VirusShare is a public repository
of malware samples through which security researchers, incident responders, forensic
analysts, and the morbidly curious gain access to samples of malicious files. The EMBER
dataset labels samples as malware, benign, or unlabeled. Since our paper is based on
multiclassification, we focused on malware and unlabeled samples. Table 2 shows the
distribution of our collected dataset.

Table 2. The distribution of the collected dataset divided into training and testing sets.

The Collected Dataset

Set Before Preprocessing After Removing
Duplicates

After Removing
Packed Files After Labeling

Training 81,820 81,584 77,952 76,985
Testing 13,271 13,244 13,006 12,943

We were able to label malware samples with a family name using the widely used
AVClass labeling tool [26]. A total of 16,643 samples were labeled successfully.

2.2. Malware Classification

Our adversarial approaches were compared with two different neural networks: CNN
and a recurrent neural network (RNN). In this module, we only trained the networks with
clean/original input (x).

https://virusshare.com/
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2.2.1. CNN

The CNN model consists of an embedding layer, two 1D convolution layers, and
temporal max pooling followed by a fully connected layer, as shown in Figure 2. In our
experiment, the MalConv model presented in [27] was used.

Figure 2. Architecture of the CNN malware classifier.

2.2.2. RNN

In [28], the authors contributed to the field of malware detection by classifying a
part of the header’s components. We expanded the features’ space beyond the header
and evaluated the attack’s performance against an RNN classifier. As shown in Figure 3,
the RNN model architecture consisted of an embedding layer, three last long short-term
memory (LSTM) layers, and an attention mechanism, the latter focusing on a part of the
sequence (the relevant features) and ignoring the rest. For example, in face detection
applications, the attention mechanism focuses on human features rather than other details.

Figure 3. The RNN architecture. The embedding layer and blue squares indicate LSTM layers, and
the activations of all time steps are merged into the attention mechanism.

Attention Mechanism

The attention mechanism in RNNs is a common technique that enables the network
to generate output by focusing on specific parts of the input sequence [29], significantly
improving performance. The attention mechanism is particularly useful for long input
sequences or when the relevant information for the output is not always located at the
same place in the input. The attention mechanism used in our LSTMs was derived from
the approaches used by [28].

Attention mechanisms assign a weight to each input sequence element based on its
relevance to the current output. A weighted sum is then computed from these input
elements, generating the output. The output of the attention mechanism is a weighted
average of the hidden states, as shown in (1).

Attention output =
T

∑
i=1

αihi (1)

At step i, hi represents the hidden activation of the LSTM layer. A vector h provides
information about the entire sequence, while each hi provides information about one step.
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As shown in Equation (2), these are combined in a small one-layer network (that is, a part
of the larger RNN).

αi = vT tanh(WT
0 hi + WT

1 h + b) (2)

Matrix W0 and matrix W1 represent the activations at local and global hidden states
for the attention mechanism’s hidden layer. The softmax function is applied as the final
step to sum the weighted importance over each time step, as shown in Equation (3).

αi =
exp(α̃i)

∑T
j=1 exp(α̃j)

(3)

2.3. Adversarial Attacks

In this section, we discuss module 2, which, as illustrated in Figure 1, is responsible for
constructing an adversarial example (x∗) that evades our CNNs and RNNs. The goal of
crafting an adversarial approach is to find a perturbation (δ) for the original sample (x) with
the label (y) and classify it with a target label (y∗), where y ̸= y∗. To generate adversarial
examples, we use two approaches, namely JSMA and C&W. Adversarial examples crafted
by these approaches are fed into the CNN and RNN. The following describes the crafting
approaches used to attack malware detectors.

2.3.1. Jacobian-Based Saliency Map Attack (JSMA)

Ref. [3] presented a targeted JSMA that utilizes the impact of forward derivatives to
craft adversarial examples with minimally perturbed features. Their attack highlighted
the benefit of directly computing the mapping between input and output. The number
of perturbed features can drive extreme variations in the neural network’s output. The
neural network trains this forward derivative, called the Jacobian matrix of function F.
The Jacobian matrix used to construct the saliency map of the most important features
should be included in the perturbation to evade the neural network. In this approach, no
knowledge of training data is needed; only a known network architecture is required. The
approach scenario consisted of three main steps.

