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Abstract 
 

The effect of the density of the liquid on the sloshing in partially filled tanks is studied. The liquid is 
assumed to be almost-homogeneous (i.e. a liquid whose density in equilibrium is practically a linear 
function of the height, which differs very little from a constant). In this case the linearized Euler’s 
equation of the liquid is presented and analyzed, the relevant operators are studied. The Weyl’s criterion 

is used for computing the spectrum of the fundamental operator 11A . We obtain nonclassically spectrum 

with continuous part filling an interval. 
 

Keywords: Heterogeneous liquid; sloshing; Weyl’s criterion; essential spectrum. 
 
Mathematics Subject Classification: 76B03, 35Q35. 
 

Notations 
 
In equilibrium position: 
 
    Domain occupied by the liquid 
    Domain occupied by the (elastic or rigid) body 

    Horizontal free surface 

    Wall of the tank wetted by the liquid 
   Wall of the tank wetted by the gas 
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n


  Unit vector normal to   (and ) and directed to the exterior of    

g   Acceleration of the gravity 

h   The maximum height of the liquid  

0   Density of the liquid 
0P  Constant pressure above the free surface 

1 2 3Ox x x  Orthogonal coordinate system ( 1 2Ox x  being of the plan of   and 3Ox  directed upwards) 

 
At the instant t: 
 

 ,u x t


 
Displacement of a particle of the liquid from its equilibrium position 

 , tp x
 

Dynamic pressure of a particle of the liquid that occupies the position  1 2 3, ,x x x x  

 ,u x t


 
Displacement of a particle of the body from its equilibrium position 

 

1 Introduction 
 
Liquid sloshing constitutes a broad class of problems of great practical importance with regard to the safety 
of liquid transportation systems, such as tank trucks on highways, liquid tank carriages on rail roads, ocean 
going vessels and propellant tanks in liquid rocket engines. 
 
The overall observation from the experimental results presented in [1] gives an idea that sloshing in a tank is 
a function of various parameters such as liquid depth, the dimensions of the tank, the amplitude, and 
frequency of excitation and density of the liquid.  
 
For sloshing of an inviscid or viscous homogeneous liquid in a rigid tank we refer to the pioneering book by 
Moïseyev and Rumiantsev [2], For the computational mechanics point of view, the reader may find in [3] 
appropriate variational formulations and associated finite element analysis for the linear liquid sloshing in 
elastic tanks. The case of a viscous homogeneous liquid has been studied by using computational methods in 
[4,5] and for a theoretical study of a viscous heterogeneous liquid we refer to the reference [6]. 
 
The general case of an heterogeneous inviscid liquid has not been studied yet, most of the researchers 
preferred a homogeneous liquid in their studies because the problem in the case of heterogeneous liquid is 
more complicated, in this case we obtain nonclassically spectrum (an essential spectrum appears). 
 
In this work, we propose to investigate the three-dimensional linear sloshing problem of an incompressible 
inviscid liquid in partially filled tanks, taking into account the effects of the density of the liquid, which has 
usually neglected in practice [1], and has  been the object of limeted specific studies before: Capodanno and 
its collaborators in the planar case [7,8,9]. 
  
Considering the particular case, introduced by Capodanno [7,8,9], of an almost-homogeneous liquid, i.e. 
whose density in equilibrium position is practically a linear function of the height, differing a little bit from a 
constant. This hypothesis modifies significantly the spectrum of the problem, and the main difficulty 

consists in studying and computing the spectrum of the fundamental operator 11A  which appears in the 

linearized Euler’s equation of the liquid.  
 

Using Weyl’s criterion [10], we show that       11 11 0,essA A g     and we argue that the presence of 

the essential part of the spectrum is due to the hypothesis of almost-homogeneity, in contrast to the classical 
case in which the fluid is homogeneous and the spectrum is entirely discrete [11]. 
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2 Problem Statement 
 
Let consider an elastic (or rigid) body that occupies a domain   bounded by a regular closed fixed surface 
  and an regular closed internal surface (Fig. 1). The domain bounded by this surface is partially filled by 
an heavy incompressible inviscid liquid, that occupies in equilibrium position, a domain   bounded by a 

surface   and the horizontal free surface   ; we denote by  the part of the internal surface of the body 

that is above   and is wetted by a gas with constant pressure 0P . 
 

