PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Kim H, Park J, Choung Y-H, Jang JH, Ko
J (2021) Predicting speech discrimination scores
from pure-tone thresholds—A machine learning-
based approach using data from 12,697 subjects.
PLoS ONE 16(12): e0261433. https://doi.org/
10.1371/journal.pone.0261433

Editor: Wajid Mumtaz, National University of
Sciences and Technology, PAKISTAN

Received: July 21, 2021
Accepted: December 2, 2021
Published: December 31, 2021

Copyright: © 2021 Kim et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: Data cannot be
shared publicly due to clinical data-related
regulations. Data are available upon request and
evaluation from the Ajou University Hospital IRB
(contact: ajou_irb@aumc.ac.kr) for researchers
who meet the criteria for access to confidential
data.

Funding: This study was supported by the National
Research Foundation of Korea (NRF) Grant funded
by the Korean Government (MSIT) in the form of
funds to JGK [Basic Science Research Program:

RESEARCH ARTICLE

Predicting speech discrimination scores from
pure-tone thresholds—A machine learning-
based approach using data from 12,697
subjects

Hantai Kim®"2®, JaeYeon Park®®, Yun-Hoon Choung'?®, Jeong Hun Jang'2°*,

JeongGil Ko 3°+*

1 Ajou University Hospital, Suwon, South Korea, 2 Department of Otolaryngology, School of Medicine, Ajou
University, Suwon, South Korea, 3 School of Integrated Technology, College of Engineering, Yonsei
University, Seoul, South Korea

® These authors contributed equally to this work.
* jhj@ajou.ac.kr (JHJ); jeonggil.ko@yonsei.ac.kr (Jk)

Abstract

Diagnostic tests for hearing impairment not only determines the presence (or absence) of
hearing loss, but also evaluates its degree and type, and provides physicians with essential
data for future treatment and rehabilitation. Therefore, accurately measuring hearing loss
conditions is very important for proper patient understanding and treatment. In current-day
practice, to quantify the level of hearing loss, physicians exploit specialized test scores such
as the pure-tone audiometry (PTA) thresholds and speech discrimination scores (SDS) as
quantitative metrics in examining a patient’s auditory function. However, given that these
metrics can be easily affected by various human factors, which includes intentional (or acci-
dental) patient intervention, there are needs to cross validate the accuracy of each metric.
By understanding a “normal” relationship between the SDS and PTA, physicians can reveal
the need for re-testing, additional testing in different dimensions, and also potential malin-
gering cases. For this purpose, in this work, we propose a prediction model for estimating
the SDS of a patient by using PTA thresholds via a Random Forest-based machine learning
approach to overcome the limitations of the conventional statistical (or even manual) meth-
ods. For designing and evaluating the Random Forest-based prediction model, we collected
a large-scale dataset from 12,697 subjects, and report a SDS level prediction accuracy of
95.05% and 96.64% for the left and right ears, respectively. We also present comparisons
with other widely-used machine learning algorithms (e.g., Support Vector Machine, Multi-
layer Perceptron) to show the effectiveness of our proposed Random Forest-based
approach. Results obtained from this study provides implications and potential feasibility in
providing a practically-applicable screening tool for identifying patient-intended malingering
in hearing loss-related tests.
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1 Introduction

Pure-tone audiometry (PTA) tests and speech discrimination scores (SDS) are commonly
used for examining a patient’s auditory function in today’s clinical practice. PTA quantifies the
hearing level for each audible frequency, by asking patients to listen to a pure tone in a sound-
proof facility, with the test sequence designed to observe the response to tones with varying
frequencies from the test subject.

Specifically, PTA targets to determine and quantify the degree of hearing loss by measuring
the hearing conditions in two different ways: 1) air conductive and 2) bone conductive hearing
levels. The goal of the air conduction measurements is to diagnose the current hearing level
irrespective of the external, middle, and inner ear conditions, and the bone conduction hearing
levels offer focused hints on the functional status of the inner ear. In current day clinical prac-
tice, a person’s hearing level is described as a set of thresholds, in which the minimum audible
threshold level is taken as the patient’s hearing level. For example, if a patient responds to a
pure tone with 40 dB loudness at a specific frequency, but does not at 35 dB for the same fre-
quency, the patient’s hearing threshold (for that frequency) is defined as 40 dB. Intuitively, the
lower the threshold, the better the hearing function of the patient. The PTA thresholds are
measured at different frequencies (e.g., 125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, and
8000 Hz; note: 3000 and 8000 Hz are not used for bone conduction tests), and as the example
in Fig 1 shows, the final results from this test is summarized in the form of an audiogram for
each ear. Such audiograms serve as the most fundamental core in evaluating hearing functions
of a person and when diagnosing otologic diseases [1].

