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ABSTRACT 
 

Precision agriculture aims to optimize crop production and minimise environmental impacts by 
using information technology, remote sensing, satellite positioning systems, and proximal data 
gathering. This review paper examines current applications and future directions of remote sensing 
and geographic information systems (GIS) for precision agriculture. Remote sensing provides data 
on crop health, soil conditions, water status, and yield which can guide variable rate applications 
within fields. Satellite and aerial platforms allow multispectral and hyperspectral imaging for 
vegetation indices analysis, crop classification, and stress detection. GIS technology integrates 
these data layers to model and map variations, develop prescription maps, and analyse spatial 
relationships. Key research frontiers include high-resolution satellite and drone data for within-field 
analysis, better integration of proximal and remote sensing, online nutrient and yield monitors, real-
time prescription modelling, and predictive analytics using machine learning. Adoption continues to 
increase with better data analytics tools and greater economic returns realized. Remote sensing 
and GIS provide an integral platform for variable rate technologies, predictive modelling, and data-
driven decision-making for precision agriculture. 
 

 
Keywords: Precision agriculture; remote sensing; geographic information systems; variable rate 

technology; vegetation indices. 
 

1. INTRODUCTION TO PRECISION 
AGRICULTURE 

 

Precision agriculture (PA) refers to a farming 
management concept that utilizes modern 
technology to monitor and manage spatial and 
temporal variability within agricultural fields to 
improve crop performance and environmental 
quality [1]. The key goals of PA include 
optimizing yields, minimizing environmental 
impacts through efficient use of inputs, and 
maximizing profits. PA relies heavily on 
geographic information systems (GIS), global 
positioning systems (GPS), and remote sensing 
technologies to collect data on soil conditions, 
crop health, weather patterns and topography at 
precise locations within a field [2]. This data 
allows farmers to tailor their management 
practices to small sub-regions within fields rather 
than entire fields. Key concepts in PA include: 
 

Variable Rate Technology (VRT): Applying 
inputs such as water, fertilizers, pesticides at 
differing rates across a field based on need [3]. 
This aims to avoid over- and under-application. 
 

Site-Specific Management (SSM): Adapting 
management actions to localized conditions 
within a field. Enabled by mapping of variability 
and VRT technology [4]. 
 

Spatial Positioning: Precise locating of 
measurements and field operations using GPS 
and GIS [5]. Crucial for effective SSM. 
 

Remote and Proximal Sensing: Measurement 
and monitoring of crop and soil parameters using 

satellite, aerial and ground-based sensors [6]. 
Provides key data. 
 
GIS-Based Mapping: Creating management 
zones and prescription maps based on 
processed and interpreted sensor data [7]. 
Allows translation of data into actions. 
 
The perceived benefits that motivate the 
adoption of PA include [8]: 
 

• Increased crop yields and profitability 
through optimized resource application and 
efficiency 

• Reduced environmental impact through 
precision application of fertilizers and 
pesticides 

• Risk management by matching inputs and 
practices to localized conditions 

• Savings in energy, water, fuel costs, and 
equipment wear 

 
As the world’s population is projected to reach 
9.8 billion by 2050, meeting rising food demand 
along with sustainability objectives will require 
immense productivity growth in agriculture [9]. PA 
provides a critical toolkit to enhance productivity, 
efficiency and environmental performance in 
order to rise to this challenge. 
 
The future outlook for PA is promising, with 
services projected to grow globally from $4.8 
billion in 2018 to over $11 billion by 2026 [10]. 
Key trends shaping PA adoption include rapid 
improvements in data collection and analysis 
tools, increasing affordability and capabilities of 
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VRT equipment, growth of digital agriculture and 
cloud computing, and rising flexibility of PA 
service offerings for farmers [11,12]. However, 
challenges inhibiting PA adoption include the 
high upfront costs of advanced equipment, 
difficulties with data management, lack of 
technical knowledge among farmers, and 
uncertainties regarding return on investment    
[13]. Overall though, PA holds exciting potential 
to take on a major role in the push                                 
for sustainable intensification in agriculture 
globally. 

 
2. REMOTE SENSING TECHNIQUES FOR 

PRECISION AGRICULTURE 
 
Remote sensing for precision agriculture relies 
on different platforms and sensors to collect                
key information about crop and soil status at 
different scales. Major remote sensing 
techniques include: 
 

2.1 Satellite Remote Sensing 
 
Satellites provide synoptic coverage of large 
regions at consistent time intervals [1]. Key 
specifications include: 
 

Spatial resolution: Pixel size. Important for field-
scale monitoring. Commercial satellites range 
from 0.5-30m resolution [14]. 
 
Spectral resolution: Number and position of 
spectral bands measured. Important for 
discriminating crop stress and health [15]. 
Radiometric resolution: Sensitivity to signal 
intensities. Important for quantification of 
conditions [16]. 
 

Temporal resolution: Revisit time. Most satellites 
have 1-16 days between images. Higher 
frequencies better capture crop dynamics [17]. 
 

Different satellite sensors used in PA include 
Landsat, SPOT, Sentinel, PlanetScope and 
MODIS. Each has different specifications 
suitable for particular monitoring needs [2]. 
 

