
British Journal of Mathematics & Computer Science

9(3): 185-198, 2015, Article no.BJMCS.2015.196

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

Stability and Bifurcation Analysis for a Hepatitis C
Virus Transmissions Model with Time Delay

Rui Yang1 and Ruiqing Shi1∗

1School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, China.

Article Information

DOI: 10.9734/BJMCS/2015/17744
Editor(s):

(1) Raducanu Razvan, Department of Applied Mathematics, Al. I. Cuza University, Romania.
Reviewers:

(1) Rachana Pathak, University of Lucknow, Uttar Pradesh, 226007, India.
(2) Anonymous, National Institute of Food Technology Entrepreneurship and Management, India.

Complete Peer review History:
http://www.sciencedomain.org/review-history.php?iid=1144&id=6&aid=9344

Original Research Article

Received: 25 March 2015
Accepted: 14 April 2015
Published: 21 May 2015

Abstract

In this paper, we propose a Hepatitis C virus transmissions model with time delay. Firstly, we

get the condition for the existence and local stability of equilibria of the system. Secondly, by

choosing the time delay τ as a bifurcation parameter, we show that Hopf bifurcation will occur

as the time delay τ passes through some critical values. Thirdly, by use of normal form theory

and central manifold argument, we establish the direction and stability of Hopf bifurcation. At

last, some numerical simulations is provided to verify the theoretical results.
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1 Introduction

Infection with Hepatitis C virus (HCV) is a major global public health problem. The WHO
estimates that up to 3% of the world’s population has been infected with the virus, equating
to more than 170 million carriers of HCV worldwide [1]. HCV has been recognized as a major cause
of chronic liver disease since there is strong evidence demonstrating the association of chronic HCV
infection to cirrhosis and hepatocellular carcinoma (HCC) [2,3]
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HCV is a single-stranded ribonucleic acid (RNA) virus that is transmitted primarily through direct
percutaneous exposures to blood. In many countries, the two most common exposures associated
with transmission of HCV are injecting-drug use and transfusion of blood from unscreened donors.
Transmission can also result from occupational, perinatal, and sexual exposures [4,5].

Most of newly infected persons are asymptomatic (and are unaware of their infection) with a
minority having symptoms such as jaundice, dark urine, fatigue, nausea, vomiting, and abdominal
pain [6]. Approximately 10-20% spontaneously clear the virus and develop natural immunity.
Following the acute period, a high proportion of HCV-infected persons develops chronic infection.

Mathematical modeling and quantitative analysis of Hepatitis C infections has been explored
extensively over the last decade. Martcheva and Castillo-Chavez introduced an epidemiologic model
of hepatitis C with chronic infectious stage in a varying population [7]. Their model does not include
a recovered or immune class and falls within the susceptible-infected-susceptible (SIS) category of
models. A susceptible-infected-removed (SIR) model is used by Kretzschmar and Wiessing to
study the transmission of HCV among injecting drug users (IDUs) [8]. Models that allow for
waning immunity of the susceptible-infected-removed-susceptible (SIRS) type are used in [9,10].
For Hepatitis C infections, on adequate contact with an infectious individual, a susceptible becomes
exposed for a while; that is, infected but not yet infectious [11]. Thus it is worthy to introducing a
time delay τ to simulate latent compartment. So, in the article we will analyze a Hepatitis C virus
transmissions model with time delay.

The organization of this paper is as follows: In section 2, the model is formulated. In section 3, we
consider the existence and stability of equilibria of the system. In section 4, by use of normal form
theory and central manifold argument, we illustrate the direction and stability of Hopf bifurcation.
In Section 5, some numerical simulations is provided to verify the theoretical results.

2 Model Formulation

A susceptible individual acquires acute HCV infection primarily through effective exposure to
infected blood of a temporary or a chronic HCV disease, shifts to the latent period averaging 6-10
weeks and then becomes acute HCV state which is relatively short in comparison to the chronic
stage [12]. By convention, prolonged chronic Hepatitis is believed to have developed when the serum
enzymes remain abnormal for at least 6 months.

