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ABSTRACT

This paper offers a comprehensive exploration of partition validation functions, specifically focusing on partition
coefficient and partition entropy within the realm of fuzzy clustering—an influential approach in the field of
clustering datasets. While fuzzy clustering facilitates the classification of data points into multiple clusters, the
pivotal tasks of determining the optimal number of clusters and evaluating the validity of the resultant clusters
pose inherent challenges. The study addresses these challenges, contributing to the broader understanding of
effective fuzzy clustering methodologies.
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1 INTRODUCTION

Fuzzy c-means (FCM) clustering is a widely used
technique for partitioning data into clusters based
on similarity measures. The technique extends the
traditional k-means algorithm by allowing data points
to belong to more than one cluster, with a degree of
membership represented by a fuzzy partition matrix
[1].  FCM clustering has been applied in various
domains, including image segmentation, data mining,
and bioinformatics, among others. Several studies have
investigated the effectiveness of FCM clustering and its
variants, such as the adaptive fuzzy c-means (AFCM)
algorithm and the fuzzy possibilistic c-means (FPCM)
algorithm, in different applications (see [2, 3, 4, 5]).

For example, in image segmentation, FCM clustering
has been used to segment brain MRI images [6] and
satellite images [7]. In bioinformatics, FCM clustering
has been applied to gene expression data analysis
[8] and protein structure prediction [9]. In addition,
several studies have proposed modifications to the
FCM algorithm to improve its performance, such as the
use of kernel-based fuzzy c-means clustering [10] and
the incorporation of partition coefficient and partition
entropy measures [11]. Overall, FCM clustering and its
variants continue to be an active area of research, with
ongoing efforts to improve its accuracy, efficiency, and
applicability.

Clustering validity functions are important tools for
evaluating the quality of clustering results and selecting
the appropriate number of clusters. These functions
provide quantitative measures of the clustering
performance, based on the distribution of the data
points and the distance between clusters. Common
clustering validity functions include the silhouette
coefficient, the Calinski-Harabasz index, and the
Davies-Bouldin index. These functions have been
applied in various domains, including image analysis,
bioinformatics, and social network analysis, among
others. Several studies have investigated the use of
clustering validity functions for improving clustering
performance, such as the work of [12, 13, 14, 15, 16].
Overall, clustering validity functions are essential for
evaluating and improving clustering algorithms, and
their use can lead to more accurate and reliable
clustering results.

This study looks at two things, partition coefficient (PC)
and partition entropy (PE), to understand how well our
clusters are separated and if they're clear or fuzzy. If
the PC is small, it might mean the data is tricky, but if

it's big, our clusters are well-defined. Similarly, a small
PE suggests clear clusters, while a big PE could mean
trouble. This journey through fuzzy c-means clustering
explores these ideas, showing how each measurement
tells us something important about cluster quality and
makes us rethink what we thought we knew about
getting the best clusters.

2 THEFUZZY C-MEANS ALGORITHM

Fuzzy C-Means (FCM), sometimes known as fuzzy K-
Means, is a fuzzy variant of the K-Means algorithm
that was proposed by Bezdek [17, 18]. The least-
square error criteria is the foundation of FCM. FCM
beats K-Means because it assigns each pattern to each
cluster with a certain level of membership (i.e. fuzzy
clustering). This works better in practical settings where
there are some cluster overlaps in the data set. The
FCM optimises the following objective function:

k n
Jrem = Z Z uf d(xi,my)

j=1i=1

(2.1)

where ¢ denotes the fuzziness exponent, and ¢ >
1. The algorithm becomes more fuzzy as the value
of ¢ increases; u;; is the membership value for the
i'" pattern in the j*" cluster satisfying the following

constraints:

1. u;;>0,i=1,2,...,nandj =1,2,... .k

k
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For FCM the membership function is denifend as

i —myl| =2/~

u(mjla:) = — (2.2)
> s — my|=2/a=D
j=1
and weight function is defined as
w(z:) =1 (2.3)

As a result, FCM features a constant weight function
as well as a soft membership function. FCM generally
outperforms K-Means [19] and is less impacted by the
existence of data uncertainty [20]. The user must yet
define the number of clusters in the data set, just like
in K-Means (see [21]. Additionally, it could reach local
optimum [22, 14, 23].
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3 CLUSTERING VALIDITY INDEX

A partition index for hard clustering was proposed by
Dunn in 1974 [24]. The first Fuzzy Clustering Validity
Index (FCVI) was then created using this method, and
Bezdek [25] offered the partition coefficient [26] (Vrc)
and partition entropy [27] (Vpr) as fuzzy clustering
validity functions, as given in Eq. 3.1-3.2. Vpc and
VpE are both valid for both the maximum and minimum
values. These are only membership based validity
functions, where Vpc € [0,1] and Ve € [0,logac].
In order to more effectively describe the fuzziness of
data samples, Vpc introduces the fuzzy weighted m.
Vpc and Ve have a straightforward structure and need
less work, but they will alter monotonically when more
clusters are added. As a result, Vpc and Vpg have
a limited capacity to handle data sets with intricate
architecture [27] - [36].

Definition 3.1 (Partition Coefficient). [26].

k n
1 m
czﬁ E E Uji

j=1i=1

(3.1)

Definition 3.2 (Partition Entropy). [27]

(3.2)

k n
Vep = —% DD uhilog,(usi)

j=1i=1

4 IMPLIMENTATION OF

METHODOLOGY

A random data set generated using rand(250,2) in
python. then sci-kit fuzzy library is used to perform fcm
on that data set. Then PC and PE are calculated. We
get results for 2,3 and 4 number of clusters.

As seen in Fig. 1, PC is high and PE is low due to
the sparse overlap of clusters. Clusters are slightly
overlapping in Fig. 2, and PE is high. Clusters are
heavily overlapped in Fig. 3, PC is low and PE is high.

Table 1. Value of PC and PE for random Data Set

Number of clusters (k) Partition Coefficient Partition Entropy
2 0.7760268733421876 | 0.47872665124718355
3 0.7361233295978787 | 0.6668485796708312
4 0.7214981079291537 | 0.7850044547581662
Data Set Number of Clusters = 2 PC and PE
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Data Set Number of Clusters = 3 PC and PE
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5 CONCLUSION

Partition coefficient (PC) and partition entropy (PE) are
measures used to evaluate the quality of clustering
results in fuzzy c-means clustering. When the value
of PC is larger, it indicates that the degree of overlap
between the clusters is smaller and the clusters are
better separated. On the other hand, when the value
of PE is larger, it indicates that the degree of fuzziness
of the clusters is higher and the clusters are more
overlapping.

For smaller values of PC, the clusters tend to be
more overlapping, which may indicate that the data is
inherently difficult to cluster. However, a smaller value of
PC may also indicate that the number of clusters is not
appropriate for the data. In contrast, for larger values of
PC, the clusters tend to be more well-separated, which
can be desirable for some clustering applications.

Similarly, for smaller values of PE, the clusters tend
to be less fuzzy and more well-defined. This can be
desirable for clustering applications where the data is
not inherently difficult to cluster. However, for larger
values of PE, the clusters tend to be more fuzzy and
overlapping. This may indicate that the number of
clusters is not appropriate for the data or that the
data is inherently difficult to cluster. Overall, both
PC and PE provide valuable insights into the quality
of the clustering results in fuzzy c-means clustering,
and the choice of which measure to use depends
on the specific problem and the desired clustering
objectives.
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