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Abstract: The durability of a metallic biomaterial to withstand weight loss is a key factor in deter-
mining its service life and performance. Therefore, it is essential to create biomaterials with high
wear resistance to ensure the biomaterial has a long service life. Thus, this study aims to explore
the dry and wet sliding wear characteristics of the developed Ti-15Mo-xSi as-cast alloys (where x
equals 0, 0.5, 1, 1.5, and 2 wt.%) in order to assess the impact of the Si addition on the microstructure,
mechanical properties, and wear resistance and to consider them for biomedical applications. The
wear experiments were conducted using a pin-on-desk wear testing machine at a load of 20 N
and a sliding distance of 1000 m with and without applying simulated body fluid (SBF). Different
techniques were utilized in the evaluation of the developed Ti-15Mo-xSi alloys. The results showed
that significant grain refining was attained with the Si addition. The hardness, compressive strength,
and wear resistance of the Ti-15Mo-xSi as-cast alloys increased with the increase in Si content. The
Ti-15Mo-2Si as-cast alloy exhibited the highest dry and wet wear resistance of all the Ti-15Mo-xSi
alloys. The worn surfaces were investigated, the roughness and main features were reported, and the
wear mechanisms were also discussed.

Keywords: Ti alloys; mechanical properties; dry wear; wet wear; simulated body fluid; Si addition;
hardness; compressive strength; wear mechanisms; roughness; worn surface

1. Introduction

With the current technological progress, the use of metal-based materials in prosthetic
parts has increased due to urgent human needs. Dental roots, orthopedic fixation, joint
replacements, and stents are all examples of different alloys utilized to provide internal
support and replace biological tissue. The alloys that are primarily used in biomedical ap-
plications are Co alloys [1], stainless steels [2,3], and Ti alloys [4,5]. Biomaterials must meet
a range of characteristics, including exceptional corrosion resistance, sufficient strength,
effective bioadhesion, optimal biocompatibility, appropriate biofunctionality, and high
wear resistance [6]. It has been reported that wear [7,8] and corrosion [9,10] are the main
causes of implant failure.

Due to their outstanding strength-to-weight ratio, toughness, and corrosion resistance,
commercially pure Ti and Ti-based alloys are currently widely used in biomedical and
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engineering applications instead of traditional alloys [11–13]. They are considered a pop-
ular choice for the replacement of synovial joints such as the hip, shoulder, and knee in
biomedical applications. However, there remain several unresolved issues pertaining to
the utilization of Ti-based alloys as materials for implants [14–16]. The two factors under
research consideration are the biocompatibility of the Ti alloy composition and the elastic
modulus [17]. Although Ti-6Al-4V and Ti-5Al-2.5 Fe alloys have been widely employed in
orthopedic implantation due to their good biocompatibility, mechanical properties, and
favorable corrosion resistance [4,18,19], the long-term performance of these alloys has
raised some concerns as a result of the release of Al, Fe, and V. Recently, Fe, Al, and V have
been recognized as higher cytotoxic elements [20]. As a result, various biomaterials that are
free of these hazardous components have been researched for their potential use as implant
materials [10,21]. In addition, the comparatively high stiffness of Ti alloys in comparison
to neighboring bone can cause stress-shielding issues and implant loosening. The elastic
modulus of natural bone ranges between 20 and 40 GPa [20,22]. Consequently, an alloy
with a low elastic modulus is ideal for replacing hard tissue instruments. It was reported
that alloying elements such as Mo, Zr, Nb, and Ta are recommended to reduce the elastic
modulus of Ti alloys while keeping their strength. In addition, these elements are nontoxic,
making them suitable for use in implantology [23]. One of the important alloying elements
that has recently been introduced into Ti alloys is Si, which improves the castability and
acts as a β-phase stabilizer when added in the range from 0.5 to 2 wt.% to the Ti15Mo alloy
system [23]. Ti undergoes an allotropic transformation, as a result of this structural change,
Ti alloys are classified into three types: α-phase alloys, (α + β)-phase alloys, and β-phase
alloys, depending on the addition of α and/or β alloying stabilizers. Oliveira et al. [24]
studied the phase compositions of TiMo alloy systems with the addition of Mo from 4 to
20 wt.%. They reported that, for the alloy containing 10% Mo, a significant retention of
the β-phase was seen; however, at higher Mo additions (15% and 20%), retention of the
β-phase was only detected. The β-alloy type of Ti alloys is recommended over the α + β