We use an orthogonal coordinate system 1 2 3Ox x x , 1 2Ox x  being of the plan of   and 3Ox  directed upwards. 

The system is supposed at the constant temperature and in a constant gravity field 3g gx 
 

. 

 
We study the small oscillations of the liquid about its equilibrium position in the framework of the linear 
theory. 
 

 
 

Fig. 1. Model of the system 
 

3 The Case of the Almost Homogeneous Liquid 
 
Let be h  the maximum height of the liquid in the equilibrium position. 
 
We suppose that density in equilibrium position in the form 
 

     0 3 31x x o h      , 

 

where  and  are positive constants,  being sufficiently small so that  
2

h ,  
3

h ,…are negligible 

with respect to h . 

 

Then, the liquid is called “almost-homogeneous in  ”. 
 
Like in the Boussinesq approximation of the convective motions of the viscous liquids, the linearized 
equation of the liquid takes the form ([7,8]). 
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     3 3gradu p gu x   
     in                                       (1) 

 

where  ,u x t


,  , tp x  are the displacement from the equilibrium of the particle that occupies the position 

 1 2 3, ,x x x x  at the instant t , the dynamic pressure in this point. 

 

4 Weyl’s Decompositions 
 
We suppose that u


 belong to the spaces  

 

      def 32 ;   div 0u J u L u         
2  

L , 

  
we seek it in the form 
 

u v U 
 

  
 
with  
 

    0 ;  div 0 ; 0 
n

v J v u u


      2  
L  

 

    1

 
grad  ;    ; 0; div 0hG U H d U


          

 
 

 

In accordance to the orthogonal decomposition in  2
L  [11] 

 

     0 hJ J G      

 
Let us recall [11,13] that 
 

     0J G    2
L , 

 

where  G   is the space of the potential fields and that 

 

     0hG G G       

 
where  
 

    1
0 0grad  ,  G q q H   


.  

 

5 Transformation of Euler’s Equation 
 
Let   1 2 3, , ,u x x x t


 the displacement of a particle of the body from its equilibrium position to its position at 

the instant t . 
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We introduce the space [11,12]. 
 

    

      
   

Σ

1 1

1 1

2 1/2

ˆ ;  ;   0 ; 

    grad  ;  ; 0 ;

    div 0 ;  ;  n n n

u
W u u u

U

V U H H d

U U L U u H











  
            

  
  

           
 
      
 
  




  








 , 

 
equipped with the hilbertian norm defined by 
 

   2 1/2Σ

2 2222

1 n nV L H
W u U d U U

 
    


 , 

 
and, setting  
 

w
W

U

 
  
 
 



 


 ,  

 
The space  , completion of V  for the norm associated to the scalar product 

 

 ,  W W u w d U U d


 
 
         

    

 
The Euler’s equation (1) can be written 
  

3 3 3 3

1
gradv U p gv x gU x 


    

    

 

Consequently, if 0P  is the orthogonal projector from  2
L into  0J  , we have 

 

   0 3 3 0 3 3v gP v x gP U x   
                                          (2) 

 
In order to obtain a definitive form of this equation, we introduce a few operators. 
 
We set 
 

 0 3 3 11gP v x A v 
 

  ;  0 3 3 12gP U x A W 


. 

 

11A  (resp 12A  )is bounded from  0J   (resp   ) into  0J  . 

 
Then, the equation (2) can be written 
 

11 12 0v A v A W  
 

                                                                                                                   (3) 
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and we have  
 

 
 0

3 3 11 ,
J

g v v d A v v


 


   ;      
 0

3 3 12 ,
J

g U v d A W v


 


   

 

11A is self-adjoint and not negative. Its spectrum will be studied in the following paragraph. 