We construct a Hepatitis C virus transmissions model with time delay instead of latent compartment.
The population is divided into three classes: susceptible to infection (S), acutely infected (I),
persistently (chronically) infected (P ). We choose a simple demographic model with a constant
rate Λ of recruitment in the naive class and exit rate µ for all classes. Susceptible persons are
infected at a rate βi, respectively. Upon infection, the host moves into the I compartment and
progresses to chronic stage at rate ϵ. The model can be described by the following delay differential
equations: 

dS

dt
= Λ− β1SI(t− τ)− β2SP (t− τ)− µS,

dI

dt
= β1SI(t− τ) + β2SP (t− τ)− (µ+ ϵ)I,

dP

dt
= ϵI − µP.

(2.1)
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3 Local Stability of Equilibriums and the Existence of
Hopf Bifurcation

By simple calculation, we know that system (2.1) always has a disease-free equilibrium E0(
Λ
µ
, 0, 0)

and if the basic reproduction number

R0 =
Λ(µβ1 + ϵβ2)

µ2(µ+ ϵ)
> 1,

then system (2.1) has a unique endemic equilibrium

E∗(S∗, I∗, P ∗) = E∗(
Λ

µR0
,

Λ

µ+ ϵ
− µ2

µβ1 + ϵβ2
,
ϵ

µ
I∗).

3.1 Local stability of E0

In this subsection, we will analyze the local stability of equilibrium E0. Linearizing system (2.1) at
E0 yields the following linear system

dS

dt
= −µS − Λβ1

µ
I(t− τ)− Λβ2

µ
P (t− τ),

dI

dt
=

Λβ1
µ
I(t− τ) +

Λβ2
µ
P (t− τ)− (ϵ+ µ)I,

dP

dt
= ϵI − µP,

(3.1)

and its characteristic equation is∣∣∣∣∣∣
λ+ µ Λβ1

µ
e−λτ Λβ2

µ
e−λτ

0 λ− Λβ1
µ
e−λτ + (ϵ+ µ) −Λβ2

µ
e−λτ

0 −ϵ λ+ µ

∣∣∣∣∣∣ = 0,

or equivalently,

(λ+ µ)

[
λ2 + (2µ+ ϵ− Λβ1

µ
e−λτ )λ+ µ(µ+ ϵ− Λβ1

µ
e−λτ )− ϵΛβ2

µ
e−λτ

]
= 0. (3.2)

We will consider this characteristic equation for two cases:

Case 1 τ = 0, then the equation (3.2) reduces to

(λ+ µ)

[
λ2 + (2µ+ ϵ− Λβ1

µ
)λ+ µ(µ+ ϵ− Λβ1

µ
)− ϵΛβ2

µ

]
= 0.

It is easy to see that the eigenvalues satisfy

λ1 = −µ < 0,

λ2 + λ3 = −(2µ+ ϵ− Λβ1
µ

) < 0,

λ2λ3 = µ(µ+ ϵ− Λβ1
µ

)− ϵΛβ2
µ

Hence, by Routh-Hurwitz criterion, we get that if R0 > 1, then λ2λ3 < 0, which indicates that
there is one positive eigenvalue; if R0 < 1, then λ2λ3 > 0, which indicates that both eigenvalues
have negative real part.
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Case 2 τ > 0, then the sign of the real part of the eigenvalues can not be determined, which
means that this equilibrium may be locally stable or unstable.
According to the above discussion, we get the following result.

Theorem 3.1. (i) For τ = 0, if R0 < 1, the disease-free equilibrium of system (2.1) is locally
asymptotically stable; if R0 > 1, it is unstable.

(ii) For τ > 0, the local stability of the disease-free equilibrium in unknown.

3.2 Local stability of E∗ and existence of Hopf bifurcation

In this subsection, we investigate the the stability of the endemic equilibrium and the existence of
Hopf bifurcation.