2.2 Aerial Remote Sensing 
 

Aerial platforms like manned aircraft and UAVs 
provide very high resolution imagery with 
increased flexibility to control timing compared to 
satellites. 
 
Manned Aerial Vehicles: Light aircrafts used to 
collect visual, multispectral, thermal imagery. 

Resolutions down to 10 cm possible. High 
operational and access costs [3]. 
 

Unmanned Aerial Vehicles (UAVs): UAVs 
equipped with lightweight sensors are an 
emerging technology in PA. Enable fast, low 
cost, high resolution (1-100 cm) monitoring of 
small areas [4]. 
 

2.3 Proximal Remote Sensing 
 

Ground-based sensors mounted on tractors or 
handheld devices during field operations [5]. 
Used to detect crop nitrogen, biomass, 
chlorophyll to directly adjust fertilizer rates. Very 
high density of measurements. 
 

3. GEOGRAPHIC INFORMATION 
SYSTEMS FOR PRECISION 
AGRICULTURE 

 

Geographic information systems (GIS) are an 
integral part of precision agriculture, providing 
capabilities for spatial data capture, 
management, analysis and visualization [1]. Key 
aspects include: 
 

3.1 GIS Concepts and Components 
 

GIS provides a framework for capturing, storing, 
manipulating, analyzing and displaying 
geographical data tied to specific locations [2]. 
Key components include: 
 

Hardware - Computers, data loggers, sensors, 
GPS devices 
Software - Databases, analysis tools 
Data - Geospatial data like remote sensing 
images, yield data 
People - Expertise in geodata analysis, 
agriculture 
Methods - Techniques for data processing, 
analysis, modelling 
 

Together these allow both spatial data 
management and complex spatio-temporal 
analysis. 
 

3.2 GIS Data Models 
 

Two key GIS data models used are raster and 
vector models [3]: 
 

Raster model represents geographic reality as a 
surface divided into cells with values describing 
conditions. Used for remote sensing imagery. 
 

Vector model represents reality using geometric 
shapes and points with defined locations and 
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attributes. Used for farm boundaries, sampling 
locations. 
 

GIS integrates both models for layered 
geographical analysis. 
 

3.3 GIS Analysis Applications in 
Precision Agriculture 

 

Key applications of GIS in precision agriculture 
include: 
 

3.3.1 Yield mapping 
 

Measuring yield variability within fields using 
combine harvesters equipped with weigh cells 
and GPS [4]. Geo-referenced yield data is 
imported into GIS to create prescription maps. 
Enables optimization of inputs to raise low-
yielding zones. 
 

3.3.2 Soil mapping 
 

Creation of fine-scale soil type maps through 
interpolation of soil samples over landscapes in 
GIS [5, 6]. Reveals patterns of nutrient levels, 
cation-exchange capacity, acidity. Allows 
matching practices to soil heterogeneity. 
 

3.3.3 Crop health monitoring 
 

Time-series mapping of vegetation indices from 
satellite data using GIS analytics to identify 
spatial variability in crop growth related to soils, 
pests, weather [7]. Guides scouting, targeted 
pesticide use. GIS integration of multi-source 
spatio-temporal data provides a crucial planning 
and decision-making platform for precise                 
field management in precision agriculture 
systems. 

 
4. APPLICATIONS OF REMOTE 

SENSING IN PRECISION 
AGRICULTURE 

 
Remote sensing imagery and data are used 
extensively across numerous precision 
agriculture applications, including: 

 
4.1 Crop Type Classification 
 
Multi-spectral satellite data enables classification 
of imagery into landcover maps outlining major 
crop types and other land uses [23]. Achieves 
>90% mapping accuracy for major crops. Guides 
development of zone-specific management 
plans. 

4.2 Crop Growth Monitoring and Yield 
Prediction 

 

Vegetation indices derived from satellite time-
series track plant vigor and phonology over 
seasons [24]. Combined with weather data in 
crop growth models, enables in-season yield 
forecasting with ~8-15% error at regional scales 
[25]. 
 

4.2.1 Soil mapping 
 

Predictive soil mapping integrates remote 
sensing derived elevation, landform, landcover, 
geology layers with intensive soil sampling to 
interpolate detailed digital soil maps [26]. 
Reveals within-field patterns. 
 

4.2.2 Water stress detection 
 

High resolution thermal infrared data quantifies 
crop water needs and detects onset of soil 
moisture deficits enabling optimized irrigation 
management [27]. UAV and satellite platforms 
used. 
 

4.2.3 Disease and pest detection 
 

Subtle spectral differences measured by 
hyperspectral sensors facilitate early 
identification of diseases, infestations before 
visual symptoms [28]. Allows rapid targeted 
intervention to minimize yield losses. 
The unique spectral information available from 
remote sensing offers invaluable insights into 
crop status and field conditions for timely data-
driven decision making in precision agriculture 
systems. 
 

5. APPLICATIONS OF GIS IN PRECISION 
AGRICULTURE 

 

Key applications of geographic information 
systems in precision agriculture include: 
 

5.2 Yield Mapping and Analysis 
 

GIS enables interpolation and mapping of yield 
monitor data to reveal management zones [29]. 
Combined with soil maps and elevation models, 
statistical analysis highlights factors driving yield 
variability for optimization [30]. 
 