(a) Computation of the forward derivative ▽F(x∗) for the original sample x, as
given by:

▽F(X) =
∂F(X)

∂X
=

[
∂Fj(X)

∂xi

]
i∈1...M,j∈1...N

(4)

where
∂Fj(X)

∂xi
is obtained by:

∂Fj(X)

∂xi
=

(
Wn+1,j.

∂Hn

∂xi

)
×

∂ fn+1,j

∂xi
(Wn+1,j.Hn + bn+1,j) (5)

where W is the weights vector, H is the output vector of the hidden layers, and b is
the bias.

(b) Construction of the saliency map. We used an increasing saliency map, that is,
as the map increases, so does the probability of the target label (y∗), while the
probabilities of other labels decrease.

(c) Perturbation of the most salient pixels/features with θ. The original paper used
θ = 1, whereas we set θ = 0.7.

These steps were repeated until we reached the maximum Υ or successfully misled
the model. The JSMA approach is described in Algorithm 1.
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Algorithm 1 Crafting the adversarial example for malware detection with the JSMA approach

1: Input: x, y∗, F, θ, Υx ← x∗

2: Γ = 1...|x|
3: while F(x∗) ̸= y and ||δx ≤ Υ|| do
4: Compute forward derivative ▽ F(x∗)
5: S = Saliency Map(▽F(x∗), y∗, Γ)
6: Modify x∗imax

by θ s.t imax = argmaxiS(x, y∗)[i]
7: δx ← x∗ − x
8: end while
9: return x∗

2.3.2. Carlini and Wagner (C&W)

The C&W approach is one of the most widely used in generating adversarial examples
and has been extensively used in computer vision studies. The C&W approach’s goal is to
generate the adversarial example (x∗) by optimizing the objective function for the distance
between the target class (y) and the most likely class (y∗). In [5], seven objective functions
were presented; the objective function f6 outperformed all functions. Thus, they selected f6
to perform their approach, as follows:

f6(x∗) = (maxi ̸=y∗(Z(x∗)i)− Z(x∗)y∗)
+ (6)

The original C&W paper proposed three norm-based attacks, whereas we focused
on an l2-based attack. To ensure that C&W generated a valid adversarial example, the δ
was constrained by the box constraints: 0 ≤ xi + δi ≤ 1 for all i. In C&W, different methods
for box constraints were evaluated, and it was found that the best method was that of the
change of variables. They added a new variable w and then applied a change of variables
to optimize over w instead of (δ), as follows:

δi =
1
2
(tanh(wi) + 1)− xi (7)

where −1 ≤ tanh(wi) ≤ 1. It follows that 0 ≤ xi + δi ≤ 1.
Thus, the C&W formulation using the l2 distance metric can thus be defined:

minimize
∥∥∥ 1

2 ( tanh(w) + 1)− x
∥∥∥2

2
+ c. f ( 1

2 ( tanh(w) + 1 ))

where f (x∗) = max ( max {Z(x∗)i : i ̸= y∗} − Z(x∗)y∗ ,−k)
(8)

where Z(x∗) represents the logits, which are the outputs of the layers-unnormalized proba-
bility predictions for each class; except for the softmax layer, parameter k sets a lower limit for
the loss value to generate an adversarial example with confidence that the adversarial example
is correctly classified to the target class (y∗). The highest k value generates a high-confidence ad-
versarial example but is far from the original input. We used k = 0 to conduct our experiment,
as described in the original paper [5]. The C&W approach is described in Algorithm 2.