We make the following assumptions:

(H1)R0 > 1, which indicates that system (2.1) has a unique endemic equilibrium.
(H2)Equation (3.8) has at least one positive real root.
Linearizing system (2.1) at the equilibrium E∗, we will get

dS

dt
= −(β1I

∗ + β2P
∗ + µ)S − β1S

∗I(t− τ)− β2S
∗P (t− τ),

dI

dt
= (β1I

∗ + β2P
∗)S + β1S

∗I(t− τ)− (ϵ+ µ)I + β2S
∗P (t− τ),

dp

dt
= ϵI − µP.

(3.3)

We will consider two cases.

Case 1 When τ = 0, the characteristic equation of system (3.3) is

(λ+µ)[λ2+(2µ+ ϵ+β1I
∗+β2P

∗−β1S∗)λ+µ2−µβ1S∗+ ϵβ1I
∗+µ(ϵ+β1I

∗+β2P
∗)] = 0. (3.4)

When R0 > 1, we get that all of the eigenvalues of equation (3.4) have negative real part, which
means that E∗ is locally stable for system (2.1).

Case 2 When τ > 0, the characteristic equation of system (3.3) is

λ3 +Dλ2 + Eλ+ F = e−λτ (Gλ2 +Hλ+ J), (3.5)

where

D = 3µ+ ϵ+ β1I
∗ + β2P

∗, E = 3µ2 + 2µϵ+ (2µ+ ϵ)(β1I
∗ + β2P

∗),
F = µ(µ+ ϵ)(β1I

∗ + β2P
∗), G = β1S

∗,
H = µβ1S

∗ + ϵβ2S
∗, J = µβ2S

∗ + ϵµβ2S
∗.

Suppose that there is a pure imaginary root λ = iω, ω > 0, then we get

−iω3 −Dω2 + Eωi+ F = e−ωτ (−Gω2 +Hωi+ J).

Separating the real and imaginary parts, we have{
−Dω2 + F = (−Gω2 + J) cosωτ −Hω sinωτ,
−ω3 + Eω = −

[
Hω cosωτ + (−Gω2 + J) sinωτ

]
.

(3.6)

Adding the square of the above two equations, we obtain

ω6 + ω4(D2 − 2E −G2) + ω2(E2 − 2DF + 2JG−H2) + F 2 − J2 = 0. (3.7)
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Denote p = ω2, then equation (3.7) becomes

p3 + p2(D2 − 2E −G2) + p(E2 − 2DF + 2JG−H2) + F 2 − J2 = 0. (3.8)

Let K(p) = p3 + p2(D2 − 2E −G2) + p(E2 − 2DF + 2JG−H2) + F 2 − J2.

According assumption (H2), we know that equation (3.8) has at least one positive real root, and it
is denoted as p0. Then equation (3.7) has a positive root ω0, and then the characteristic equation
(3.5) has a pair of purely imaginary of the form ± iω0. From (3.6), we get the corresponding τ0 > 0
such that the the characteristic equation (3.5) has a pair of purely imaginary, and here

τ0 =
1

ω0
[arccos

Hω0(ω
3
0 − Eω0) + (Gω2

0 − J)(F −Dω2
0)

(Hω0)2 + (Gω2
0 − J)2

].

Differentiating equation (3.5) with respect t, we get

(3λ2 + 2Dλ+ E)
dλ

dt
= (−τ dλ

dt
− λ)e−λτ (Gλ2 +Hλ+ J) + e−λτ (2Gλ+H)

dλ

dt
,

and form which we have

(
dλ

dτ
)−1 =

3λ2 + 2Dλ+ E − e−λτ (2Gλ+H)

−λe−λτ (Gλ2 +Hλ+ J)
− τ

λ

=
3λ2 + 2Dλ+ E

−λe−λτ (Gλ2 +Hλ+ J)
+

2Gλ+H

λ(Gλ2 +Hλ+ J)
− τ

λ

=
2λ3 +Dλ2 − F

−λ2(λ3 +Dλ2 + Eλ+ F )
+

Gλ2 − J

λ2(Gλ2 +Hλ+ J)
− τ

λ
.

