
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: emil.kupek@ufsc.br; 
 
 

Journal of Advances in Medical and Pharmaceutical 
Sciences 

3(1): 42-51, 2015, Article no.JAMPS.2015.025 
ISSN: 2394-1111 

 
SCIENCEDOMAIN international 

                                      www.sciencedomain.org 

 

 

Detection of and Adjustment for Multiple 
Unmeasured Confounding Variables in Logistic 

Regression by Bayesian Structural  
Equation Modeling 

 
Emil Kupek1* 

 
1Department of Public Health, Federal University of Santa Catarina, University Campus Trindade, 

88040-900 Florianopolis-SC, Brazil. 
 

Author’s contribution 
 

The sole author designed, analyzed and interpreted and prepared the manuscript. 
 

Article Information 
 

DOI: 10.9734/JAMPS/2015/16185 
Editor(s): 

(1) Anonymous. 
(2) Jinyong Peng , College of Pharmacy, Dalian Medical University, Dalian, China. 

Reviewers: 
(1) Ram Lakhan, Department of Epidemiology, School of Health Science, Jackson State University, USA. 

(2) Behnam Sharif, Community Health Dept., University of Calgary, Canada. 
(3) Morten Schmidt, Department of Clinical Epidemiology, Aarhus University Hospital, Denmark. 

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=1013&id=36&aid=8353 

 
 
 

Received 14
th

 January 2015 
Accepted 23rd February 2015 

Published 7
th

 March 2015 

 
 

ABSTRACT 
 

Aim: To compare the bias magnitude between logistic regression and Bayesian structural equation 
modeling (SEM) in a small sample with strong unmeasured confounding from two correlated latent 
variables. 
Study Design: Statistical analysis of artificial data. 
Methodology: Artificial binary data with above characteristics were generated and analyzed by 
logistic regression and Bayesian SEM over a plausible range of model parameters deduced by 
comparing the parameter bounds for two extreme scenarios of no versus maximum confounding.  
Results: Bayesian SEM with flat priors achieved almost fourfold absolute bias reduction for the 
effects of observed independent variables on binary outcome in the presence of two correlated 
unmeasured confounders in comparison with standard logistic regression which ignored the 
confounding. The reduction was achieved despite a relatively small sample (N=100) and large bias 
and variance of the factor loadings for the latent confounding variables. However, the magnitude of 
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residual confounding was still high.   
Conclusion: Logistic regression bias due to unmeasured confounding may be considerably 
reduced with Bayesian SEM even in small samples with multiple confounders. The assumptions for 
Bayesian SEM are far less restrictive than those for the instrumental variable method aimed at 
correcting the effect size bias due to unmeasured confounders. 
 

 
Keywords: Bias; bayesian statistics; observational studies; confounding. 
 
ABBREVIATIONS 
 
ANOVA = analysis of variance; CI = credibility interval; EFA = exploratory factor analysis;                  
MCMC = Markov chain Monte Carlo; SEM = structural equation modeling. 
 

1. INTRODUCTION  
 
Logistic regression is likely the most frequent 
regression method in publications from medical 
sciences due to its capacity to quantify risk in a 
way which is easy to understand and 
communicate among health professionals. The 
odds of the event of interest are calculated for 
each profile of the independent variables and its 
logarithm is treated pretty much like a continuous 
outcome in well known analysis-of-variance 
(ANOVA) model [1], only the model estimates 
are back-transformed to odds. The robustness of 
logistic regression against omitted independent 
variables has been widely praised but its 
limitation in the case of such variable acting as a 
confounder is less well known. Most of the 
methodological work on confounding deals with 
measured confounding variables, i.e. with the 
variables available for analysis. Stratifying by 
confounding variable, matching for observed 
confounders or for propensity score in 
observational studies, restriction of the analysis 
to a highly homogenous exposure groups, 
covariate adjustment for confounding and 
instrumental variables have been recommended 
as main analytical strategies to deal with this 
problem [2-4]. 
 
However, many confounding variables are 
unmeasured or even unknown. The former may 
be effects hypothesized but not verified 
empirically with the data available whilst the latter 
belong to the vast area not yet discovered by 
scientific research. Simulation of the influence of 
measurement errors on differential impact of 
predicting variables across units of analysis has 
been a key analytical strategy, often labeled as 
sensitivity analysis with either Bayesian or 
frequentist background [5-10]. It is worth noticing 
that widely used hierarchical or multi-level 
models assume an unknown latent variable, 
omitted from the regression analysis, which 

affects the distribution of the impact of 
intervention variables across units (e.g. 
subjects), so that some of these are more 
strongly influenced by unknown factors than the 
others. In other words, random effects quantify 
the variability of the main (“fixed”) effect over 
units of analysis due to unknown predicting 
variables which may or may not be confounders. 
Statistical term for such effect is 
heteroscedasticity. It may point to previously 
unknown variance components which exert 
causal influence, e.g. genetic susceptibility for a 
disease. 
 