 

On the other hand, we have for  0v J 


 , W   : 

 

     20 0
3 3 0 0 

J J
L

g v U d c v U c v W



  

  
    , 

 

where 0c  and 0c  are suitable positive constants. 

 
Therefore , we can write 
  

 3 3 21 ,g v U d A v W





 
                                                                                                                   (4) 

 

21A  being bounded from  0J   into   . 

 

It is easy to see that 21A  and 21A are mutually adjoint. 

 
Indeed, we have  
 

   
 

 
 0 0

21 3 3 12 12,  , ,
J J

A v W g U v d A W v v A W



 

   
         (5) 

 

6 The Spectrum of the Operator 11A   

 
In order to study the spectrum of the problem, it is necessary to study the spectrum of the self- adjoint 

operator 11A  . 

 
Since  

 

     0 0

2 2

11 30 ,  
J J

A v v g v d g v 
 

   
  

 , 

 
we have 
 

11A g  

 
and  
  

       
   11 0,A g   . 

 
We have the following  
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Theorem 
 

Let  11A the spectrum of the operator 11A  and  11ess A its essential spectrum. 

 
We have  
 

     11 11 0,essA A g     . 

 
Proof: 
 
We are inspired the proof given in the book [11] for the Coriolis operator. 
 

Using Weyl’s criterion [10], for each   , 0 1  , we are  going to construct a sequence    0kv J 


 

such that 
 

 

 

0

0

11

1

0

k k

J

k J

A v v
g

v












 

      when k   . 

 

i) We must construct the sequence  kv


, so that we can calculate 11 kA v


 . 

 
We can set 
 

 11 0 3 3 3 3

1
gradA v P gv x gv x  


  

  
 , since  grad G 


 . 

 

Since  11 0A v J 


, we have  

 

 11div 0A v 


 and consequently  3 3divg v x  


 ; 

 

11 0A v n 
 

 on   and consequently 3 3gv x n
n





 



 
 on   . 

 

Then, if 3v  is known,   is solution of a Neumann problem and we have 11A v


. We must choose v


 so that 

we can calculate explicitly . 

 
ii) In order to construct Weyl’s sequence, we take 

 

1

3 2

2

3 1

3

1 2

q q
v b

x x

q q
v v b

x x

q q
v

x x

  
  
  

  
   

  
  

      


,                                                           (6)  
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where  q D  and b  is a constant that will be determined in the following.  

 

We have easily div 0v 


and 0
n

v

 , and  0 .v J 


 

 
On the other hand, we have  
 

 
2 2

3 3

1 3 2 3

div
q q

v x
x x x x

    
    

    


 . 

 
Consequently, the Neumann problem for   is  

 
2 2

1 3 2 3

    in  ,

0     on  ,

q q
g

x x x x

n

 



     
       
     


  

                                     (7) 

 
The problem has the obvious solution 
 

2 2

1 3 2 3

q q
g

x x x x
 

  
   

    
, 

 
so that  we have 
 

2 2

11 3 3

1 3 2 3

1
grad

q q
A v v x

g x x x x

  
   

    

 
, 

 
i.e 
 

3 3

2
1 2 1 2 3

3 3

11 2
1 2 3 2 3

3 3

2 2
1 1 2 2 2 3

1

q q

x x x x x

q q
A v

g x x x x x

q q q q

x x x x x x



  
 

     
 

   
     
 

      
               


  (8) 

 

Now, we are going to construct Weyl’s sequence  kv


. 

 

At first, we consider a sequence   n mv


 with 

 

     1 3

 

i nx mx

n mq q x e x
  ,                                                                                                                 (9) 
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with    D does not depend on n  and m  and is equal to1in a sphere 0x x r    0x  , r  being 

sufficiently small so that this sphere is interior to  . 
 