While being widely used due to its simple testing protocol, unfortunately, PTA is limited to
only measuring binary measurements (i.e., can hear or cannot hear a frequency tone at target
level) and does not qualitatively measure the ability of a person to recognize speech; thus, it is
insufficient in comprehensively examining a patient’s auditory function as a whole. To supple-
ment such limitations, three other types of speech tests results are commonly measured: the
speech-detection threshold (SDT), the speech-reception threshold (SRT), and the speech dis-
crimination score (SDS). Of these three tests, SRT and SDT measure audible thresholds, simi-
lar to PTA, using non-pure tone, monophonic or disyllabic words as test modality. SRT and
SDT are also being widely used but they are limited as secondary tools to assess audible thresh-
olds. On the other hand, SDS is widely considered to be clinically important [2]. It not only
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Fig 1. A sample audiogram from PTA. Left ear presents normal function of hearing. However, in right ear, there is a
difference between air conductive (i.e., arrow) and bone conductive thresholds (i.e., circle). The audiogram for this
patient suggests that there may be clinical issues related to the middle or external ear.

https://doi.org/10.1371/journal.pone.0261433.9001
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evaluates a patient’s communication ability, but also plays an essential role in determining the
method of treatment for addressing the patient’s hearing loss [1, 3, 4]. To measure the SDS of a
patient, the patient listens to and repeats monosyllable words spoken by the examiner; the cor-
rect answer rate (in %) is output as the final score for the patient. A typically used monosyllable
words list consists of 25 or 50 phonetically balanced (PB) words in the person’s native lan-
guage, in our case, Korean. When hearing capabilities are considered normal, PB words are
typically uttered at ~40 dB loudness, while words can be given at the most comfortable loud-
ness (MCL) level for patients with hearing loss [1].

PTA and SDS tests have different objectives in the audiologic test suite, however, the corre-
lation between these two test results is not surprising. In fact, the two tests are, in many cases,
considered to complement each other [5-7]. Such complementary correlation is usually help-
ful in clinical diagnosis to conduct cross-validation on test results captured from various
dimensions and perspectives. For example, by analyzing the two results comprehensively, we
can diagnose a patient with pathological retrocochlear lesion who would typically show a low
SDS even with close-to-normal pure-tone thresholds [8]. Furthermore, the correlation
between the PTA thresholds and SDS can help cross-evaluate the reliability of the examination
process itself. If the SDS is measured to be noticeably low (or high) compared to the patient’s
corresponding pure-tone threshold measurements, an otolaryngologist can suspect weak reli-
ability and suggest additional in-depth examinations.

Mismatch events often occur given that both PTA and SDS tests rely mostly on patients’
subjective responses, in other words, patients can easily intervene the tests with intentional
negative (or improper) responses toward the stimuli. There can be many reasons behind such
behavior, which in some cases is closely tied with monetary benefits issued from the govern-
ment of insurance companies, when hearing loss is officially diagnosed. For this, experienced
otolaryngologists and audiologists will suspect patient-initiated malingering to some extent by
reviewing and comparing consequences of the two tests. However, there is no rigid criteria for
determining the correlation between PTA and SDS. In practice, there can be alternative audio-
logic tests, such as auditory brainstem response (ABR) and auditory steady-state response
(ASSR), which do not exploit patients’ subjective responses. However, such objective evalua-
tions are expensive and are of additional burden for otolaryngologists when performed fre-
quently. Furthermore, these measurements do not possess as much clinical value as PTA and
SDS under the premise that all tests were properly performed. As such, malingering activity
detection is one potential application that can be enabled when the PTA-SDS relationship of a
large population is known to physicians. This knowledge can also be generically applied to var-
ious clinical decision support by allowing the physicians to easily identify samples that need
careful considerations with minimal manual effort in filtering them.

The core hypothesis we make in this work is that by computing a methodological relation-
ship between PTA and SDS, we can potentially resolve the aforementioned issues. In fact,
there have been a number of previous efforts to predict an expected SDS from PTA test results.
For example, Yoshioka and Thornton designed a method for predicting SDS from PTA thresh-
olds collected from 529 ears [9]. However, the performance of the proposed model was limited
to an R2 score of only 0.58-0.60. Marshall and Bacon also proposed a formula to predict SDS
using PTA thresholds (at 2 kHz) and the patient’s age using stepwise multiple regression [10].
Unfortunately, this study also reported an unsatisfactory correlation coefficient between the
predicted SDS and the actual SDS of 0.67, which is considered to be too low to be considered
generally acceptable. While such conventional statistical method-based approaches are still
meaningful efforts, the low prediction accuracy limited their use in practical clinical protocols.

More recently, with breakthroughs in machine learning algorithms and the increased acces-
sibility to various forms of healthcare and clinical data, more intelligent algorithms have been
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introduced to clinical applications and are being applied to various domains [11-18]. In this
work, we follow the paradigm of exploiting machine learning algorithms together with clinical
data and compare candidate models that can suit our purposes. Specifically, we evaluate the
performance of widely used models such as Support Vector Machines (SVMs), Multi-layer
Perceptrons (MLPs), and Random Forest Models. Note that the features that need to be used
from the input data is clear; thus, a machine learning approach is sufficient, and a more com-
plex deep learning approach is not suitable in our application. Using the three machine learn-
ing approaches, we present performance comparisons in predicting SDS using PTA thresholds
as input to show that such machine learning-based schemes can overcome the accuracy limita-
tions of conventional statistical methods used in previous work.

A major hurdle in applying machine learning to such an application is the need for a much
larger quantity dataset compared to traditional statistical methods. For this reason, we collect
and exploit data from 12,697 subjects who underwent both the PTA and the speech discrimi-
nation tests. We use this data to train and evaluate the three different machine learning-based
approaches. Our evaluations on these three potential solutions show that the robustness nature
of the Random Forest model allows for a high prediction accuracy (with cross validation) of
96.64%, which outperforms those reported from previous studies based on statistical models.
The high accuracy achieved by our scheme suggests that a machine learning-based approach
can be effective enough to be applied in real-world clinical practice.