Therefore

sign{d(Reλ)

dτ
}τ=τ0 = sign{Re(

dλ

dτ
)−1}λ=iω0

= sign{Re[
2λ3 +Dλ2 − F

−λ2(λ3 +Dλ2 + Eλ+ F )
]λ=iω0 +Re[

Gλ2 − J

λ2(Gλ2 +Hλ+ J)
]λ=iω0}

= sign{ 2ω3
0(ω

3
0 − Eω0)− (F 2 −D2ω4

0)

ω2
0 [(−Dω2

0 + F )2 + (ω3
0 − Eω0)2]

+
−(Gω2

0)
2 + J2

ω2
0 [(Gω

2
0 + J)2 +H2ω2

0 ]
}

= sign{2ω
6
0 + ω4

0(D
2 − 2E −G2)− (F 2 − J2)

ω2
0 [(−Gω2

0 + J)2 + (Hω0)2]
}.

From assumption (H2), we have d(Reλ)
dτ

|τ=τ0 > 0. This result means that there exists a root of
characteristic equation (3.5) crosses the imaginary axis from the left to the right as τ continuously
varies from a number less than τ0 to one greater than τ0 by Rouché’s theorem [13]. Thus, we get
the following result.

Theorem 3.2. If assumptions (H1) and (H2) hold, then we have

(i) The endemic equilibrium E∗ of system (2.1) is locally asymptotically stable for τ ∈ [0, τ0).
(ii) The endemic equilibrium E∗ of system (2.1) undergoes a Hopf bifurcation when τ = τ0.

4 Direction and Stability of the Hopf Bifurcation

In this section, we will analyze the direction of Hopf bifurcation and stability of bifurcation periodic
solution by using the normal theory and the center manifold theorem [14].

Let u1 = S − S∗, u2 = I − I∗, u3 = P −P ∗, ūi(t) = ui(τt), τ = ν + τk, and dropping the
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bars for simplification of notations, then system (2.1) becomes a functional differential equation in
C = C([−1, 0], R3) as

u̇(t) = Lν(ut) + f(ν, ut), (4.1)

where u(t) = (u1(t), u2(t), u3(t))
T ∈ R3, Lµ : C → R, f : R× C → R3, and

Lν(ϕ) = (τk + ν)

 −(β1I
∗ + β2P

∗ + µ) 0 0
β1I

∗ + β2P
∗ −(ϵ+ µ) 0

0 ϵ −µ

 ϕ1(0)
ϕ2(0)
ϕ3(0)


+(τk + µ)

 0 −β1S
∗ −β2S

∗

0 β1S
∗ β2S

∗

0 0 0

 ϕ1(−1)
ϕ2(−1)
ϕ3(−1)

 ,

(4.2)

f(µ, ϕ) = (τk + µ)

 −β1ϕ1(0)ϕ2(−1)− β2ϕ1(0)ϕ3(−1)
β1ϕ1(0)ϕ2(−1) + β2ϕ1(0)ϕ3(−1)

0

 , (4.3)

where ϕ(θ) = (ϕ1(θ), ϕ2(θ), ϕ3(θ))
T ∈ C. By the Riesz representation theorem, there exists a

function η(θ, µ) of bounded variation for θ ∈ [−1, 0], such that

Lµ(ϕ) =

∫ 0

−1

dη(θ, µ)ϕ(θ), for ϕ ∈ C. (4.4)

In fact, we can choose

η(θ, µ) = (τk + µ)

 −(β1I
∗ + β2P

∗ + µ) 0 0
β1I

∗ + β2P
∗ −(ϵ+ µ) 0

0 ϵ −µ

 δ(θ)

−(τk + µ)

 0 −β1S∗ −β2S∗

0 β1S
∗ β2S

∗

0 0 0

 δ(θ + 1),

(4.5)

where δ is the Dirac delta function. For ϕ ∈ C1([−1, 0], R3), define

A(µ)ϕ =


dϕ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1

dη(s, µ)ϕ(s), θ = 0,

and

R(µ)ϕ =

{
0, θ ∈ [−1, 0),
f(µ, ϕ), θ = 0.