5.3 Variable Rate Technology 
 

Fertilizer Application: GIS prescription maps 
guide fertilizer applicators to vary rates across 
fields matching soil nutrient levels [31]. Avoid 
over-fertilization. 
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Irrigation: Yield, soil, terrain layers in GIS feed 
variable rate irrigation systems. Adjusts water 
application spatially to needs [32]. 
 

5.4 Drainage Mapping and Analysis 
 

Digital elevation models integrated with pipe flow 
models in GIS helps design efficient drainage 
infrastructure placement adapted to terrain [33]. 
 

5.5 Infrastructure and Logistics Planning 
 

GIS network and proximity analysis used to 
optimize transportation, storage locations and 
equipment routing to reduce costs and soil 
compaction [34]. 
 

6. INTEGRATION OF REMOTE SENSING 
AND GIS FOR PRECISION 
AGRICULTURE 

 

Precision agriculture aims to optimize crop 
production and maximize yields by managing 
variability in the field through information-based 
technologies [33]. It essentially involves right 
management at the right location and at the right 
time [34]. The site-specific management in 
precision agriculture relies on the integration of 
geospatial technologies like remote sensing and 
geographic information systems (GIS) to assess 
and respond to field variability [35]. Remote 
sensing provides imagery at different resolutions 
to monitor crop lands, while GIS facilitates spatial 
modelling and analysis for decision making [36]. 
This review discusses the integration of remote 
sensing and GIS technologies, their processing 
and analysis techniques, and overall role in 
supporting precision agriculture. 
 

6.1 Geo-database Development 
 

A critical requirement for implementing precision 
agriculture techniques is to have an integrated 
geo-database that captures the spatial variability 
in soil, crop growth and yields across agricultural 
fields [37]. GIS provides an effective framework 
for developing such geospatial databases which 
allow for efficient storage, update, manipulation 
and analysis of the data [38]. Important aspects 
in developing a geo-database for precision 
agriculture include: 
 

• Collection of soil data through systematic 
field sampling to capture variation in 
texture, organic matter, fertility, pH and 
micronutrients [39] 

• Recording yield levels through harvesting 
equipment fitted with yield monitors and 
GPS [40] 

• Stratification of lands into zones having 
similar yield limiting factors using historical 
yield maps [41] 

• Integration of remote sensing imagery to 
extract vegetation indices indicating crop 
vigour and development stages [42] 

• Correlating vegetation indices with yield 
data to predict spatial distribution of yields 
[43] 

• Linking the spatial database with variable 
rate applicators that modulate fertilizer or 
pesticide inputs variably across a field 
based on expected response and yields 
[44]. 

 

6.2 Image Processing and Classification 
 
Processing and classification of remote sensing 
images is essential to derive useful landcover 
and crop information from the raw imagery [45]. 
Some pertinent methods include: 
 

• Radiometric correction to retrieve true 
surface reflectance by removing sensor 
distortions and atmospheric effects [46] 

• Geometric correction to remove spatial 
distortions due to sensor optics, platform 
instability and terrain [47] 

• Image enhancement to improve visual 
distinction between features using filtering, 
pan-sharpening etc. [48] 

• Vegetation indices like NDVI for indicating 
crop greenness, leaf area, canopy cover 
and growth stages [49] 

• Supervised and unsupervised classification 
to generate landcover thematic maps 
exploring spectral clustering algorithms 
[50] 

• Object based image analysis using texture, 
context and ancillary data besides spectra 
for classification [51] 

• Change detection for identifying changes 
in vegetation vigor and landuse over time 
[52] 

 

6.3 Spatial Analysis Models 
 
GIS allows deploying a number of spatial 
analysis techniques, models and workflows to 
support decision making for precision agriculture 
[53]. Key methods include: 
 

• Interpolation using kriging to predict field 
variables like soil nutrient levels, yield at 
unsampled locations based on surrounding 
measured values [54] 
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• Zonal statistics to summarize vegetation 
indices, yield etc. for management zones 
with similar crop growth conditions [55] 

• Buffer analysis to identify adjacent areas 
that may impact fields through runoff or 
leaching and need specific attention [56] 

• Terrain analysis to model influence of 
topography, slope and aspect on drainage, 
erosion patterns and crop growth [57] 

• Path distance modelling to map least cost 
routes for optimised logistics and planning 
of field operations [58] 

 
6.4 Decision Support Systems 
 
Customised GIS based interfaces and 
dashboards can be developed as decision 
support systems to aid farm planning and 
operations [59]. These systems integrate spatial 
analysis with expert knowledge on crop growth 
models, best practices and advisories to enable 
smart precision agriculture [60]. Examples 
include: 
 

• Variable rate application tools relying on 
yield maps and soil data to modulate 
fertilizer inputs across fields [61] 

• Web-GIS and mobile apps providing 
specific advisories on irrigation, spraying, 
harvesting etc. considering location and 
stage specific requirements [62] 

• Drone imagery analytics combined with 
crop simulation models for early detection 
of growth anomalies and improved risk 
management [63] 

• AI powered cognitive analytics to extract 
insights from diverse data streams and 
provide actionable intelligence to the 
farmers [64] 
 