2 Methods

The data used in our work is a large-scale dataset of PTA and SDS scores collected from 12,697
subjects at the Ajou University Hospital, a large-sized general hospital located in Suwon, South
Korea. The subjects present an average age of 49.1 + 18.8 (min 3; max 101), with 48.3% being
male (6,132 subjects) and 51.7% female (6,565 subjects). PTA was performed as part of typical
medical examinations (e.g., checkups) or for diagnosing otologic diseases such as middle or
external ear abnormality or sensorineural hearing loss. For the examination, pure tone stimuli
were given at 250, 500, 1000, 2000, 3000, 4000, and 8000 Hz for air conductive measurements
and 250, 500, 1000, 2000, and 4000 Hz was used for the bone conductive measurements. The
air conductive and bone conductive PTA thresholds, were taken separately for each ear, right
and left, of the subjects at the aforementioned frequencies. For speech discrimination score
collection, subjects were given 25 monosyllable PB words at the most comfortable loudness
level (MCL) measured in the PTA test. Usually, subjects with normal hearing conditions were
given words at around 40 dB and the MCL level was used for subjects with hearing loss. Specif-
ically, the examiner called out a total of 25 monosyllable words in the magnitude of MCL, and
the examinee followed by repeating the words. In this process, 4 points were given for each
word that the examinee correctly repeated, resulting in a total score of 100 points.

Using this data, we designed three machine learning-based SDS prediction models using 14
features captured from the air conductive PTA (AC PTA) tests and 10 features from the bone
conductive PTA (BC PTA) tests (i.e., PTA thresholds for each tested frequency at each ear).
Specifically, we select the Support Vector Machine, Multi-layer Perceptron, and Random For-
est machine learning models as potential approaches. All 24 features were used to predict the
SDS of a target subject (12 features for each ear), which is a score given on a scale of 0-100. We
note once more that the PTA features and ground-truth SDS data are correlated on a per-ear-
basis, where the PTA samples from the right ear were used to predict the right ear SDS, and
the PTA samples from the left ear were used for left ear SDS prediction. All data collection and
processing research presented in this work was approved by the Institutional Review Board at
Ajou University Hospital (AJIRB-MED-MDB-19-344).
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Table 1. The table of SDS bin distribution on 12,697 subjects.
SDS bin The number of subjects for ‘left’ ear SDS (%) The number of subjects for ‘right’ ear SDS (%)

0-9 75 (0.59) 301 (2.37)
10-19 111 (0.87) 181 (1.42)
20-29 299 (2.35) 328 (2.58)
30-39 221 (1.74) 261 (2.05)
40-49 422 (3.32) 396 (3.11)
50-59 340 (2.67) 313 (2.46)
60-69 719 (5.66) 702 (5.52)
70-79 721 (5.67) 624 (4.91)
80-89 2052 (16.16) 1848 (14.55)
90-100 7737 (60.93) 7743 (60.98)

https://doi.org/10.1371/journal.pone.0261433.t001

2.1 Data preprocessing

As Table 1 shows, given an SDS score range of 0-100, we first created 10 bins each with size 10
(with exception to the final bin which ranged from 90-100 with size 11). The goal of our SDS
prediction system was to classify which SDS score bin the PT A-based features of a subject
would most likely belong to, as small differences in SDS would not affect clinical decisions
(e.g., the clinical outcome differences between PTA of 51 and 59 is not significant [19, 20]).
Unfortunately, deeper observation on the collected data revealed that the SDS of the samples
from 12,697 were not uniformly distributed over the 10 bins. In particular, as we show in
Table 1, 60.9% of the samples (7,737 among 12,697) were classified in the final bin (i.e., bin
covering 90-100 SDS), and only 0.5% of the samples (75 among 12,697) belonged to the first
(i.e., 0-10 SDS). Such an unbalanced data set suggests that supervised machine learning model
architectures may not be trained properly due to the small number of samples available in less
frequently observed categories. Specifically, given such an imbalanced dataset, there is a high
chance that the prediction results will be biased given that more training opportunities are
available for the classes with more input data. One possible approach to address such data
imbalance is to “undersample” by removing samples from categories with large quantities, but
with the first bin having only 75 samples, such an approach would result in eliminating too
many data samples from the training set and limit the classification performance [21]. In fact,
our preliminary evaluations using the undersampling approach showed significantly low per-
formance due to fuzzified bin boundaries caused from high variances from the lack of
samples.

Therefore, in this work we adopted an “oversampling-based approach”, which is a well-
known technique to improve the classification performance for imbalanced datasets [22]. Spe-
cifically, for training purposes, we made replicated samples from classes with low sample-
counts to match those of larger sample-count categories. We select the 80% sample count of
the samples from the largest bin to be the target oversampling count for all bins (with 7,737
and 7,743 being the largest bin count for the left and right ears, respectively, we set the over-
sampling target to 6,189 and 6,194 for the left and right ears). Among the samples in each bin,
we take 80% of the samples and replicate them multiple times to match the target oversampling
count. We choose the 80% threshold given that, as we discuss later, we target to validate the
proposed scheme using 5-fold cross validation. In other words, we do so to completely separate
the training samples (as part of the oversampled elements) from the test dataset. Note that
such a simple approach is very powerful in balancing the dataset, and has also been applied in
anumber of previous work [23-25]. Compared to the downsampling approach, oversampling
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allows the model to maintain an exploit the full distribution/complexity characteristics of the
original dataset.