Although heuristic value of variance component 
analysis has been widely established and 
enforced with random effects analysis in multi-
level modelling, the era of “big data” expanded 
this approach to considerably less controlled 
environments than experimental or case-control 
settings such as population or hospital cohort 
studies and spatial/environmental effects [11-14]. 
Under these conditions, unmeasured 
confounders are more likely to distort causal 
effects evaluated by regression techniques. 
Although such distortion may be attenuated with 
multi-level analysis, it does not estimate the 
associations between observed and latent 
variables which may point to a confounding 
effect.  
 
Bayesian confirmatory factor analysis has been 
proposed to explore and test specific 
confounding hypothesis [15,16]. The method has 
shown useful for detecting previously unknown 
(latent) single source of confounding but was 
rather limited in reducing the bias, despite 
outperforming standard multivariate logistic 
regression regarding this task. In this paper, an 
updated version of the method is applied to a 
more complicated task with strong confounding, 
realistically large error components for an 
observational study and a small sample with 



multiple sources of confounding. The aim of this 
work is to compare the bias magnitude between 
standard multivariate logistic regression and 
Bayesian structural equation modeling (SEM).
 

2. METHODOLOGY  
 
2.1 Data 
 
A small data set (N=100) was created with six 
normally distributed independent variables (x1
x6) and three error terms (d1, d2, e1). Linear 
combinations of these variables generated two 
latent variables (f1, f2) in the following way:
 

f1 = 0.5 x1 + 0.2 x2 – 0.8 x3 + 1.4 x6
 

f2 = -0.4 x3 + 0.5 x4 + 2 x5 + 0.4 x6 + d2
 
Which resulted in Pearson correlation (r) of 0.40 
between the two.  
 
Continuous outcome variable (y) was defined by 
equation 
 

y = 0.2 x1 + 0.3 x2 – 0.1 x3 + 0.8 x4 + 0.5 x5 + 
0.4 x6 + 0.8 f1 – 0.2 f2 + e1                       

 
Continuous dependent (y) and independent 
regression (x) variables were both transformed 

 
Fig. 1. Data generating process. F1 and F2 are correlated continuous latent confounders 

whose common factor models and their effects on the outcome are represented by dashed 
lines. Full lines represent a standard logistic regression model. 

provided in rectangles. Lowercase 
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multiple sources of confounding. The aim of this 
work is to compare the bias magnitude between 
standard multivariate logistic regression and 
Bayesian structural equation modeling (SEM). 

(N=100) was created with six 
normally distributed independent variables (x1-
x6) and three error terms (d1, d2, e1). Linear 
combinations of these variables generated two 
latent variables (f1, f2) in the following way: 

0.8 x3 + 1.4 x6 + d1   (1) 

0.4 x3 + 0.5 x4 + 2 x5 + 0.4 x6 + d2     (2) 

resulted in Pearson correlation (r) of 0.40 

Continuous outcome variable (y) was defined by 

0.1 x3 + 0.8 x4 + 0.5 x5 + 
                      (3) 

Continuous dependent (y) and independent 
regression (x) variables were both transformed 

into binary ones by logistic function with 
threshold >0.5 for events. The data generating 
process is depicted on Fig. 1 using SEM 
conventions. 
 
Almost 40% of the continuous outcome variation 
is accounted for solely by independent error 
terms (d1, d2, e1) and almost 80% solely by two 
sources of confounding as indicated by two 
separate linear regression analyses. None of 
these latent variables were available for the 
subsequent analysis whose aim was to 
determine the contribution of six independent 
binary predictors, denominated x1bin
the binary outcome, denominated ybin. No 
distinction was made between interventio
(treatment) and other covariates, some of which 
may be confounders, as they are all associated 
with the outcome. 
 

2.2 Prior Distributions 
 
Bayesian SEM prior distribution range was 
derived by comparing two models: multivariate 
logistic regression assuming no confounding and 
a latent variable regression assuming maximum 
confounding. The latter was a factor analysis 
model where the number of common factors was
 
  

 

Fig. 1. Data generating process. F1 and F2 are correlated continuous latent confounders 
whose common factor models and their effects on the outcome are represented by dashed 

lines represent a standard logistic regression model. Observed variabl
Lowercase letters indicate the model parameters. Arrows 

direction of causal influence
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determined by exploratory factor analysis (EFA) 
[17,18] with “geomin” oblique rotation and the 
factor scores were regressed onto the binary 
outcome in SEM as the only predictor variables, 
thus assuming zero values for the effects of all 
observed binary variables on the outcome. The 
difference between multivariate logistic 
regression coefficients on the logarithmic scale 
and zero was considered plausible range of 
confounding. Flat priors were used over the 
range in Bayesian SEM. Inverse Wishart 
distribution priors were used to determine the 
variances and residual variances of the latent 
variables whereas normal distribution priors was 
assumed for the regression parameters. 
 