alloy type due to the possibility of governing the fabricating parameters to achieve specific
results like a low modulus of elasticity, a high corrosion resistance, and enhanced tissue
response [24,25]. In addition to biocompatibility and reaching the β-phase alloy for the
new design of titanium-based alloys, it is important to keep in mind that pure Ti has a low
wear resistance, which limits its usage in implants that come into contact with their own or
neighboring bone. In fact, the wear behavior of Ti-based alloys is considered to be a crucial
factor in their suitability for biomedical applications [26,27]. This is due to the fact that the
generation of wear debris during the movement of artificial joints significantly contributes
to the occurrence of aseptic loosening (mechanical loss results in the failure of the fixation
of a prosthetic alloy component in the absence of infection) [28,29]. Pure or commercial Ti
alloys have often been observed to exhibit limited resistance to sliding wear and limitations
in high-stress applications because of their difficulty in polishing, low strength, and poor
wear resistance [30,31]. This is primarily attributed to their inadequate ability to withstand
plastic shearing and the insufficient protection provided by surface oxides. In previous
works [6,29], wear debris created by long-term use in a human body was found to enhance
osteolytic mediators, leading to aseptic loosening of prostheses.

Furthermore, numerous harmful reactions may occur as a result of the accumulation of
wear debris in tissue [2,7,32]. As a result, it is essential to develop and produce biomaterials
with high wear resistance to guarantee a long lifespan with high performance.

Based on the available data derived from a comprehensive review of the available
literature, a few works have been conducted on the Ti-Mo alloy systems, and most of
them were focused on studying the effect of adding the molybdenum percentage on phase
transformation [21], thermal expansion under various heating rates [33], electrochemical
corrosion behavior [24], microstructure and some mechanical properties of a specific alloy
composition [34], or even wear behavior in the dry state [35]. It is evident that no systematic
study has been conducted to investigate the impact of adding silicon up to 2 wt.% and
Mo up to 15 wt.% on the dry and wet wear properties of Ti alloy. Hence, the novelty of
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the current work is to explore the impact of the addition of Si on the dry and wet sliding
wear characteristics of the developed Ti-15 Mo alloys. In addition, this aim is extended to
address the current state of knowledge of the phase composition, microstructure grain size,
hardness, compressive strength, worn surface roughness, and wear mechanisms. Figure 1
summarizes the work plan for the current study.
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Figure 1. The flow chart summarizes the work plan of the processing and characterization for the
developed Ti-15Mo-x Si alloys.

2. Materials and Methods

Ti-15 wt.% Mo-(0-2) wt.% Si alloys were produced from high purity as-received
metallic materials of Ti, Mo, and Si supplied by the Nilaco Corporation, Japan. According
to the supplier, the purity is not less than 99.96 for each supplied metal. These developed Ti
alloys were produced by melting in a vacuum arc remelting (VAR) furnace (ARCAST 800A,
USA model) under a controlled high purity argon atmosphere with a special magnetic
stirring process to achieve high composition homogeneity. The melted alloys were finally
cast utilizing an advanced water-cooled system.

The produced materials were machined in square and cylindrical samples for the
different materials’ characterizations. For microstructure investigation, the machined
samples were ground up with 2400 grit SiC papers, then polished utilizing micro-diamond
suspensions, followed by polishing using a nano silica suspension to achieve a mirror
surface finish. Then, they were investigated using an Olympus optical microscope (OM)
(BX41M-LED, Tokyo, Japan). The X-ray diffractometer (X’PERTPRO. A PANLYTICAL
instrument, Malvern, UK) was used to identify the formed phases in the produced Ti alloys
with the working conditions of a Cu-Kα target with secondary monochromatic at 45 kV and
40 mA. The investigation was performed at a step size of 0.04◦ in the range 2θ: 20–80◦. The
hardness test was carried out using a universal hardness testing machine, model NEMESIS
9104, INNOVATEST, Maastricht, Netherlands. The Vickers hardness measurements were
performed using an applied load of 20 N with a holding time of 10 s. The compression test
was conducted using a 30-ton Universal testing machine (WDW-300, Jinan Precision Testing
Equipment Co., Ltd., Jinan, China) at room temperature and at a constant loading rate of
0.1 mm/min. The machined cylindrical samples were prepared according to ASTM E9.
The dry and wet wear tests for the machined samples (5 mm diameter and 40 height mm)
were performed using a pin-on-disk wear testing machine (Mode T-01 M, ITeE-PIB, Radom,
Poland). The wear test conditions were an applied load of 20 N and a sliding distance of
1000 m at both dry and wet conditions. The wet medium was simulated body fluid (SBF).
The SBF is a commonly used solution that simulates the chemical composition of human
body fluid. To ensure the accuracy of the results for each test, at least three samples were
tested, and the average results were calculated. After the wear tests, the worn surfaces
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were examined using a scanning electron microscope (SEM) (FE-SEM, ZEISS Sigma 300 VP,
Oberkochen, Germany).