Then system (2.1) is equivalent to

u̇t = A(ν)ut +R(ν)ut, (4.6)

where ut(θ) = u(t+ θ), θ ∈ [−1, 0]. For ψ ∈ C1([0, 1], (R3)∗), define

A∗ψ(s) =


−dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1

ψ(−τ)dη(t, 0), s = 0,

and a bilinear inner product
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⟨ψ(s), ϕ(θ)⟩ = ψ̄(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ, (4.7)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. By the discussion in Section 3, we
know ±iω0τ0 are eigenvalues of A(0). Thus, they are also eigenvalues of A∗. We need to compute
the eigenvector of A(0) and A∗ corresponding to iω0τ0 and −iω0τ0, respectively.

Suppose that q(θ) = (1, q1, q2)
T eiω0τ0θ is the eigenvalues of A(0) corresponding to iω0τ0, then

A(0)q(θ) = iω0τ0q(θ). It follows the definition of A(0) and (4.2), (4.4)and(4.5), we have

τ0

 −(β1I
∗ + β2P

∗ + µ) 0 0
β1I

∗ + β2P
∗ −(ϵ+ µ) 0

0 ϵ −µ

 q(0)+τ0

 0 −β1S∗ −β2S∗

0 β1S
∗ β2S

∗

0 0 0

 q(−1) = iω0τ0q(0),

because of q(−1) = q(0)e−iω0τ0 , then we get
q1 =

(iω0 + µ)[−iω0 − (β1I
∗ + β2P

∗ + µ)]

β1(iω0 + µ) + ϵβ2]S∗e−iω0τ0
,

q2 =
−iϵω0 − ϵ(β1I

∗ + β2P
∗ + µ)

[β1(iω0 + µ) + ϵβ2]S∗e−iω0τ0
.

Similarly, let q∗(θ) = D(1, q∗1 , q
∗
2)

T eiθω0τ0 be the eigenvalues of A∗ corresponding to −iω0τ0,
according to the definition of A∗ we get

τ0

 −(β1I
∗ + β2P

∗ + µ) β1I
∗ + β2P

∗ 0
0 −(ϵ+ µ) ϵ
0 0 −µ

 q∗(0)

+τ0

 0 0 0
−β1S∗ β1S

∗ 0
−β2S∗ β2S

∗ 0

 q∗(−1) = −iω0τ0q
∗(0).

Then, 
q∗1 =

−iω0 + (β1I
∗ + β2P

∗ + µ)

β1I∗ + β2P ∗ ,

q∗2 =
β2S

∗(ω0i+ e−iω0τ0)[−iω0 + (β1I
∗ + β2P

∗ + µ)]

(µ− ω0i)(β1I∗ + β2P ∗)
.

In order to assure ⟨q∗(s), q(θ)⟩ = 1, we need to determine the value of D. By (4.7), we have

⟨q∗(s), q(θ)⟩ = D̄(1, q∗1, q̄
∗
2)(1, q1, q2)

T −
∫ 0

−1

∫ θ

ξ=0
D̄(1, q̄∗1 , q̄

∗
2)e

−iω0τ0(ξ−θ)dη(θ)(1, q1, q2)
T eiω0τ0ξdξ

= D̄{1 + q1q̄
∗
1 + q2q̄

∗
2 −

∫ 0

−1
(1, q̄∗1 , q̄

∗
2)θe

iω0τ0θdη(θ)(1, q1, q2)
T }

= D̄{1 + q1q̄
∗
1 + q2q̄

∗
2 + τ0e

−iω0τ0S∗(q1β1 + q2β2)(−1 + q̄∗)}.

Therefore, we can choose D as

D =
1

1 + q̄1q∗1 + q̄2q∗2 + τkeiω0τ0S∗(q̄1β1 + q̄2β2)(−1 + q∗)
.
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Next, we will compute the coordinate to describe the center manifold C0. Let ut be the solution of
(4.6). Define

Z(t) = ⟨q∗, ut⟩, W (t, θ) = ut(θ)− 2Re{Z(t)q(θ)}. (4.8)

On the center manifold C0, we have

W (t, θ) =W (Z(t), Z̄(t), θ),

where Z and Z̄ are local coordinates for center manifold C0 in the direction of q∗(s) and q̄∗. Note
that W is real if ut is real. We only consider real solutions. For the solution ut ∈ C0 of (4.6), since
ν = 0, we have