We emphasize once more that in this oversampling process we made sure that the samples
used for training and verification/testing were clearly separated, so that oversampling was per-
formed for only the training set data. One important point is that data oversampling can
potentially lead to the model overfitting itself to the training set; resulting in a model that is
only accurate for the trained dataset. Thus, we needed to take a preventive approach so that
the SDS prediction model could be generalized to data collected from larger populations. As
we later discuss, among different machine learning models, this was one of the core reasons
that the Random Forest model performs the best, as it is architecturally known to be robust
against model overfitting [26].

2.2 Machine learning model design

2.2.1 Support vector machine-based model. The Support Vector Machine (SVM) is one
of the most commonly used machine learning model, which essentially targets to define classi-
fication boundary for a given dataset of multiple classes. In a number of previous work, SVMs
have shown to be very powerful in classifying both binary and multiple classes in a given data-
set [27, 28]. SVMs allow for the configuration of different kernel functions based on the char-
acteristics of the target datasets. In our case, given the non-linearity of the dataset features, we
exploit the radial basis function (RBF) kernel in our SVM implementations. We also set 10 C
as the regularization parameter, and 0.001 gamma for the RBF kernel’s coefficient.

2.2.2 Multi-layer perceptron-based model. The Multi-Layer Perceptron (MLP) model is
a widely used machine learning model in the form of a feed-forward deep neural network. Spe-
cifically, MLP models consist of a number of layers containing a network of neurons, which
are connected with different weights. The weights are trained (and identified) in the model
training phase, making the MLP model suitalble for complex data relationships that show
non-linear patterns. MLP models are theoretically known to be capable of fitting a wide range
of smooth, non-linear functions with high accuracy [29, 30]. We configure 50, 100, and 150
hidden layers in our MLP model with ReLu as the activation function, and apply the Adam
optimizer. Other hyperparameters for this model were configured to the default values on the
Scikit-learn framework.

2.2.3 Random Forest-based model. The Random Forest model is a widely-used model
known to offer high accuracy with minimal computational complexity [31-33]. Specifically,
the Random Forest model is fundamentally an ensemble model which consists of multiple
decision trees and passes new data simultaneously through each tree architecture. The “for-
est” of trees then votes based on the results obtained from each decision tree to select the
decision with the most votes as its final classification decision. Such an ensemble-based
approach is the reason behind the model’s robustness towards the overfitting issue. Another
important feature of the Random Forest model to emphasize is its “bagging” feature. Bagging,
which is a widely used term for bootstrap aggregation, allows each tree in the Random Forest
to randomly select inputs from a large set of input values. This again is an important opera-
tion that allows the Random Forest model to tolerate high levels of input noise and imbal-
anced datasets [26, 32].

Particularly, for the Random Forest model, we configure 1,000 tree-based estimators (i.e.,
number of trees) to construct a forest and exploited the Gini Impurity [34, 35] as the criteria to
measure split quality. Note that in Random Forest models, a “split” takes place when a tree
branches out, and the quality of a split is measured to assure high quality decision trees within
the forest. Other hyperparameters for model configurations were set to the default values on
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Table 2. The hyper-parameters used in our proposed Random Forest model provided by scikit-learn framework.

Hyper-parameter Value Description
n_estimator 1000 The number of trees in the forest.
criterion gini The function to measure the quality of a split.
max_depth None If ‘None’, then nodes are expanded until all leaves are pure (i.e., single sample) or until all leaves contain less than
(default) ‘min_samples_split’ samples.
min_samples_split | 2 (default) The minimum number of samples required to split an internal node.
min_samples_leaf | 1 (default) The minimum number of samples required to be at a leaf node.
max_features auto (default) The number of features for the best split. If ‘auto’, then ‘max_features’ is the square root of ‘n_features’ (i.e., the number of
features).
max_leaf _nodes None The maximum number of leaf nodes. If ‘None’, then unlimited number of leaf nodes.
(default)

https://doi.org/10.1371/journal.pone.0261433.t002

the scikit-learn framework we used for the implementation [36]. Detailed parameters
for our Random Forest model can be found in Table 2.

3 Classification results

For evaluations, we performed a 5-fold cross-validation over the data collected from 12,697
patients. In all five runs 80% of the data was selected to be the training set and the remaining
20% was used for testing the machine learning models. As mentioned earlier, we performed
oversampling only for the training samples and the test samples were left unaltered. For each
test run, a different set of test and training data was selected to assure that all samples partici-
pate in the test dataset once over all five test runs.