Calculating the first derivatives of  n mq  and the first derivatives of  n mq and noting that the derivatives of 

  are bounded in   and equal to zero in the sphere 0x x r  , where 1   , by virtue of (6) we find 

 

     
         

     

1 3

1 3 1 3

1 3

2 2 2 2
 ,1

2 2 2 2 2 2
 ,2

2 2 2 2
 ,3

 

 

 

i nx mx

n m

i nx mx i nx mx

n m

i nx mx

n m

v im m n e O n m

v im m n e bin n m e O n m

v in m n e O n m



 





 



     



      


   

     (10) 

 

where 
 2 2

2 2

O n m

n m




 is uniformly bounded in   and equal to zero in the sphere 0 0x x   . 

 

iii) Calculating the third derivatives of  n mq and using (8), (9) we find 

 
   

 
   

1 3

1 3

2 2 2

2 2
11

3 2 2

 

1
 

i nx mx

i nx mx

in m e O n m

A v O n m
g

in e O n m










   
 
  
 
   


  

 
Then, it is easy to calculate the components of  
 

11   

1
n m n mA v v

g





 
  

 

and to prove that they are  2 2O n m if we choose 

  

m
b

n
  ;   

2

2 2

n

n m
 


  

 
So, we have  
 

 2 2
 ,2n mv O n m   , 

 
the other components are unchanged and 

 

     

 
2

2 2
11   2 2

1
n m n m

n
A v v O n m

g n m
  



 
                                 (11) 

 

iv) For applying Weyl’s criterion, we must estimate 
 0

 n m J
v




 . 

 
We have 
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    3 5/22 22 2 2 2

 n mv n m O n m   


                            (12) 

 
and consequently  
 

 
32 2 2

 1n mv c n m 


   ,   1 0c  , 

 
so that  
 

          
0

32 2 2
 2n m J

v c n m


 


  ,     2 1c c meas    . 

 

In the sphere , where 1  ,  2 2 0O n m  , and by virtue of  (12) we have 

 

 
32 2 2

 n mv n m 


                                                                                                                               (13) 

 
and then 
 

       
   

0 0

32 2 2 2
  0n m n mJ x x r

v v d c n m
  

   
 

 , 
3

0

4

3

r
c

 
  

 
  

 
Finally, we are obtain the double-sided estimate 
 

     
0

3 322 2 2 2
0  2n m J

c n m v c n m


    


  

 

Let  0,1 . For every 0  , we can find a rational number
m

n
 such that 

 
2

22 2

1

1

n

n m m

n

     
  

  
 

  

 

m  and n  are defined by   and   . 
 

Choosing m km , k  integer, we have 

 
2

2 2

n

n m
    


  

 

We have 

 

   
 0

0 0

2 2
2

11   11    2 2 2 2

1 1
n m n m n m n m n m J

J J

n n
A v v A v v v

g g n m n m
 

  

 

 
     

  

    
  

Since  
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 
2

2 2
11   2 2

1
n m n m

n
A v v O n m

g n m
  



 
 , 

 

we can write 

 

  

 
0

2
2 2

11   32 2

1
n m n m

J

n
A v v c n m

g n m


  


 
 ,    3 0c    

 

so that 
  

 

   
0

3/22 2 2 2
11   3 2

1
n m n m

J

A v v c n m c n m
g

 




     
 

  

 

Using the inequality 
 

   
0

3/22 2
 0n m J

v c n m


 


 , 

 

we obtain 
 

 

 

0

0

11   

3 2

2 2
 00

1

1 1
n m n m

J

n m J

A v v
g c c

v k cc n m










  

  
    

 

   

 

The first term of the right-hand side tends to zero when k   , so that, for k  sufficiently large, we have 
 

 

 

0

0

11 , , 

2

0, 

1

2

kn km kn km

J

kn km J

A v v
g c

cv















 

                                                                                               (14) 

 

Consequently, the sequences , kn kmv


 is Weyl’s sequences. 