3. Results and Discussion
3.1. XRD Analysis and Microstructure Evaluation

The suggested Ti-15 wt.% Mo-xSi alloy systems (where x equals 0.0, 0.5, 0.1, 1.5, and
2.0 wt.%) were melted in a vacuum arc remelting furnace using a water-cooled copper
hearth, applying a special stirring system to attain complete homogeneity. This was
followed by a fast cooling, which helps to obtain solid-state phase transformations and
promotes the formation of the β-Ti phase. XRD analysis was carried out to identify the
present phases in the produced Ti-15Mo-xSi alloys, as shown in Figure 2. The XRD patterns
for all samples exhibited the same behavior, with the peak positions and intensities of the
β-phase, as well as the absence of α-phase or any intermetallics, indicating the designed
weight ratios of 15Mo and xSi alloying elements are very effective in stabilizing the β-phase
of the quenched Ti alloys at room temperature [33]. This result also corresponded with the
findings of other researchers, who found that only the β-phase was present in the Ti base
alloys at 15 wt.% additions of β-phase stabilizing elements [34,36,37].

The mechanical properties and biomedical applications of the Ti base alloys are influ-
enced by their microstructure features, including the presence of different phases, grain
size, and the distribution of alloying elements [38]. All the as-cast Ti-15Mo-(0-2)Si alloy mi-
crostructures were investigated, and the representative OM-images of the Ti-15Mo master
alloy, Ti-15Mo-1Si, and Ti-15Mo-2Si are presented in Figure 3a–c, respectively. It can be
observed that large equiaxed grains of β-Ti were formed in the master alloy with a grain
size range from 105 to 800 µm, as shown in Figure 3d. The average grain size attained a
value of 497.5 ± 39 µm. With the addition of 1 wt.% Si, the Ti-15Mo-1Si showed a lower
grain size range from 50 to 680 µm (Figure 3e) compared to the Ti-15Mo ally. The average
grain size attained a value of 292.1 ± 31 µm. In the case of adding 2 wt.% Si, the grain size
range of Ti-15Mo-2Si reached values from 44 to 280 µm (Figure 3f), and the average grain
size was 105.3 ± 12 µm.

Figure 4 presents the trend of grain size refining with the increase in the Si addition to
the master alloy Ti15Mo. It can be noted that the grain size of the Ti-15Mo decreases with
the increase in the Si content from 0.05 to 2.0 wt.%, and the grain size reduction is sensitive
to any weight addition of Si. Thus, it can be said that Si can play a significant role in the
grain refining of beta titanium (β-Ti) alloys. This grain refining may be due to Si acting as a
pinning agent, impeding the growth of the β-Ti grains during the solidification process at
rapid cooling. The presence of Si in the alloy can hinder the movement of grain boundaries
and suppress grain growth, resulting in finer grains in the final microstructure. These results
are consistent with prior works [39], which revealed that increased Si content in the Ti base
alloys resulted in the formation of finer grains and more subgrains. The effectiveness of the
Si addition on the grain refinement of Ti alloys depends on its concentration, processing
conditions, cooling rate, and the presence of other alloying elements [34].
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3.2. Hardness and Compressive Strength

Hardness is a property related to the material’s ability to resist penetration or scratch-
ing; it is a localized plastic deformation. Compressive strength refers to a material’s ability
to withstand a uniform compressive load without failure, it is an indicator of the material’s
ability to resist bulk deformation under mechanical stress. Both properties are important
for Ti alloys that are candidates for biomedical applications [38]. Figures 5 and 6 illustrates
the average values of the hardness and compressive strength–strain curves of the Ti15Mo-
(0-2)Si as-cast alloys as a function of Si content, respectively. It can be seen that both the
hardness and compressive strength increase with the increase in the Si addition in the range
from 0.0 to 2.0 wt.%. In the case of the hardness measurements, as plotted in Figure 5, the
average values of hardness increase gradually from 340 ± 3.6 to 437 ± 7.2 HV with the
increase in the Si content from 0.0 to 2.0 wt.%, respectively, in the produced Ti alloys. The
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hardness increment percentage of the Ti15Mo-2Si alloy is 30.10% higher than that of the
Ti15Mo master alloy (without Si content).
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In general, the addition of Si enhances both the compressive strength and ductility of
the Ti15Mo-xSi alloys over the Ti15Mo base alloy, as shown in Figure 6. Table 1 represents
the average compressive strength at different Si contents for the Ti15Mo-xSi. It can be noted
that the compressive strength of the Ti15Mo-2Si specimen showed the highest compres-
sive strength behavior, while the Ti15Mo alloy specimen showed the lowest compressive
strength value during the compression test, as shown in Table 1. The percentage of the
strength enhancement of the Ti15Mo-2Si alloy reaches a value of 16.64% over the alloy
without Si content (the Ti-15Mo alloy).