3.1 Dataset

Our machine learning models are designed so that it makes accurate predictions on the left
and right ear SDS from the PTA data collected from 12,697 subjects. As briefly mentioned ear-
lier, we collected AC pure-tone thresholds measured from both ears at frequencies of 250, 500,
1000, 2000, 3000, 4000, and 8000 Hz, and collected BC pure-tone thresholds at 250, 500, 1000,
2000, and 4000 Hz. The average of the thresholds was extracted using the four-frequency (i.e.,
0.5, 1, 2, and 4 kHz) method [1], which is a conventionally used average hearing computation
process in clinical practice. Corresponding ground truth SDS measurements were measured at
40 dB or at the MCL, depending on the subject’s hearing abilities, with 25 PB monosyllable
Korean words. We split this dataset into PTA and SDS datasets, and trained the models for
each ear, respectively.

3.2 Machine learning model comparisons

In Fig 2 we present the overall SDS classification results using PTA threshold data for the three
different machine learning models evaluated in this study. Specifically, we present the classifi-
cation accuracy for the left and right ears, respectively. As the plots show, the classification
results using the Random Forest-based approach shows noticeably higher performance com-
pared to the SVM and MLP-based approaches. This is mainly due to the fact that the hyper-
parameter optimization can be extremely challenging sensitive and can heavily affect the
performance for SVM and MLP models. Despite selecting the best possible parameters for a
target input dataset, as we perform multiple folds to cross validate the generality of the model.
On the other hand, Random Forest models are designed to reduce the variability of predictions
across datasets and minimizes the chances of overfitting. Such a phenomena of Random Forest
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Fig 2. SDS prediction results using three models, multilayer perceptron, support vector machine, and Random
Forest. For training and testing of the three models, a dataset divided into 10 bins was used for training and evaluation.
(a) Left ear, (b) Right ear.

https://doi.org/10.1371/journal.pone.0261433.9002

models out performing SVM and MLP models is not always true for all data types, but has
been observed in a number of previous work as well [17, 37].

These results motivate us to select the best possible machine learning approach suitable for
our dataset, and based on the results in Fig 2 for the remainder of this work, we select the Ran-
dom Forest model-based approach as our core approach and present detailed evaluations
using this configuration.

3.3 SDS prediction

We now take a deeper look into the results from the Random Forest-based model and start
by observing the confusion matrix for SDS prediction. As mentioned, the overall SDS classi-
fication accuracy of 95.05% and 96.64% for the left and right ears, respectively. We present
the confusion matrices for the two cases in Fig 3 and detailed performance results in

Table 3. Comprehensively these results re-confirm that our proposed Random Forest model
shows very accurate SDS prediction performance with PTA threshold inputs. More
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Fig 3. Confusion matrix for the SDS prediction performance using PTA thresholds. The X-axis shows the predicted SDS and the Y-axis shows the
ground-truth. The numbers in the matrix present the number of prediction occurrences. An ideal confusion matrix would have bright colors (high
occurrence counts) diagonally. (a) Left ear, (b) Right ear.

https://doi.org/10.1371/journal.pone.0261433.9003
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Table 3. Accuracy, precision, recall and F1 score of our SDS prediction model for the right and left ears.

SDS prediction Left ear (%) Right ear (%)
Accuracy 95.05 96.64
Precision 90.64 94.11

Recall 89.49 93.00
F1 score 90.03 93.52

https://doi.org/10.1371/journal.pone.0261433.t1003

specifically, the precision, computed by dividing the number of true positive cases with the
sum of false positive and true positive cases (i.e., a prediction is true if the prediction is cor-
rect and false otherwise), was 90.64% for the left ear and 94.11% for the right. The recall,
which takes the true positive cases and divides this with the sum of true positive and false
negative counts, was 89.49% and 93.00% for the left and right ears, respectively. Lastly, in
terms of the F1-score, which is the harmonic average of the precision and recall, the left and
right ears showed 90.03% and 93.52%, respectively. We later present detailed discussions on
some of the interesting points identified from these results, but overall, we can see that our
proposed model shows superior performance compared to previously proposed SDS predic-
tion schemes.

While we show that the proposed scheme’s SDS prediction is satisfactory, we statistically
analyze the prediction performance using a Wilcoxon signed rank-based statistical analysis
[38]. Prior to this, we confirm the normality of the ground truth SDS and predicted SDS scores
through the Shapiro-Wilk test [39]. The statistical w, which represents the test statistics, is 0.60
for both SDS score sets, and the p-value between the two sets is < 0.001. We also note that
with Levene’s homoskedasticity test [40], the p-value is 0.94, suggesting that the dataset shows
normality. Finally, via the Wilcoxon signed rank test on the two sets, we observed a p-value of
0.69, which rejected the null hypothesis (Hp). Thus, we can claim that there is statistically mini-
mal difference (H;) between the ground truth SDS and predicted SDS scores.

3.4 Age group prediction

Age-related hearing loss takes place from the middle ages and on-wards. While most people
will experience gradual change in speech recognition, sudden changes of hearing at earlier
ages is considered unnatural. Factors such as being involved in accidents or hazardous envi-
ronments can cause abnormal hearing loss. Therefore, subjects with no special concern will
show similar PTA and SDS measurement “trends” when being part of a similar age group.
This also suggests that by making age group predictions using PTA measurements (or SDS),
and comparing the predicted age with the actual age of the subject can serve as an easy-to-
access indicator on whether the measured values fall in the “normal range”, or deeper investi-
gation is required.