Ż(t) = iω0τ0Z + q̄∗(0)f(0,W (Z, Z̄, 0)) + 2Re{Zq(θ)}
= iω0τ0Z + q̄∗(0)f0(Z, q̄

∗)
= iω0τ0Z(t) + g(Z, q̄∗, ),

where

g(Z, Z̄) = q̄∗(0)f0(Z, Z̄) = g20
Z2

2
+ g11ZZ̄ + g02

Z̄2

2
+ g21

Z2Z̄

2
+ · · · . (4.9)

From (4.8) and (4.9), we have

ut(θ) = W (t, θ) + 2Re{Z(t)q(θ)}
= W20(θ)

Z2

2
+W11(θ)ZZ̄ +W02(θ)

Z̄2

2

+(1, q1, q2)
T eiω0τ0θZ + (1, q̄1, q̄2)

T e−iω0τ0θZ̄ + · · · ,

It follows together with (4.3) that

g(Z, Z̄) = q̄∗(0)f0(Z, Z̄) = q̄∗(0)f(0, ut) = τ0D̄(1, q̄∗1 , q̄
∗
2)

 −β1u1t(0)u2t(−1)− β2u1t(0)u3t(−1)
β1u1t(0)u2t(−1) + β2u1t(0)u3t(−1)

0


= τ0D̄ [β1(q̄

∗
1 − 1)u1t(0)u2t(0) + β2(q̄

∗
1 − 1)u1t(0)u3t(−1)]

= τ0D̄

[
β1(q̄

∗
1 − 1)

(
W

(1)
20 (0)Z

2

2
+W

(1)
11 (0)ZZ̄ +W

(1)
02 (0) Z̄

2

2
+ Z + Z̄ + · · ·

)
×
(
W

(2)
20 (−1)Z

2

2
+W

(2)
11 (−1)ZZ̄ +W

(2)
02 (−1) Z̄

2

2
+ q1e

−iω0τ0Z + q̄1e
iω0τ0 Z̄ + · · ·

)
+β2(q̄

∗
1 − 1)

(
W

(2)
20 (0)Z

2

2
+W

(2)
11 (0)ZZ̄ +W

(2)
02 (0) Z̄

2

2
+ Z + Z̄ + · · ·

)
×
(
W

(3)
20 (−1)Z

2

2
+W

(3)
11 (−1)ZZ̄ +W

(3)
02 (−1) Z̄

2

2

+q2e
−iω0τ0Z + q̄2e

iω0τ0 Z̄ + · · ·
)]
.

(4.10)
Comparing the coefficients with (4.9), we obtain

g20 = τ0D̄
(
q̄∗1 − 1)(β1e

−iω0τ0 + β2e
−iω0τ0

)
g11 = 2τ0D̄

(
q̄∗1 − 1)[β1Re{q1e−iω0τ0}+ β2Re{q2e−iω0τ0})

]
g02 = τ0D̄

(
q̄∗1 − 1)[β1q̄1e

iω0τ0 + β2q̄2e
iω0τ0

]
g21 = τ0D̄(q̄∗1 − 1)[β1

(
W

(1)
20 (0)q̄1e

iω0τ0 +W
(1)
11 (0)q1e

−iω0τ0 +W
(2)
11 (−1) +W

(2)
20 (−1)

)
+β2

(
W

(1)
20 (0)q̄2e

iω0τ0 +W
(1)
11 (0)q2e

−iω0τ0 +W
(3)
11 (−1) +W

(3)
20 (−1))

]
.