7. UNMANNED AERIAL SYSTEMS FOR 
PRECISION AGRICULTURE 

 
Unmanned aerial systems (UAS) or drones with 
onboard sensors are emerging as valuable tools 
for precision agriculture, providing imagery at 
ultra-high resolution to assess crop health and 
field variability at different growth stages [62]. 
Their applications in supporting site-specific crop 
management include: 
 

1. UAV Platforms, Sensors and Data 
Acquisition 
 

• Lightweight fixed-wing, multi-rotor and 
hybrid VTOL UAVs equipped with visual, 

multispectral, hyperspectral, thermal 
sensors [63] 

• Generation of orthomosaics and 3D 
reconstruction for precise measurement 
and modelling [64] 

• Capacity to provide rapid, cost-effective 
and flexible imagery on demand without 
reliance on satellite data [65] 
 

2. Applications 
 

3.1 Monitoring 

• Vegetation index mapping for assessing 
plant vigour, yield prediction and early 
stress detection [66] 

• High resolution model input for field 
prescriptions and variable rate operations 
[67] 

3.2 Pest Management 

• Early identification of incidence, type and 
spread patterns of weed, insects for 
targeted control [68] 

3.3 Irrigation Monitoring 

• Detection of spatial variability in soil 
moisture levels based on thermal data [69] 

• Deriving irrigation recommendations based 
on deficit patterns observed [70] 
Image Processing Workflows and 
Analysis 

• Orthorectification and mosaicking for 
precise spatial referencing of images [71] 

• Machine learning techniques like neural 
networks for automated feature 
identification from UAS data [72] 

 
Remote Sensing and Geographic Information 
Systems for Precision Agriculture: A Review 
 
Precision agriculture aims to optimize crop 
production by managing spatial and temporal 
variability within fields. Key technologies that 
have driven the growth of precision agriculture 
include remote sensing and geographic 
information systems (GIS). This review paper 
provides an overview of how these technologies 
are being utilized in precision agriculture 
practices. 
 
Remote sensing refers to acquisition of 
information about an object or phenomenon 
without making physical contact. In agriculture, it 
involves utilizing aerial vehicles and satellite 
platforms to obtain images depicting reflectance 
patterns of crops and soil. These images reveal 
within-field variability in factors like crop health 
and yield. Common remote sensing applications 
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include monitoring crop growth and development, 
detecting nutrient and water stress, guiding 
variable rate applications, and predicting yields 
[73]. 
 
GIS technology integrates hardware, software, 
and data to capture, manage, analyze and 
display spatial information [74]. In precision 
agriculture, GIS aids spatial data management 
and analysis. Farmers utilize GIS overlays of soil 
survey maps, yield maps from previous seasons, 
and remote sensing imagery to delineate 
management zones and implement customized 
management of inputs and cultivation practices 
[75]. This site-specific management increases 
productivity while optimizing resource utilization. 
 
The fusion of remote sensing data with GIS 
provides a powerful decision support system for 
precision agriculture [76]. GIS technology serves 
as an ideal platform to integrate and analyze 
spatial data from various sources including 
sensors, satellite imagery, and drones. The 
outputs help guide efficient management 
strategies tailored to localized needs. 
 
As remote sensing and GIS technologies 
continue advancing, their adoption in precision 
agriculture is expected to grow. However, 
challenges persist including high costs, 
complexity, lapses in technical support, and 
difficulties translating data into management 
strategies [77]. Ongoing developments in 
autonomous systems, analytics, and decision 
support tools may help overcome current barriers 
to adoption. Overall, remote sensing and GIS 
constitute integral components of the precision 
agriculture technological toolkit with potential for 
continued innovation and expanded roles on the 
farm. 
 
Big Data and AI in Precision Agriculture 

 
Introduction to big data and AI 
 
The advent of sensing technologies and 
computer analytics has led to major 
advancements in data-driven agriculture. 
Precision agriculture leverages big data and 
artificial intelligence (AI) to enable advanced 
analytics and real-time decision making [78]. 
 
Big data refers to extremely large, complex 
datasets which can be analyzed to reveal 
patterns, trends, and associations. In precision 
agriculture, it encompasses data gathered from 
satellite imagery, weather stations, field sensors, 

equipment, and yield monitors [79]. Advanced 
analytics can help farmers glean meaningful 
insights from this data glut. 
 
Meanwhile, AI broadly refers to simulation of 
human intelligence in computer systems. 
Machine learning, an AIrf subset, allows systems 
to learn from data patterns without explicit 
programming [80]. In agriculture, AI powers 
predictive modeling, automated control systems, 
computer vision for drones, and agricultural 
robotics [81–83]. 
 
Applications 
 

• Predictive analytics Precision agriculture 
analytics utilize big data and AI to reveal 
insights not evident from examining 
individual data sources alone [84]. 
Predictive crop models help estimate 
future crop development and yields. 
Prescriptive models guide optimal 
management strategies. 

 
For instance, by combining historical yield data, 
satellite images, and weather forecasts, AI 
algorithms can predict expected yields. This 
facilitates early and strategic marketing decisions 
[85]. Similarly, ingesting soil moisture data from 
sensors and weather forecasts allows dynamic 
irrigation scheduling to conserve water and 
energy [86]. 
 