 

Finally we have    110,g g g A     
 

 

Then, since  11A  is closed, we have    110, g A  , and then    11 0,A g  . 

 

Consequently, there is not a discrete spectrum, so that the spectrum of 11A  coincides with its essential 

spectrum  11ess A :      11 11 0,essA A g     and, obviously 11A g . 

 

Remark 
 
In another work, using variational equation of the coupled system (liquid – tank) and Euler’s equation in the 
three dimensional case, we argue that the problem have a discrete spectrum comprised of a countable set of 

positive real eigenvalues, whose accumulation point is the infinity in the domain  , g : [7,8]. 

 



 
 
 

Essaouini et al.; BJMCS, 9(3): 224-236, 2015; Article no.BJMCS.2015.198 
 
 
 

235 
 

7 Conclusions 
 

i) The spectrum of the problem is composed by an essential part, which fills the closed interval 

 0, g , and a discrete part that lies outside this interval and is comprised of a countable set of 

positive real eigenvalues, whose accumulation point is the infinity. 

ii) Physically, the interval  0, g is a domain of resonance. and a system studied present high risk of 

instability. 
 

Acknowledgements  

 
The authors are grateful to the referee and the editorial board for some useful comments that improved the 
presentation of the paper. 
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Eswaran M, Ujjwal K. Saha. Sloshing of liquids in partially filled tanks – a review of experimental 

investigations. Ocean Systems Engineering. 2011;1(2):131-155. 
 

[2] Moiseyev NN, Rumyantsev VV. Dynamic  stability of  bodies containing  fluid. Springer, Berlin; 
1968. 
 

[3] Morand HJP, Ohayon R. Iinteractions fluides-structures. Masson, Paris; 1992. 
 
[4] Miras T, Schotté JS, Ohayon R. Linear vibrations of the structures containing viscous liquids.  

Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and 
Engineering, ECCOMAS 2012, Vienna, Austria, September. 2012;10-14. 
 

[5] Miras T. Effets de la viscosité et de la capillarité sur les vibrations linéaires d'une structure élastique 
contenant un liquide incompressible. Thèse de doctorat, Châtillon, France, 3 Juillet; 2013. 
 

[6] Essaouini H, Elbahaoui J, El Bakkali L, Capodanno P. Mathematical analysis of the small oscillations 
of a heavy heterogeneous viscous liquid in an open immovable container. Engineering Mathematics 
Letters (EML). 2014;1:1-17. 

 
[7] Essaouini H, Elbakkali L, Capodanno P. Mathematical study of the small oscillations of a floating 

body in a bounded tank containing an almost-homogeneous liquid. Rend. Sem. Mat. Univ. Pol. 
Torino. 2012;70(4):383-404.  

 
[8] Essaouini H, Elbakkali L, Capodanno P. Analysis of the small oscillations of a heavy almost-

homogeneous liquid-gas system. Mechanics Research Communications (MRC). 2010;37:257-262. 
 
[9] Capodanno P. Un exemple simple de problème non standard de vibration: Oscillations d’un liquide 

hétérogène pesant dans un container. Mechanics Research Communications (MRC). 1993;20(3):257-
262. 

 
[10] Reed M, Simon B. Functional analysis. Academic Press. INC, New York; 1980. 



 
 
 

Essaouini et al.; BJMCS, 9(3): 224-236, 2015; Article no.BJMCS.2015.198 
 
 
 

236 
 

[11] Kopachevskii ND, Krein SG. Operator approach to linear problems of hydrodynamics. Birkhauser, 
Basel. 2001;1. 

 
[12] Sanchez Hubert J, Sanchez Palencia E. Vibration and coupling of continuous systems. Asymptotic 

methods, Springer, Berlin; 1989. 
 
[13] Dautray R, Lions JL. Analyse mathematique et calcul numérique. Masson, Paris. 1988;8. 
_______________________________________________________________________________________ 
© 2015 Essaouini et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
www.sciencedomain.org/review-history.php?iid=1144&id=6&aid=9393 