For this purpose, we evaluated how well a Random Forest-based machine learning model
could predict the subject’s age group using PTA features as the model input. Note that for age
group estimation, we configured the parameters of the Random Forest model and the contents
in the PTA training dataset to be identical to the previous experiment (for SDS prediction).
The only difference here is that, for age group prediction, we utilized the subjects” age (with
bin sizes of 10 as in Table 4) as the ground-truth data in the training phase. As aforementioned,
the 12,697 subjects had an average age of 49.1 + 18.8; thus, we exploited a dataset covering a
wide range of age groups.

The confusion matrix results in Fig 4 presents a visual representation of the age group pre-
diction performance of our proposed scheme. Overall, quantitatively, as Table 5 shows, the
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Table 4. The table of age distribution on 12,697 subjects.

Age bin
0-9
10-19
20-29
30-39
40-49
50-59
60-69
70-79
80-89
90-100

https://doi.org/10.1371/journal.pone.0261433.1004

The number of subjects (%)

303 (2.38)
957 (7.53)
868 (6.83)
1383 (10.89)
2255 (17.76)
3032 (23.88)
2122 (16.71)
1400 (11.02)
359 (2.82)
17 (0.13)

average age prediction accuracy showed 86.83% for the left ear and 88.03% for the right. Spe-
cifically, the Random Forest model showed 78.58% and 87.44% precision for the left and right
ears, and 77.91% and 87.31% recall for each ear. Lastly, the F1-scores for the two ears showed
78.22% and 87.36%, respectively. Again, this indicates that the PTA scores can potentially be a
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Fig 4. Confusion matrix for the age group prediction performance using PTA thresholds. The X-axis shows the predicted age group of the patient
and the Y-axis shows the ground-truth. The numbers in the matrix present the number of prediction occurrences. An ideal confusion matrix would

have bright colors (high occurrence counts) diagonally. (a) Left ear, (b) Right ear.
https://doi.org/10.1371/journal.pone.0261433.g004

Table 5. Accuracy, precision, recall and F1 score of age prediction for the right and left ears.

Age prediction
Accuracy
Precision

Recall

F1 score

https://doi.org/10.1371/journal.pone.0261433.t005

Left ear (%)

86.83
78.58
77.91
78.22

Right ear (%)

88.03
87.44
87.31
87.36
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Table 6. Clinical remarks for subjects showing large bin differences (> 6) between predicted SDS and actual SDS.

Patient (gender /

age)
F/20
M/27
F/58
M/36

M/52
M/16
F/81

M/29

F/59
M/64

F/65
F/34

F/78
F/63
F/28

F/36

F/47

good indicator for the expected age group of a subject, which can be an important clinical indi-
cator for detecting abnormal hearing loss conditions of a patient.

3.5 Characteristics of subjects with large SDS estimation errors

Finally, we performed deeper analysis into the characteristics of patients that showed a large
difference between the actual SDS (i.e., ground-truth) and predicted SDS (Table 6). Specifi-
cally, we present cases in which the predicted SDS bin was 6 bins (or more) away from the
measured SDS score bin. Surprisingly to note, the many predictions of patients with the largest
difference were caused from human errors in the recording phase. Note that all of these mea-
surements took place manually (following common clinical protocols) by audiologists; thus, a
level of human error is expected in such large datasets. Note that PTA and speech discrimina-

tion examinations are performed using the audiometer device. Typical audiometers have the
capability of autonomously transmitting the information to the patients’ EMR. However, the
device that we used for our data collection phase was not compatible with the hospital’s EMR
and needed the values to be manually transferred. Errors in measurements are typically cap-

tured when clinicians perform diagnosis, but due to regulatory issues, they are not removed
from the EMR (despite being faulty). When gathering our dataset from the EMR, this informa-
tion was not labeled and included in the dataset. We also noticed that subjects with head
trauma history showed rapid hearing loss compared to others in similar age groups, causing
prediction errors in both SDS and age group.

Left ear SDS Results Right ear SDS Results
Bin distance Clinical remarks Patient (gender / | Bin distance Clinical remarks
gap age) gap

9 Incorrectly recorded (Error) M/21 9 Incorrectly recorded (Error)

9 Incorrectly recorded (Error) M/19 9 Incorrectly recorded (Error)

9 Incorrectly recorded (Error) F/47 7 Incorrectly recorded (Error)

9 Incorrectly recorded (Error) F/66 7 Progressive hearing loss (for 35 years) from

young age

9 Incorrectly recorded (Error) M/64 7 Hearing loss after severe head trauma

9 Incorrectly recorded (Error) M/40 6 Hearing loss after accident

7 Age-related hearing loss M/53 6 Sudden sensorineural hearing loss

7 Progressive hearing loss of unknown M/11 6 Progressive hearing loss of unknown cause
cause

7 Hearing loss after head trauma M/78 6 Age-related hearing loss

7 Conductive hearing loss by chronic M/54 Sudden sensorineural hearing loss

otitis media

7 Head injury by domestic violence F/80 Age-related hearing loss

7 Progressive hearing loss of unknown F/23 Hearing loss after acoustic trauma
cause

7 Age-related hearing loss F/60 Meniere’s disease

6 Meniere’s disease F/52 Otitis media with effusion

6 Progressive hearing loss of unknown F/29 Progressive hearing loss of unknown cause
cause

6 Progressive hearing loss of unknown
cause

6 Progressive hearing loss of unknown

cause

https://doi.org/10.1371/journal.pone.0261433.t006
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4 Discussion
4.1 Prediction on age