2.3.3. Preserving Functionality

Many studies have focused on generating adversarial examples without preserving
the malicious files and modifying the PE files [10,15,17,19–22]. To move forward with the
practical approach, we clarify the attack formalization below.
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Algorithm 2 Crafting adversarial examples for malware detection with the C&W approach
1: Input: x, y, F(.), ε
2: x ← x∗
3: δ = 1

2 (tanh(w) + 1)− x
4: while F(x∗) ̸= y and argmin (D(x, x + δ)) do
5: minw|| 12 (tanh(w) + 1)||22 + c. f ( 1

2 (tanh(w) + 1))
6: f (x∗) = max(maxδ(Z(x∗)i)− Z(xy∗ ,−k),
7: if wmax ≤ 0 then
8: return Failure
9: end if

10: δ = ε. 1
2 (tanh(w) + 1)− x

11: x∗ ← x + δ
12: end while
13: return x∗

A model attempts to classify input x into one of the dataset labels. The inputs are then
passed through a feature extractor, where the attack is carried out. The feature extractor is
denoted by the function ϕ : X → Z, where Z is a feature space denoted by Z ⊆ Rd. This
requires the manipulation of the PE without compromising its functionality. In this paper,
we denote these manipulations as h : Z× T → X, which causes a return to the functioning
program with a different representation. Due to the non-differentiable embedding layer
of our models, the attack is applied inside the feature space. Our approach for generating
executable adversarial examples consists of three steps.

1. Determining the indexes of allowed bytes that can be freely modified without
affecting the PE functionality. These indexes must be cautiously determined due to
the byte dependencies and the PE semantics. To achieve this, we identified two areas
for modification:

(a) The padding bytes of the embedding space are perturbed, and then the per-
turbation is injected into a PE zone that is not used by the program and has
no effect on its functionality. A wide variety of features in the DOS header
can be modified without affecting the PE file. A modification to the DOS
header requires that neither the MZ magic number nor the value at offset
0x3c is modified. Altering these two fields in the DOS header results in inexe-
cutable programs.

(b) The padding bytes in the embedding space are perturbed, and the perturbation
is appended to the end of the PE file. The perturbation is injected into a
nonexecutable section of the program, generating an executable program.

2. Performing the C&W and JSMA attacks on the list of indexed bytes generated
from the previous step. The attacks are performed inside the feature space Z ⊆ Rd.
We refer to our attacks as JSMAHeader, JSMASection, C&WHeader, and C&WSection in
this paper.

3. Mapping back the modified values to the byte value.

To verify the functionality of the adversarial example, we used VirusTotal sandboxes
(https://www.virustotal.com/ (accessed on 1 January 2023)). VirusTotal was used to
analyze the original (x) and adversarial malware samples (x∗) and compare their detection
scores. Moreover, we verified the executability of the adversarial samples by successfully
running them with VirusTotal.

2.4. Defense Mechanism

There are two defense mechanisms discussed in this paper: distillation and training.
The effectiveness of these two mechanisms was evaluated by comparing the evasion rates
before and after their application.

https://www.virustotal.com/
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2.4.1. Training

This paper analyzed the training defense mechanism by adding the adversarial ex-
amples generated in module 2 to the training set. We then trained the networks with the
original/clean input (x) and the adversarial example (x∗). The mechanism consisted of
the three main steps as follows:

1. Training the model F on the clean dataset D.
2. Generating adversarial examples (x∗) using the JSMA and C&W approaches pre-

sented in module 2.
3. Iterating the training epochs on our model F with the generated adversarial examples

(x∗) from the previous step.

The number of adversarial examples that should be included in training defense is
currently an important discussion topic [15,30]. We added 400 adversarial examples to the
training set. Ten samples were selected at random from 20 classes for each attack.

2.4.2. Distillation

The existing body of research on the distillation defense has shown that it can increase
a neural network’s resilience to adversarial examples [15,17–19]. However, these results
were based on the JSMA approach, and whether this mechanism has the same impact on
the C&W approach is unclear. As part of this paper, we demonstrate the effectiveness of
distillation when used against adversarial examples in malware detection. The distillation
defense scenario consisted of the following steps:

1. Building an initial network for each model (CNN and RNN); these are the networks
presented in module 1.

2. Training initial networks F with a clean dataset D.
3. Producing the probability vector using a T value of 10. The probability vector predic-

tion is given as

qi =
exp(zi/T)

∑j exp(zi/T)
(9)

4. Using the probability vector computed in step 3 as soft training labels for the new
dataset D′.

5. Training the distilled networks F
′

on the new dataset D
′
.