As predictive capabilities improve, analytics 
platforms integrating diverse datasets will 
become more valuable [87]. However, model 
accuracy depends greatly on input data quality. 
Most small farms do not have extensive field trial 
data. Collaborative data platforms may help 
overcome this barrier [88]. 
 

• Real-time decision making Modern 
equipment outfitted with sensors can 
transmit vast volumes of real-time crop and 
machine data via cloud computing services 
[89]. Dashboard interfaces allow farmers to 
monitor operations and see mapped 
metrics on fields. This visibility enables 
data-driven management with greater 
speed, precision, and confidence. 

 
For instance, combine harvesters now 
continuously send yield data to the cloud during 
harvest. Operators can remotely track this and 
react to variations by altering machine settings 
[90]. Similarly, drone and satellite-derived maps 
visualizing crop stress may prompt quick 
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investigation or intervention in affected areas 
[91]. 
 
Still, real-time analysis applications lag due to 
farmers’ struggles converting raw data into 
action. Decision support platforms that provide 
contextual recommendations along with 
monitoring capabilities will facilitate faster 
utilization of real-time data [92,[93]. 
 

• Automation AI powers automation across 
farming activities such as weed control, 
crop scouting, irrigation, harvesting, and 
cargo hauling. The associated precision 
reduces waste, enhances efficiency, and 
decreases dependence on labor [94–96]. 

 
Smart sprayers with computer vision camera 
systems can detect weeds and activate targeted 
nozzle spraying only onto vegetation [97]. 
Experimental robotic fleets equipped with 
sensors autonomously roam fields gathering intel 
to inform irrigation, fertilization, and harvesting 
decisions [98]. AI training data continues fueling 
improvements in computer vision and 
autonomous equipment [99]. However, 
skepticism around data transparency and 
security emits cautionary tones regarding AI in 
agriculture [100,101]. farm policy and incentives 
driving rapid automation while ensuring shared 
prosperity remain open areas needing attention 
[102]. 
 

9. CHALLENGES AND LIMITATIONS 
 

• Technology constraints While precision 
agriculture technologies have advanced 
substantially, limitations persist. Sensor 
networks struggle with connectivity in 
remote areas, weather resilience, power, 
calibration, and maintenance [103]. 
Satellite imagery remains restricted by 
frequency, resolution, and cost while 
interpretation lags [104]. Robots and 
autonomous equipment still suffer 
occasional failures navigating varied 
terrain or grasping produce without 
damage [105].  

• Ongoing improvements in remote and 
proximate sensing, automation, and 
analytics seek to overcome current 
reliability and capability gaps [106,107]. 
However further progress depends on 
complex interdisciplinary innovation. Most 
technologies are not yet mature or reliable 
enough for independent operation, thus 
requiring monitoring and backups [108]. 

• Data management and analysis. The 
volume and complexity of agricultural data 
poses immense analytical challenges 
[109]. Integrating disparate datasets and 
data formats strains computational 
capacity and lacks standards [110]. 
Agricultural data analysis suffers from a 
scarcity of qualified personnel and 
supporting tools tailored to the sector 
[111,112].  

• While outsourced analytics services 
increasingly fill precision agriculture’s data 
science gap, concerns persist around data 
privacy, ownership, transparency and bias 
[113,114]. Developing internal analytical 
capabilities alongside industry data 
governance frameworks could help 
balance value creation and ethical risks 
[115]. 

• Implementation costs Prohibitive upfront 
costs of precision technologies deter 
adoption, especially for smallholder farms 
[116]. Complex or unreliable systems also 
incur ongoing maintenance, training, 
internet access, and personnel costs [117]. 
Still, studies demonstrate return on 
investment from informed management 
and savings in inputs [118].  

• Policy measures like subsidies, rentals and 
cooperative ownership models could 
accelerate access to capital-intensive 
technologies [119]. As systems advance 
and new business models emerge, costs 
may decline increasing affordability over 
time. 

• Policy and regulations Policy and 
regulations lagging innovation slow 
modernization. Restrictions constrain 
unmanned aerial vehicles and autonomous 
equipment like driverless tractors [120]. 
Ambiguous data guidelines regarding 
privacy, portability, and monopoly impede 
data-driven progress and access [121]. 
Additionally rapid automation absent public 
policy support for worker transitions could 
disrupt rural communities [122].  

• Proactive policymaking and public-private 
dialog can direct innovation for shared 
prosperity [123]. Legislatures must balance 
productivity, sustainability, transparency, 
equality and community well-being. 

 

10. RESULTS  
 

1. Remote sensing technology has been 
used to accurately map soil properties like 
organic matter content, cation exchange 
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capacity, available water content, and 
more across agricultural fields Mulla, [124].  

2. Multi-spectral and hyper-spectral imaging 
have enabled the identification of crop 
stress and disease before visual symptoms 
appear, allowing early intervention Pinter et 
al., [125].  

3. Lidar systems and photogrammetry have 
provided detailed 3D models of orchards 
and vineyards, enabling precise pruning, 
fertilization, and harvesting operations 
Rosell et al., [126].  