While our proposed scheme well-predicts the patient age groups, one interesting point to
notice from the results in Fig 4 is that for both ears, the prediction performance is better for
the elder population when compared to the age groups between 0-49. This is because age-
related hearing loss is unusual in this younger age groups. Patients aging 0-49 years mostly
take hearing tests for examining various otologic diseases, but not for age-related hearing loss.
Nevertheless, achieving high age prediction accuracy in this group can still be useful in clinical
practice. As an example, one of the difficulties in evaluating industrial accident compensations
for noise-induced hearing loss is that the patient’s hearing loss is a mixture of the noise-
induced and senile hearing loss. If there is a large difference between the age predicted by the
patient’s PTA and SDS via our scheme and the actual age, it is likely that hearing loss has pro-
gressed by unnatural factors other than aging.

4.2 Difference in the SDS prediction between left and right ears

We now discuss an interesting observation from the classification result for the 80-90 and 90-
100 bins in Fig 3. First, we look deeper into why the left ear in Fig 3(a) shows more misclassi-
fied cases (nearly twice) than the right ear in Fig 3(b). Specifically, while most cases in Fig 3 are
well-classified with high accuracy, we can notice some parts of the confusion matrix in which a
significant number of misclassified cases exist, but with different patterns for the left and right
ears. As an example, focus on the results for the 80-90 and 90-100 bin regions on the confusion
matrix. Here, for the left ear (c.f., Fig 3(a)), our model incorrectly predicts a total of 112 samples
with SDS 80-89 as the ground-truth to be SDS range 90-100. In contrast, for the right ear pre-
sented in Fig 3(b), the same misclassification occurs only for 49 samples, which is only half of
the left ear case. Such similar trends can also be seen for SDS 90-100 ground-truth cases mis-
classified as SDS range 80-89 (i.e., 121 vs 71).

To validate and better understand this, in Fig 5 we present the PTA threshold distribution
for true positive (i.e., correctly classified) and false negative (i.e., misclassified) cases with vary-
ing AC/BC frequencies from our dataset. Specifically, Fig 5(a), 5(c), 5(e) and 5(g) show the
true positive cases and the others present the false negatives. Here, we can visually notice that
the “slope” of how the hearing level drops with increasing frequency is different for the two
classes of plots (i.e., true positive sets vs. false negative sets). For example, compare the
descending slope patterns for Fig 5(a) with Fig 5(b). Since the two sets of cases show signifi-
cantly different patterns, it is no surprise that these samples could not be classified in the same
category from a supervised machine learning model. What is more surprising is the similarity
in slope patterns for the Fig 5(a) and 5(f) pair, Fig 5(b) and 5(e) pair, Fig 5(c) and 5(h) pair,
and Fig 5(d) and 5(g) pair. Due to this similarity, a supervised machine learning model can
misjudge that these two sample cases belong together. This unexpected similarity explains, on
a data perspective, why our Random Forest model resulted in misclassifications for this data.

On a clinical perspective, the performance difference between the left and right ears is not a
strange phenomenon. In previous auditory perceptual and physiological studies, this func-
tional bias was reported, and the “right ear advantage” can be considered common for the
human auditory system [41]. Specifically, auditory stimuli, which initiates from the right ear,
passes through the cochlea to the cochlear nucleus and then ascends along both sides of the
medulla oblongata. The cochlear nucleus on right side delivers about 70-90% of the total sti-
muli to the left superior olivary complex, and 10-30% of the stimuli goes to right superior oli-
vary complex, which then ascends to the brain. As well-known, the left hemisphere of the

PLOS ONE | https://doi.org/10.1371/journal.pone.0261433 December 31, 2021 12/18


https://doi.org/10.1371/journal.pone.0261433

PLOS ONE Predicting speech discrimination scores from pure-tone thresholds

(a) (b)
m 10 m 10-
2 201 = 207
o 301 o 301
> 40 > 401
2L 504 L 50
o 601 D 601
gl 704 ‘= 70
© 80 © 80
T 100 T 100
250 500 10002000300040008000 250 500 10002000300040008000
Frequency (Hz) Frequency (Hz)
(c) (d)
~ 0 ~ 0
m 10 m 10
Z 204 E 201 j
o 301 o 307
> 40 > 40
2L 50 2 50;
D 601 D 601
e 70' 25 70'
© 801 © 801
90 90
T 1001 — : : . . T 1001 — : : . -
250 500 1000 2000 4000 250 500 1000 2000 4000
Frequency (Hz) Frequency (Hz)
(e) ()
m 10 m
= 204 T 204
— 30_ —
2 0] 2 40
9 50/ Q
D 601 D 601
= 701 ‘T
© 801 © 801
90
T
S — 1000———m———————————————
250 500 10002000300040008000 250 500 10002000300040008000
Frequency (Hz) Frequency (Hz)
(9) (h)
m 10 * m 10-
£ 204 T 20
o 301 o 307
> 40 > 401
9 50/ Q2 50
2 601 D 601
= 70' = 70'
© 80 © 80
90 90
T 100l — . : . . T 100l — : : . ;
250 500 1000 2000 4000 250 500 1000 2000 4000
Frequency (Hz) Frequency (Hz)