Table 1. The average compressive strength at different Si contents from 0.0 to 2.0 wt.% for the
Ti15Mo-xSi alloys.

Si Content (wt.%) 0 0.5 1 1.5 2

Compressive strength (MPa) 1442 ± 22.3 1570 ± 20.1 1585 ± 25.2 1634 ± 13.1 1682 ± 33.9

In Ti-alloys, strength can be influenced by factors such as alloy composition, processing
methods, heat treatments, and the presence of various strengthening mechanisms like solid
solution strengthening, precipitation hardening, and grain refinement [40]. Si can play a
significant role in the grain refining of β-Ti alloys, which can lead to improved mechanical
properties according to the Hall–Petch equation [41,42]. Grain size plays a significant role in
both hardness and compressive strength. In general, finer grain sizes tend to result in higher
hardness and compressive strength. This is because a finer grain structure enhances the
effectiveness of grain boundaries as barriers to dislocation movement, leading to increased
strength [43].

Additionally, smaller grains can hinder the propagation of cracks and improve the
material’s resistance to deformation and failure under compression [44]. Thus, the as-
cast alloy containing 2 wt.% Si addition shows the highest compressive strength value of
1682 MPa among all the processed alloys in the current study. It should be noted that the
relationship between compressive strength and hardness in Ti alloys is generally positive,
although there is no direct correlation. Ti alloys with higher hardness values tend to exhibit
higher compressive strengths. This is because factors that contribute to increased hardness,
such as solid solution strengthening, precipitation strengthening, and grain refinement, also
tend to enhance the overall strength of the material. However, it is important to consider
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that other factors, such as the presence of brittle phases or flaws, can influence the material’s
compressive strength independently of hardness [45].

3.3. Wear Characterization in Dry and Wet Conditions

Wear is a common cause of component failure and can lead to increased maintenance
costs and system downtime. By studying wear in both dry and wet environments, re-
searchers can gain insights into the wear patterns, rates, and failure modes of materials.
This information can be used to develop a new antiwear material, predict component life-
times, and implement preventive measures to minimize wear-related failures in biomedical
applications [46]. Furthermore, understanding dominant wear mechanisms in tribological
experiments helps researchers identify the factors influencing wear resistance, develop
mitigation strategies, and improve the design and performance of Ti alloys for various and
specific biomedical applications [7,32].

In the current work, the five developed Ti-15Mo-xSi alloys were subjected to wear
tests using a pin-on-desk testing machine at a constant wear load of 20 N and a constant
sliding distance of 1000 m in dry and wet conditions. The liquid medium was SBF, and the
gained data were plotted as the weight loss and wear resistance in Figure 7a,b, respectively.
It can be noted that for the weight loss in both dry and wet wear conditions (Figure 7a),
the average weight loss of Ti15Mo base alloy decreased from 0.1164 g ± 0.0026 to attain
0.0193 g ± 0.0022 in the case of the dry wear condition and from 0.0895 g ± 0.0020 to reach
0.0077 g ± 0.0017 in the case of the wet wear condition with the increase in Si content from
0.0 to 2.0 wt.%, respectively, indicating a significant improvement in the dry and wet wear
resistance with the increase in the Si addition. It is also observed that the weight loss values
of Ti-15Mo-xSi specimens subjected to wet wear testing were lower than those tested under
dry wear in the presence of SBF wet conditions.