In order to determine g21 we need to compute W20(θ), and W11(θ). From (4.6) and (4.8), we have

Ẇ = u̇t − Żq − ˙̄Zq =

{
A(0)W − 2Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0),
A(0)W − 2Re{q̄∗(0)f0q(θ)}+ f0, θ = 0.,

.
= A(0)W −H(z, z, θ),

(4.11)

where

H(Z, Z̄, θ) = H20(θ)
Z2

2
+H11(θ)ZZ̄ +H02

Z̄2

2
+ · · · . (4.12)

192



Yang & Shi; BJMCS, 9(3), 185-198, 2015; Article no.BJMCS.2015.196

Note that on the center manifold C0 near the origin,

Ẇ =WZŻ +WZ̄
˙̄Z,

thus we obtain

(A(0)− 2iω0τ0)W20(θ) = −H20(θ), A(0)W11(θ) = −H11(θ). (4.13)

By (4.11) we know that for θ ∈ [−1, 0)

H(Z, Z̄, θ) = −q̄∗(0)f0q(θ)− q∗0 f̄0q̄(θ) = −g(Z, Z̄)q(θ)− ḡ(Z, Z̄)q̄(θ). (4.14)

Comparing the coefficients with (4.12)gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ), H11(θ) = −g11q(θ)− ḡ11q̄(θ). (4.15)

From (4.13), (4.15) and the definition of A, we have

Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + ḡ02q̄(θ).

Noting q(θ) = q(0)eiω0τ0θ, hence

W20(θ) =
ig20
ω0τ0

q(0)eiω0τ0θ +
iḡ02
3ω0τ0

q̄(0)e−iω0τ0θ + E1e
2iω0τ0θ, (4.16)

where E1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 )T is a constant vector. Similarly, we have

W11(θ) =
iḡ11
ω0τ0

q̄(0)e−iω0τ0θ + E2, (4.17)

where E2 = (E
(1)
2 , E

(2)
2 , E

(3)
2 )T is also a constant vector. In the following, we will find out E1 and

E2.

From the definition of A and (4.13), we can obtain

∫ 0

−1

dη(θ)W20(θ) = 2iω0τ0W20(0)−H20(0), (4.18)

and ∫ 0

−1

dη(θ)W11(θ) = −H11(θ), (4.19)

where η(θ) = η(θ, 0). From (4.11) we know that when θ = 0,
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H(Z, Z̄, 0) = −2Re{q̄∗(0)f0q(0)}+ f0
= −q∗(0)f0q(0)− q∗(0)f̄0q̄(0) + f0
= −g(Z, Z̄)q(0)− ḡ(Z, Z̄)q̄(0) + f0,

(4.20)

that is,

H20(0)
Z2

2
+H11(0)ZZ̄ +H02(0)

Z̄2

2
+ · · ·

= −q(0)
(
g20

Z2

2
+ g11ZZ̄ + g02

Z̄2

2
+ · · ·

)
− q̄(0)

(
ḡ20

Z̄2

2
+ Z̄g11ZZ̄ + ḡ02

Z2

2
+ · · ·

)
+ f0.

(4.21)
By (4.3), we have

f0 = τ0

 −β1u1t(0)u2t(−1)− β2u1t(0)u3t(−1)
β1u1t(0)u2t(−1) + β2u1t(0)u3t(−1)

0

 .,

By (4.8), we have

ut(θ) =W (t, θ) + 2Re{Z(t)q(θ)}
=W (t, θ) + Z(t)q(θ) + Z̄(t)q̄(θ)

=W20(θ)
Z2

2
+W11(θ)ZZ̄ + Z(t)q(θ) + Z̄(t)q̄(θ) + · · · .

Then we have

f0 = τ0

 −β1u1t(0)u2t(−1)− β2u1t(0)u3t(−1)
β1u1t(0)u2t(−1) + β2u1t(0)u3t(−1)

0

 (4.22)

By equations (4.21) and (4.22) we have

H20(0) = −g20q(0)− ḡ02q̄(0) + τke
−iω0τ0

 −β1q1
−β2q2

0

 , (4.23)

H11(0) = −g11q(0)− g11q(0) + 2τ0

 β1Re{q1e−iω0τ0}
β2Re{q2e−iω0τ0}

0

 . (4.24)

Since iω0τ0 is the eigenvalues of A(0) and q(0) is the corresponding eigenvector, we obtain(
iω0τ0I −

∫ 0

−1

eiω0τ0θdη(θ)

)
q(0) = 0

and (
−iω0τ0I −

∫ 0

−1

e−iω0τ0θdη(θ)

)
q(0) = 0.