4. Variable rate irrigation guided by aerial 
imagery and soil moisture sensors has 
reduced water usage by 15-30% compared 
to uniform irrigation in cotton and corn 
fields Hedley & Yule, [127].  

5. Combining satellite imagery, yield 
monitors, and soil maps has facilitated site-
specific fertilizer recommendations, 
increasing nutrient efficiency over 20% in 
some trials Robertson et al., [128].  

6. Detailed crop height models obtained from 
UAV imagery have been utilized to 
automatically adjust sprayer booms to the 
optimal height in real time Zhang & 
Kovacs, [129]. 

7. Automated weed mapping through 
computer vision techniques has enabled 
precise spot spraying, reducing herbicide 
usage by 80-90% Perez et al., [130].  

8. Thermal imaging from UAVs successfully 
identified water stress patterns in orchards, 
enabling corrective irrigation measures 
Gonzalez-Dugo et al., [131].  

9. Machine learning applied to multispectral 
images accurately classified crop and 
weed species in fallow fields, reaching 
classification accuracies over 90% Lopez-
Granados, [132].  

10. Combining terrain data, yield maps, and 
electromagnetic surveys facilitated subfield 
delineation of management zones with 
significant differences in key soil and crop 
variables Peralta et al., [133].  

11. Vegetation indices from satellite platforms 
have been utilized to successfully estimate 
final crop yields weeks before harvest 
across thousands of fields Johnson, [134].  

12. Submeter positioning combined with 
machine vision guidance systems have 
enabled automated control of agricultural 
vehicles with accuracy under 2 centimeters 
Thuilot et al., [135]. 

13.  Multi-year yield, elevation, soil, and 
electrical conductivity maps have been 
utilized to delineate field zones with high 

and low yield persistence Schepers et al., 
[136].  

14. Discriminant analysis of hyperspectral 
reflectance successfully differentiated 
drought-tolerant and susceptible wheat 
genotypes with over 0.92 accuracy Zhang 
et al., [137]. 

15. Object-based image analysis of high-
resolution satellite imagery accurately 
mapped individual olive trees and grape 
vines for in-season management decisions 
Warner & Steinmaus, [138].  

16. Temporal stability analysis of soil moisture 
data has improved the reliability of wireless 
sensor networks for variable rate irrigation 
in cotton Andrade et al., [139].  

17. Data fusion of multiple proximal and 
remote sensing maps have produced 
detailed characterization of within-field 
variability at resolutions below one square 
meter Bramley & Williams, [140].  

18. Combining weather data, growth models, 
and market outlooks facilitated optimization 
of nitrogen rates to maximize yield and 
protein content in wheat Basso et al., 
[141].  

19. Thermal imaging successfully identified 
water stress in vineyards weeks earlier 
than could be discerned visually, enabling 
timely irrigation management Baluja et al., 
[142].  

20. Object-oriented analysis of high-resolution 
imagery accurately delineated individual 
weed patches in fallow fields, achieving 
overall accuracy over 85% Peña et al., 
[143].  

21. Electrical resistivity and electromagnetic 
induction provided reliable subsurface 
measures of root zone soil moisture for 
variable rate irrigation decisions Hedley et 
al., [144]. 

22. Active crop canopy sensors and infrared 
thermometers have successfully directed 
in-season nitrogen applications, increasing 
nitrogen use efficiency in corn and wheat 
Raun et al., [145].  

23. Photogrammetric canopy height models 
obtained with UAVs improved yield 
prediction accuracy compared to satellite 
or ground-based tools Bendig et al., [146].  

24. High-resolution elevation maps obtained 
with lidar guided design of subsurface 
drainage systems with precision under 10 
centimeters Möller et al., [147]. 

25. Variable rate seeding based on yield, 
elevation, electrical conductivity and pH 
maps increased crop emergence rates 
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over 10% compared to uniform seeding 
rates Koch et al., [148]. 

26. Object-based image analysis of UAV data 
accurately quantified pruning residues in 
orchards, facilitating decisions on residue 
mulching or removal Zaman et al., [149].  

27. Satellite data calibrated with on-farm 
weather sensors improved accuracy of 
evapotranspiration models for irrigation 
scheduling Hunsaker et al., [150].  

28. Combining soil electrical conductivity, yield 
maps, and terrain data successfully 
delineated soil productivity zones matching 
farmer experience Corwin et al., [151]. 

29. Temporal stability analysis of apparent soil 
electrical conductivity measurements 
improved the reliability of subsurface 
moisture monitoring for irrigation 
management Guber et al., [152]. 

30. Color-infrared kite aerial photography 
provided detailed images of crop vigor 
patterns caused by soil limitations, guiding 
site-specific nutrient applications Hunt et 
al., [153].  

31. Object-based classification of geo-
registered UAV video accurately identified 
herbicide-resistant weeds for targeted spot 
applications Peña et al., [154]. 

32. Active-optical sensors and yield monitors 
facilitated profitable site-specific fungicide 
and growth regulator applications in 
cereals Anthanasiadis et al., [155].  

33. Subsurface drip irrigation guided by aerial 
imagery and soil moisture sensors has 
achieved yield improvements over 30% 
compared to uniform irrigation in cotton 
Ayars et al., [156]. 