Depending on the collected data from the dry and wet wear testing parameters and the
measured density of the developed Ti-15Mo-xSi alloys, the wear behavior is plotted as the
wear resistance versus the wt.% of Si content as shown in Figure 7b. It can be noted that the
addition of Si from 0.05 to 2.0 wt.% improves the wear resistance (Figure 7b) and decreases
the coefficient of friction (Table 2) in both the dry and wet conditions. Furthermore, the
wet wear tested specimens of the developed Ti alloys gives a higher wear resistance
than that tested in the dry condition in the presence of SBF. It can be concluded that the
wear resistance of Ti15Mo alloys is influenced by the wear test medium. In biomedical
applications, Ti alloys are often used in load-bearing implants such as orthopedic implants
(e.g., hip and knee replacements) and also dental implants. The wear test medium used to
simulate the physiological environment in these cases can significantly impact the wear
test results [35].

To understand the wear mechanisms of the current developed Ti-15Mo-xSi alloys, the
worn surfaces were examined by SEM. Figures 8 and 9 represent the SEM images of the
worn surfaces of the Ti-15Mo-xSi alloys after dry and wet wear testing at a wear load of
20 N and a sliding distance of 1000 m, respectively. In both cases, the same features of worn
surfaces can be noted with different degrees and more effects on the dry surface. Thus, it
can be said that a 20 N wear load is sufficient for surface damage in Ti-15Mo-xSi alloys.
The worn surface of the Ti15Mo base alloy shows clear damage in the form of continuous
scratches. The parallel wear tracks indicate plastic deformation by the harder counterface
of the wear machine disk. Therefore, the width of the deep scratches decreases with the
increasing Si content in the tested alloys. For the Ti15Mo alloy, deep wear tracks, severe
plastic deformation, and large wear debris are the main features in both the dry (Figure 8a)
and wet (Figure 9a) test conditions. Similar worn surface features are noted when the
alloy contains 0.5 wt.% Si on the worn surfaces of the dry (Figure 8b) and wet (Figure 9b)
testing at the same wear testing parameters. Besides, microcracks and cavities are noted.
This difference comes from the fact that the wear track in some places becomes shallow,
indicating the improvement in the hardness and strength with the addition of 0.5 wt.% Si
to the Ti15Mo master alloy. With the increasing Si content to 1.0 wt.% (Figures 8c and 9c),
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1.5 wt.% (Figures 8c and 9c), and 2 wt.% (Figures 8e and 9e) in the produced Ti15 Mo alloy,
the formed debris and the detached or attached deformed layers decrease, indicating the
impact of the Si addition on the alloy wear resistance.
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Table 2. The average values of the coefficient of friction (COF) for the dry and wet wear conditions of
the Ti15Mo-(0-2)Si alloys tested at a wear load of 20 N and a sliding distance of 1000 m.

Si Content (wt.%) 0 0.5 1 1.5 2

COF (dry wear) 0.680 ± 0.030 0.630 ± 0.020 0.550 ± 0.0320 0.510 ± 0.015 0.400 ± 0.018
COF (wet wear) 0.700 ± 0.031 0.670 ± 0.025 0.600 ± 0.032 0.530 ± 0.020 0.470 ± 0.030
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Figure 8. SEM images of the worn surfaces of Ti-15Mo-xSi alloys after dry wear testing at a wear
load of 20 N and a sliding distance of 1000 m, where (a) Ti-15Mo master alloy, (b) Ti-15Mo-0.5Si,
(c) Ti-15Mo-1.0Si, (d) Ti-15Mo-1.5Si, and (e) Ti-15Mo-2.0Si.

Two wear mechanisms are responsible for the lower resistance in the dry wear condi-
tion compared to the wet wear condition: first, adhesive wear occurs when two contacting
surfaces experience applied wear loading and subsequent shearing forces. In the case of the
Ti15Mo-xSi alloys, adhesive wear can lead to material transfer, surface deformation, and
the formation of wear debris. The size of the wear debris depends on the accumulated heat
and the amount of plastic deformation during the dry wear condition [47–49]. This wear
mechanism is dominant in the dry wear condition. Second, abrasive wear involves the
removal of material due to the presence of asperities or small debris in the sliding interface.
Abrasive wear can result in surface roughening, scratching, and material loss. These two
mechanisms are also detected in the SBF wet wear test condition as shown in Figure 9
with different worn surface features. The presence of SBF dissipates the frictional heat and
reduces the direct friction between the rubbing surfaces resulting in a lower wear loss [2].
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Figure 9. SEM images of the worn surfaces of Ti-15Mo-xSi alloys after wet wear testing at a wear
load of 20 N and a sliding distance of 1000 m, where (a) Ti-15Mo master alloy, (b) Ti-15Mo-0.5Si,
(c) Ti-15Mo-1.0Si, (d) Ti-15Mo-1.5Si, and (e) Ti-15Mo-2.0Si.