Fig 5. An average of pure tone audiograms (PTA) in all subjects’ AC and BC thresholds from 80-100 as shown in Fig 3. (a)
True positive on the left AC SDS. The ‘80-89’ SDS is correctly classified as ‘80-89’. (b) False negative on the left AC SDS. The
‘80-89” SDS is misclassified as ‘90-100’. (c) True positive on the left BC SDS. The ‘80-89’ SDS is correctly classified as ‘80-89. (d)
False negative on the left BC SDS. The ‘80-89’ SDS is misclassified as ‘90-100’. (e) True positive on the left AC SDS. The ‘90-100’
SDS is correctly classified as ‘90-100’. (f) False negative on the left AC SDS. The ‘90-100 SDS is misclassified as ‘80-89’. (g) True
positive on the left BC SDS. The ‘90-100 SDS is correctly classified as ‘90-100’. (h) False negative on the left BC SDS. The ‘90-
100’ SDS is misclassified as ‘80-89’.

https://doi.org/10.1371/journal.pone.0261433.9005
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brain is related to speech functions, and furthermore, the left primary auditory cortex has a pref-
erential role in the temporal aspect of auditory stimuli [42, 43]. Thus, we can clinically hypothe-
size the left/right imbalance using the fact that the sound stimuli coming through right ear is
more advantageous for the auditory functions. In this context, there have been several reports
that the right ear showed better results in auditory rehabilitation and temporal resolutions [44-
46]. Based on such observations, we can conjecture the that the Random Forest model’s perfor-
mance (including its misclassifications) is a result of such auditory system characteristics.

4.3 Examining model performance without significant data imbalance

From our collected dataset, we noticed that the samples in the ‘90-100’ bin was over 60% of the
entire dataset. Such phenomena can be common as this portion of the dataset represents nor-
mal cases. While we use an oversampling approach to account for the data imbalance over dif-
ferent bins, we wanted to make sure that this oversampling approach was effective even when
reducing the level of data imbalance from the original dataset. For this, we tried removing the
data included in the 90-100 bin from the dataset to train and test with only the samples
included in the first 9 (of the original 10) bins (i.e., scores 0-89). As a result, we removed 7737
samples for the left ear and 7743 samples for the right ear from the original dataset for this
experiment. Other parameters were kept consistent with the experiments in Section 3.3.

As the results in Fig 6 shows, we observed 92.72% and 94.10% accuracy in predicting SDS
on the left and right ears, respectively. This suggests that our model shows good performance
even when most of the normal-hearing listeners (i.e., from the 90-100 bin resulting in 60% of
the entire dataset) are removed. This consistency in high prediction accuracy (with results in
Section 3.3 where all data are included for accuracy measurements) suggests that our random
forest model can be effectively and robustly trained using the oversampling approach men-
tioned in Section 2.1 despite the imbalance embedded in the data.

4.4 Clinical usage of the proposed model

We now discuss some examples of how PTA-SDS prediction can be used in clinical practice. It
is clinically well known that patients with retrocochlear lesion experience loss in speech
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Fig 6. Confusion matrix for the SDS prediction performance with a range of 0-90 only. The X-axis shows the predicted SDS and the Y-axis shows the
ground-truth. The numbers in the matrix present the number of prediction occurrences. An ideal confusion matrix would have bright colors (high
occurrence counts) diagonally. (a) Left ear, (b) Right ear.

https://doi.org/10.1371/journal.pone.0261433.g006
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discrimination [47]. Thus, exceptional differences between the predicted and actual SDS can
in fact be clinically useful information. Past clinical events such as head trauma or noise expo-
sure as presented in Table 6 are closely related to the central auditory function performance
[48, 49]. If the actual SDS is exceptionally high or low compared to the predicted SDS, and
there is a low possibility of patient-induced malingering (or the patient can be associated with
relevant clinically meaningful events), a more in-depth evaluation of the central auditory func-
tion may be recommended.

Such diseases showing relatively lower SDS compared to the pure-tone thresholds are
grouped as Auditory Neuropathy Spectrum Disorder (ANSD). The cochlea of a patient with
ANSD can detect sound stimuli; however, fails to send acoustic-generated signals to the brain
[50]. Most patients with ANSD are diagnosed when they are too young to perform proper
PTA and SDS tests. However, for some ANSD patients, hearing loss may progress slowly com-
pared to the patients diagnosed at an early age, but faster than the normal population. From
additional patient information such as Table 6, a physician can infer that patients with progres-
sive hearing loss of unknown causes may be an effect of ANSD.

5 Conclusion

In this work, we examined the possibility of applying machine learning approaches for PTA
score-based SDS prediction. Using PTA and SDS data collected from 12,697 subjects, we eval-
uated the performance of three different machine learning models as potential solutions.
While the SVM and MLP models showed similar performances with pre-reported statistical
model-based approaches, a Random Forest-based machine learning model was able to achieve
high accuracy of more than 95% in identifying clinically-meaningful SDS from PTA thresholds
inputs. Such systems can be applied directly to clinical practice given that their outputs can
assist in more effectively (and easily) identifying patients needing detailed examinations.
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