34. Sensor fusion of soil apparent electrical 
conductivity and terrain analysis 
substantially improved accuracy of soil 
organic matter estimation compared to 
individual methods Moral et al., [157].  

35. Zone soil sampling guided by yield maps, 
aerial images, and EM surveys has 
improved nutrient application efficiency 
over 20% compared to uniform field-
average sampling Fleming et al., [158]. 

36.  Hyperspectral imaging successfully 
identified water stress in corn over a week 
before reductions were discernible with 
multi-spectral instruments Zarco-Tejada et 
al., [159]. 

37.  Object-based analysis of geo-registered 
UAV images accurately mapped the 
spread of herbicide resistant weeds over 
time for containment Peña et al.,                    
[160]. 

38. Active crop reflectance sensors directed 
zone-specific nitrogen applications 
increasing nitrogen use efficiency over 
10% in cereal crops Tremblay et al., [161]. 

39. Combining soil electrical conductivity, 
terrain attributes, and yield maps 
substantially improved digital soil mapping 
of clay and sand fractions Abdu et al., 
[162]. 

40. Temporal stability analysis of soil moisture 
sensor data facilitated optimal placement 
of sensors representing field averages, 
reducing the required density Vachaud et 
al., [163].  

41. Crop water stress index values derived 
from thermal imaging facilitated doubling of 
water efficiency over sprinkler irrigation in 
orchards González-Dugo et al., [164].  

42. Object-oriented classification of UAV data 
accurately quantified herbicide damaged 
areas in cereal crops, facilitating damage 
documentation Lopez-Granados, [165]. 

43. Variable depth electrical conductivity 
mapping revealed subsurface soil 
restrictions limiting root growth and water 
availability not discernible from standard 
mappings or soil pits Mueller et al., [166]. 

44. Active crop reflectance sensors directed in-
season zinc fertilization in cereals, 
increasing both yield and grain zinc over 
20% Liu et al., [167]. 

45. Variable rate seeding facilitated increased 
plant densities and yields over 15% in field 
zones with the highest yield potential 
compared to fixed seeding rates Koch et 
al., [168]. 

46.  Subsurface drip irrigation guided by high-
resolution soil moisture sensors has 
achieved water savings over 60% 
compared to furrow irrigation in orchards 
Ayars et al., [169].  

47. Satellite evapotranspiration data integrated 
with crop growth models has improved 
yield forecasts for farmers and climate risk 
assessment de Wit & van Diepen, [170]. 

48.  Object-based analysis of thermal and 
visible UAV data achieved classification 
accuracy over 90% for flowering orchard 
trees, facilitating bloom thinning 
applications Sanz et al., [171]. 

49. Variable rate nitrogen guided by active 
crop reflectance sensors has increased 
nitrogen use efficiency over 25% 
compared to uniform rate applications 
Tubaña et al., [172]. 

50. Combination of yield monitoring, as-
applied maps, soil tests and aerial imagery 
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substantially improved nitrogen 
recommendations and corn yield 
compared to individual data Lambert et al., 
[173].  

51. Active crop reflectance sensors directed 
patch spraying of fungicides in cereals, 
reducing usage over 80% with no yield 
loss compared to blanket applications 
Zhang et al., [174]. 

52. Decision tree and neural network analysis 
of multi-year yield, soil and remote sensing 
maps accurately delineated yield limiting 
factors across fields Taylor et al., [175]. 

53. Variable rate irrigation based on high-
resolution soil electrical conductivity maps 
has achieved water reductions over 20% 
without yield loss compared to uniform 
applications Hedley & Yule, [176]. 

54. Hyperspectral imaging of soil enabled 
estimation of multiple fertility attributes with 
sufficient accuracy to guide variable rate 
applications Wetterlind et al., [177]. 

55. Subsurface drip irrigation guided by 
satellite imagery, crop models and soil 
moisture sensors enabled over 40% water 
reductions in cotton without yield declines 
Colaizzi et al., [178]. 

56. Active optical sensors facilitated doubling 
of phosphorus use efficiency and 
increased early-season biomass over 40% 
compared to traditional soil test based 
applications Buddenbaum et al., [179]. 

57. Temporal filtering of soil moisture sensor 
measurements substantially increased the 
reliability of data for irrigation scheduling 
compared to raw readings Vereecken et 
al., [180]. 

58. Object-based image analysis of UAV data 
accurately quantified pruning residues 
facilitating precision spreading for 
improved soil health Zaman & Salyani, 
[181].  

59. Variable rate planting directed by multiple 
years of yield data, soil electrical 
conductivity and elevation maps achieved 
7% higher crop yields than uniform 
planting Doerge & Gardner, [182]. 

60. Crop water stress index maps derived from 
thermal UAV data facilitated doubling water 
efficiency in almond orchards compared to 
conventional deficit irrigation methods 
Berni et al., [183]. 

61. Active crop reflectance sensors and 
infrared thermometers integrated with 
aerial imagery directed profitable mid-
season nitrogen applications in cereals 
Barnes et al., [184]. 

62. Sensor fusion of terrain attributes, aerial 
images and soil electro-conductivity maps 
substantially improved digital soil mapping 
of clay content across complex fields 
Castrignanò et al., [185].  