3. Results

We evaluated the effectiveness and efficiency of the proposed adversarial attacks using
JSMA and C&W to generate executable malware adversarial examples. Also, training and
distillation defense mechanisms were examined.

3.1. Model Performance

In this subsection, we evaluate the effectiveness of our CNN and RNN models. We
report classification accuracy and loss metrics to quantify the proposed models’ effective-
ness. In CNN, the used loss function was cross-entropy, and Stochastic Gradient Descent
(SGD) was used for optimization. The training and validation sets in this experiment
demonstrated the high performance of the trained CNN model regarding the classification
accuracy, with a training accuracy of 84% and a validation accuracy of 77%.

The RNN training accuracy was 76%. In our experiment, we demonstrated that the
trained RNN model performed similarly to how it did in the original paper that introduced
the RNN architecture in terms of classification accuracy by [28]. The highest RNN accuracy
they reached was 88%.

3.2. Attacks and Defense Mechanisms

This section evaluates the performance of JSMA and C&W attacks using the evasion
rate. As described in Section 2.3.3, this paper presents two experimental manipulation
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approaches that preserve functionality, namely a partially perturbed PE header and a new
section of perturbations.

The evasion rate measures how many samples evaded the classifier after adversarial
examples were previously correctly classified as malicious, as given in Equation (10).

Evasion Rate =
TPadv

TP
(10)

where TPadv is the number of TP samples correctly classified as target labels (y∗). Table 3
shows the evasion rates for adversarial examples generated by JSMA and C&W attacks.

Table 3. Results of JSMA and C&W attacks in terms of evasion rate.

Model JSMAHeader JSMASection C&WHeader C&WSection

CNN 63.9% 49.6% 91.06% 80.21%
RNN 37.58% 32.24% 84.6% 60.3%

An adversarial example generated by JSMAHeader successfully evaded the CNN
model with a 63.9% evasion rate while evading the RNN model with a rate of 37.5%. In a
JSMASection attack, the CNN was evaded with a rate of 49.6%, while the RNN was evaded
with a rate of 32.2%. The C&W method had a higher evasion rate than the JSMA method
when applied to both CNNs and RNNs. Furthermore, C&W performed better against
the CNN rather than the RNN. With the C&WHeader attack, CNN and RNN detection was
evaded with rates of 91.06% and 84.60%, respectively, while with the C&WSection attack,
they were evaded with rates of 80.21% and 60.30%, respectively. It can be seen that C&W
was less affected by the complexity of the model structure, compared to JSMA, specifically
against RNN. Moreover, in C&W attacks, the evasion rate and distortion were found to be
oppositely correlated. As distortion increased, the evasion rate decreased. Thus, the size of
perturbed headers resulted in a higher evasion rate than the perturbed section.

As shown in Table 3, based on our results for both attacks, we demonstrated that the
header approach outperformed the section approach against the CNN and the RNN. In this
paper, defense mechanisms against adversarial attacks are examined and analyzed. In this
section, we examine the ability of these defense mechanisms to strengthen the resistance
of DL models to a variety of adversarial attacks compared to other studies [10,15,20].
Therefore, we applied two types of mechanisms in response to both attacks, namely training
and distillation. Evasion rates before and after defense mechanisms were applied against
JSMA and C&W and are shown in Figures 4 and 5.

A training defense mechanism reduced the evasion rate of JSMAHeader attacks against
the CNN to 1.47%. In the case of JSMASection attacks, the training defense reduced the
evasion rate to 16.7%. As a result of a distillation defense, the evasion rate of JSMAHeader
attacks that evaded CNN detection was reduced to 26.48%, while the evasion rate of
JSMASection attacks was reduced to 22.41%. As seen from Figure 4, the training defense
reported significantly higher effectiveness than distillation against our white-box attacks.