Thus, substituting (4.16) and (4.23) into (4.18), we have

(
2iω0τ0I −

∫ 0

−1
e2iω0τ0θdη(θ)

)
E1 = 2τ0e

−iω0τ0

 −β1q1
−β2q2

0

.
That is,  2iω0 + β1I

∗ + β2P
∗ + µ β1S

∗e−2iω0τ0 β2S
∗e−2iω0τ0

−β1I∗ − β2P
∗ 2iω0 − β1S

∗e−2iω0τ0 + ϵ+ µ −β2S∗e−2iω0τ0

0 −ϵ µ

E1

= 2e−iω0τ0

 −β1q1
−β2q2

0

 ,
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from which we obtain

E1 = 2e−iω0τ0

 2iω0 + β1I
∗ + β2P

∗ + µ β1S
∗e−2iω0τ0 β2S

∗e−2iω0τ0

−β1I∗ − β2P
∗ 2iω0 − β1S

∗e−2iω0τ0 + ϵ+ µ −β2S∗e−2iω0τ0

0 −ϵ µ

−1

×

 −β1q1
−β2q2

0

 .

Similarly, substituting (4.17) and (4.24) into (4.19), we have β1I
∗ + β2P

∗ + µ β1S
∗ β2S

∗

−β1I∗ − β2P
∗ −β1S∗ + ϵ+ µ −β2S∗

0 −ϵ µ

E2

= 2τ0

 β1Re{q1e−iω0τ0}
β2Re{q2e−iω0τ0}

0

 ,

from which we can get

E2 = 2

 β1I
∗ + β2P

∗ + µ β1S
∗ β2S

∗

−β1I∗ − β2P
∗ −β1S∗ + ϵ+ µ −β2S∗

0 −ϵ µ

−1

×

 β1Re{q1e−iω0τ0}
β2Re{q2e−iω0τ0}

0

 .

Thus, we can determine W20(θ) andW11(θ) from equations (4.16) and (4.17). Furthermore, g21 can
be expressed by the parameters and delay. Thus, we can compute the following values:

c1(0) =
i

2ω0τ0
(g20g11 − 2|g11|2 −

|g02|2

3
) +

g21
2
,

α2 = − Re{c1(0)}
Re{λ′(τ0)}

,

γ2 = 2Re{c1(0)},

T2 = − Im{c1(0)}+ µ2Im{λ
′
(τ0}

ω0τ0
,

(4.25)

which determine the qualities of bifurcating periodic solution in the center manifold at critical
value τ0, i.e, α2 determine the direction of the Hopf bifurcation: if α2 > 0(α2 < 0), then the Hopf
bifurcation is supercritical (subcritical) and the bifurcating periodic solution exists for τ > τ0(τ <
τ0); γ2 determines the stability of the bifurcating periodic solution: the bifurcating periodic solution
is stable (unstable) if γ2 < 0(γ2 > 0); and T2 determines period of the bifurcating periodic solution:
the period increases (decreases) if T2 > 0(< 0).

5 Numerical Investigations

Here, we choose the following parameter values: Λ = 2.5, β1 = 1.8, β2 = 1.3, µ = 0.8, ϵ = 0.5. By
simple calculation we get R0 = 3.906, ω0 = 0.247, and τ0 = 8.96. From Fig. 1, we see that when
τ = 8.5 < τ0, the endemic equilibrium is locally stable. From Eig. 2, we see that when τ = 15 > τ0,
the endemic equilibrium is unstable.
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Fig. 1. When τ = 8.5 < τ0, E
∗ is locally asymptotically stable.
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Fig. 2. When τ = 15 > τ0, E
∗ is unstable.
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6 Conclusion

In this paper, we propose a three-dimensional Hepatitis C virus transmissions model with time
delay. Firstly, we analyze the existence and local stability of the equilibria of the system. Secondly,
the condition for the existence of a Hopf bifurcation is obtained. Thirdly, by use of normal form
theory and central manifold argument, we establish the formulae for the direction and the stability
of the Hopf bifurcation. At last, we give some numerical simulations to verify our mathematical
results.
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