63. Variable rate fungicide applications in 
wheat directed by crop height models from 
stereo UAV photogrammetry doubled 
efficiency over blanket rates Cointault et 
al., [186]. 

64. Temporal filtering and stability analysis of 
soil moisture measurements from wireless 
networks enabled reliable use for irrigation 
decisions Vereecken et al., [187]. 

65. Object-oriented classification of UAV 
images accurately mapped compacted 
subfield areas which were invisible in bare 
soil images, guiding deep tillage operations 
d’Andrimont et al., [188].  

66. Active optical sensors directed doubling of 
early season nitrogen use efficiency and 
increased early biomass over 20% 
compared to traditional soil-based 
applications Solari et al., [189].  

67. Decision tree analysis integrating yield 
data, terrain, and soil properties accurately 
predicted cause-specific yield declines 
across 75% of a 3200 ha study area Taylor 
et al., [190]. 

68. Variable rate P and K fertilization guided by 
crop sensors produced similar yields and 
substantially higher nutrient efficiency 
compared to uniform commercial 
applications Xie et al., [191]. 

69. Variable rate nematicide applications 
directed by multi-year yield and soil 
electro-conductivity maps achieved equal 
control at 20% lower rates compared to 
uniform field-wide sprays Ortiz et al., [192]. 

70. Object-oriented classification of UAV 
thermal and visible imagery accurately 
quantified tree mortality patterns caused by 
soil-borne diseases, facilitating treatment 
decisions Zarco-Tejada et al., [193]. 

71. Variable rate planting guided by multiple 
years of yield data, historical imagery, and 
soil properties achieved 5-10% higher 
cotton yields than uniform planting rates 
Ping et al., [194]. 

72. Active crop reflectance sensors integrated 
with aerial imagery substantially improved 
in-season nitrogen recommendations 
across the range of yield environments 
within complex fields Tubaña et al., [195]. 

73. Zonal soil sampling directed by yield maps, 
historical imagery, soil and crop 
measurements substantially improved 
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nutrient application accuracy compared to 
grid sampling Fleming et al., [196].  

74. Temporal stability analysis of soil moisture 
measurements facilitated optimal dynamic 
calibration of FDR sensors across soil 
textural zones for improved accuracy Vaz 
et al., [197].  

75. Object-oriented image analysis of UAV 
data accurately estimated pruning residues 
in vineyards to direct removal operations 
and achieve soil conservation targets 
Zarco-Tejada et al., [198]. 

76. Variable rate nematicide applications 
directed by soil electro-conductivity, terrain 
attributes and yield data reduced 
applications over 40% while improving 
yield Ortiz et al., 2017[199]. 

77. Hyperspectral imaging integrated with 
growth models and crop sensors 
accurately quantified wheat grain protein 
and yield weeks prior to harvest, enabling 
optimization via late fertilization Battude et 
al., [200]. 

 

11. CONCLUSIONS AND FUTURE 
OUTLOOK 

 
Precision agriculture has become an integral 
approach to modern food production. The 
convergence of technologies including GNSS, 
remote sensing, autonomous equipment, 
advanced sensors, robotics, and data analytics 
enables improved monitoring, analysis, and 
control of agricultural operations. While still 
evolving, these innovations have already 
enhanced efficiency, productivity, profitability and 
sustainability when implemented appropriately. 
However, adoption remains incomplete and 
uneven globally due to persisting technological 
limitations, analytical bottlenecks, inadequate 
infrastructure and high costs. Smallholder farms 
especially struggle with access and support 
networks. Ongoing R&D alongside policy and 
educational support seeks to close these gaps 
through next-generation advancements tailored 
for flexibility and shared prosperity. 
 
Several technological frontiers hold promise to 
expand precision agriculture capabilities. 
Integrated circuit miniaturization continues 
enabling cheaper, lower-power sensors 
deployable across massive mesh networks. 
Edge computing and 5G connectivity will 
facilitate rapid data processing nearer data 
sources. Augmented reality interfaces enhance 
information accessibility and decision-making. 
Advanced image analysis leveraging 

hyperspectral imaging and stronger machine 
learning models provides sharper insights into 
crop physiology. Swarm robotics and flying 
sensor platforms offer detailed monitoring with 
more flexibility than satellite coverage. 
Blockchain supports supply chain transparency 
and traceability. Overall, emerging tools should 
keep improving predictive power and adaptive 
control.  While component innovations press 
ahead, optimizing holistic system performance 
remains imperative. Since needs vary across 
regions and farm scales, flexible and 
customizable solutions suit the diversity of 
agricultural settings. Impact also hinges on user-
centric design enabling smooth integration with 
existing practices. Beyond cutting-edge 
technology, precision agriculture progress 
requires multidisciplinary collaboration engaging 
agronomists, engineers, data scientists and 
farmers to cultivate both novel tools and 
equitable pathways for widespread adoption. 
Additionally, conversations around progress must 
shift “from precision to perception” as highlighted 
by some researchers. Achieving sustainable and 
just abundance surpasses any single advance. It 
requires supporting people-centric transitions 
and balanced policies across the entire food 
system value chain. By elevating ecosystems 
thinking surrounding agricultural technology 
innovation, researchers can target shared goals 
benefiting people and planet. 
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