In the case of JSMAHeader attacks against the RNN, training defenses reduced the
evasion rate to 5.03%. The training defense was able to reduce the evasion rate to 16.7%
against the JSMASection attacks that evaded the RNN. In a distillation defense mecha-
nism, JSMAHeader attacks against RNN were defended with an 11.3% evasion rate, while
JSMASection attacks were defended with a 13.34% evasion rate. The training defense mech-
anism performed better against the JSMASection attack than the JSMAHeader attack in both
the CNN and RNN models. A distillation defense performed better on the CNN than on
the RNN model when defending against the JSMA. Furthermore, the distillation defense
performed better against JSMASection attacks than against JSMAHeader attacks.
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Figure 4. Defense mechanism results against JSMA and C&W attacks in CNN.

Figure 5. Defense mechanisms results against JSMA and C&W attacks in RNN.
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Interestingly, training defense mechanisms outperformed distillation against all at-
tacks, as shown in Figures 4 and 5. Most adversarial studies of computer vision have
demonstrated that distillation is more effective than training defense mechanisms [5,15,17].
Our results show a notable difference between the efficiency of the attacks against continu-
ous and discrete data. To our knowledge, none of the recent studies proved the opposite
viewpoint when referring to binary data, which is the subject of our research.

4. Discussion

Our experiments demonstrate that adversarial attacks are possible if small changes
are made to the PE to evade the malware detection model. JSMA and C&W provide the
capability to attack malware detection models. Nevertheless, these attacks are still limited
by the PE structure. The semantic structure of PE limits attacks to attacking PE and raises
the difficulty of developing a universal defense mechanism.

However, this paper describes how adversarial attacks exploit certain PE areas, such
as DOS header and appending a section with perturbation, making it a prime target for
attackers. These areas can be particularly effective for attackers, bypassing detection
systems. To address this vulnerability, our experiment was designed by categorizing
an attacker’s influence over the PE’s structure based on knowledge about the malware
domain and designing a classifier that can prevent these manipulations by default. This
mechanism is not restricted in its application to a specific type of adversarial attack on
PEs. It builds a robust classifier in response to adversarial examples as part of a proactive
defense mechanism.

Thus, with these areas removed, we demonstrated that a robust classifier can be
constructed without affecting the performance. Most importantly, this mechanism does
not leave any areas susceptible to attack by an adversary. In fact, by eliminating the
vulnerable area in the malicious file, the attacker will no longer be able to evade the
classifiers. Therefore, we stripped the areas in our experiment and then trained the CNN
and RNN models. Thus, we could achieve high accuracy rates. The reported accuracy for
CNN was 95% and for RNN was 97%.

5. Conclusions

In this paper, we introduced a practical approach for placing adversarial payloads
directly into PE to bypass DL-based malware detectors. The effectiveness of our technique
was demonstrated by crafting a white-box adversarial attack against CNN and RNN models.
Our targeted models were byte-based malware classifiers that took PE file inputs. In this
paper, we introduced two preservation functionality approaches to perturb PE, namely,
perturbing the DOS header and appending a section. An extensive dataset was collected
from EMBER [25] by crawling VirusShare. All unlabeled samples were then assigned a label
by querying AVClass provided by [26]. The challenge of creating an executable adversarial
example without altering the semantics was met in this paper. By attacking our models,
we could successfully generate executable functional adversarial examples. The attack
effectiveness was demonstrated by our ability to cause the target classifier to misclassify all
of the evaluated adversarial examples generated by JSMA and C&W with accuracies of
63.9% and 91.06%, respectively.

To prevent evasion attacks, we addressed two countermeasures, namely training
and distillation. Furthermore, we presented a proactive defense mechanism that targets
DL-based PE detection systems. Since this mechanism focuses on the PE format, it can
be generalized to all adversarial attacks. Our success in the white-box adversarial attack
highlights the need for continued research on and the enhancement of defenses against
adversarial attacks on DL-based malware detection frameworks. In the future, we recom-
mend exploring whether other areas of PE can be perturbed by practical manipulation to
generate adversarial malware.
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