The surface roughness of the wear-tested Ti alloys can vary based on a number of
variables, including alloy composition, processing methods, surface treatment, and wear
conditions [50]. Figures 10 and 11 show the wear roughness graphs in terms of the wear
depth versus the lateral position of the worn surfaces of the Ti-15Mo-xSi alloys after dry
and wet wear testing at 20 N and 1000 m, respectively. It can be seen that the representative
surface roughness of all the wear-tested specimens shows different roughness patterns
related to the main worn surface features given in SEM images in Figures 8 and 9 for the
dry and wet wear conditions, respectively. It can be noted that the roughness decreases
with the increasing Si content in the range from 0.0 to 2.0 wt.% to the master alloy Ti-15Mo
for the tested specimens in dry and wet conditions. Furthermore, the roughness of the
worn surfaces after wet wear testing in the presence of SBF shows lower roughness values
than those given by the worn surfaces of the specimens tested under the dry condition,
as illustrated in Figure 12a,b, respectively. These results are consistent with the results
obtained for the microstructure features, hardness, and compressive strength of the as-cast
Ti alloys having different Si content.
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(d) Ti-15Mo-1.5Si, and (e) Ti-15Mo-2.0Si.
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Regarding the roughness of the wear surfaces of Ti alloys having different composition,
Ti base alloys have varying microstructures and mechanical properties, which can influence
the wear behavior and surface roughness. For example, commercially pure titanium (CP-Ti)
tends to exhibit higher wear rates and surface roughness compared to alloyed titanium
grades like Ti-6Al-4V due to the differences in hardness and wear resistance [51]. The
processing methods used to manufacture Ti components can affect the surface roughness
of wear surfaces [51,52]. Surface treatments can be applied to titanium alloys to modify
their surface properties and enhance the wear resistance and reduce the surface rough-
ness [53]. The type and severity of wear conditions experienced by Ti alloys can influence
the resulting surface roughness. Factors such as the load, sliding speed, contact pressure,
abrasive particles, and lubrication significantly affect the wear process and can impact the
roughness of the wear surface. The wear mechanisms involved in Ti alloys, such as the
adhesive wear, abrasive wear, or fretting wear, can influence the surface roughness [54].
Different wear mechanisms can lead to distinct surface damage patterns, including material
removal and microcracking, which can affect the final roughness [55]. It is important to
note that achieving a specific surface roughness in Ti alloys for wear applications often



Metals 2023, 13, 1861 15 of 17

involves a balance between wear resistance, mechanical properties in terms of hardness
and compressive strength, and manufacturing considerations.

4. Conclusions

The dry and wet sliding wear behavior of different Ti-15 wt.% Mo base alloys contain-
ing various silicon contents (0, 0.5, 1, 1.5, and 2 wt.%) was investigated in order to evaluate
the impact of both the Si and Mo β-stabilizing elements in Ti wear resistance to consider
them for biomedical applications.

1. The addition of alloying elements like Mo and Si influences both the microstructure
and the mechanical properties of the Ti-Mo-Si alloys. These elements can form solid
solutions with titanium and alter the phase transformation behavior, microstruc-
ture, mechanical strength in terms of the hardness, compressive strength, and wear
resistance of the alloy.

2. Significant grain refining was attained with the Si addition. The reduction in grain
size of the Ti15Mo base alloy reached 10.25, 41.82, 51.5, and 78.8% with the addition
of 0.5, 1.0, 1.5, and 2.0 wt.% Si, respectively.

3. The average values of the hardness of Ti-15Mo-(0-2) Si increased from 340 ± 3.6
to 437 ± 7.2 HV, and the compressive strength increased from 1442 ± 22.3 to
1682 ± 33.9 MPa by increasing the Si addition in the range from 0.05 to 2.0 wt.%,
respectively.

4. The weight loss values of the Ti-15Mo-(0-2) Si specimens subjected to wet wear testing
were lower than those tested under dry wear in the presence of the SBF wet conditions
at the applied parameters of a wear load of 20 N and a sliding distance of 1000 m. The
weight loss decreased with the increase in the Si content.

5. The worn surface roughness in terms of the average wear depth of the Ti-15Mo-xSi
alloys decreased from 1.043 to 0.5637 µm for the dry test specimens and from 0.819 to
0.5902 µm for the wet test specimens with the increase in the Si content from 0.0 wt.%
to 2 wt.%, respectively.
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