2.3 Model Checking 
 
Absolute bias was calculated as absolute value 
of the difference between true and estimated 
value for each parameter and estimation method. 
Its average over the parameters of interest was 
multiplied by 100 to arrive at percentage of 
average absolute bias.  
 
The number of common factors in EFA was 
determined by the chi-square test for additional 
model parameters as the number of factors 
increased.  
 
Markov chain Monte Carlo (MCMC) algorithm 
with Gibbs sampling was used to iteratively 
approximate posterior distributions of the model 
parameters. Two parallel chains were run with 
convergence criterion of proportional scale 
reduction close to 1 and the first half of the 
iterations treated as the “burn-in” phase [19]. In 
addition, 100000 iterations were used to further 
verify the convergence process graphically. 
Posterior predictive P-value was also used to 
evaluate the quality of the model obtained. 
 
Bayesian model convergence was checked by 
examining the autocorrelation function, trace and 
density plots of the parameters. Bayesian 95% 
credibility interval was determined by 2.5% and 
97.5% of the posterior distribution.  
 
Statistical software Mplus 6.11 was used for all 
analyses [20]. The code for statistical programs 
used in the paper is available upon request.   
 
3. RESULTS  
 
Observed crude odds ratios (Table 1) suggest 
strong protective effect of x2bin and strong risk 
increase in the presence of the independent 

variables x4bin and x6bin, although none of 
these effects reached usual statistical 
significance level (p<0.05).  
 
The same goes for the associations among the 
independent regression variables which were low 
to moderate in magnitude. Compared to the true 
values (see data generating equations), the 
largest distortions of observed associations due 
to measurement errors and unmeasured 
confounding were the reversed sign of the x2bin 
effect and about fourfold underestimation of the 
x4bin effect on the binary outcome.  
 
The logistic regression goodness-of-fit evaluated 
by Hosmer & Lemeshow statistic [21] was 
excellent (P=0.94). No heteroscedasticity of the 
model residuals was indicated as these were 
approximately normally distributed and 
uncorrelated to the predicted values.  
 
Bayesian posterior predictive checking showed 
the 95% confidence interval for the difference 
between the observed and the replicated chi-
square values from -25.228 to 22.202 and 
posterior predictive P-Value of 0.541, thus 
confirming good convergence.  
 
EFA correctly identified the presence of two 
moderately correlated latent variables acting as 
unmeasured confounders but their factor 
loadings showed considerable average bias and 
large variation (Table 2). 
 
When regressed on the binary outcome, the 
effect size of the first confounder was 
considerably underestimated and the sign of the 
second confounder was reversed in Bayesian 
SEM (Table 3). 
 
The correlation between two latent confounders 
produced by simulation was 0.40 but was 
estimated at much lower value of 0.12 in 
Bayesian SEM. 
 
The 95% credible interval included true values 
for all but one observed variable in each of the 
two latent confounders (Table 2) due to 
significant underestimation of the strongest 
effects (x4bin for f1 and x5bin for f2). 
 
The largest average absolute bias was found for 
logistic regression, followed by Bayesian SEM 
with prior distributions over plausible range of the 
regression coefficients of the observed 
independent binary variables on the binary 
outcome (Table 3). Compared to the standard 
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logistic regression with average absolute bias of 
111%, the Bayesian logistic regression with 
latent confounding determined from the prior 
exploratory factor analysis reduced the bias 
almost four times to 30%.  
 

4. DISCUSSION 
 
Bayesian SEM considerably reduced the 
regression bias of observed independent 
variables on binary outcome in the presence of 
two correlated unmeasured confounders in 
comparison with standard logistic regression 
which ignored the confounding. Almost fourfold 
bias reduction was achieved despite a relatively 
small sample (N=100) and large bias and 
variance of the factor loadings for the latent 
confounding variables. However, the magnitude 
of residual confounding was still high.  In other 
words, the heuristic value of Bayesian SEM for 
unmeasured confounding seems to lie more in 
detecting the relationship between observed and 
latent confounding variables than in their precise 
quantification.  
 
Large bias for logistic regression parameters in 
the present study may come as a surprise but 
the difficulty of the statistical task should be kept 
in mind. It is worth recalling that 40% of the 
continuous outcome variation was due to 
measurement error terms (d1, d2, e1) and almost 
80% of the variation was determined solely by 
two latent confounders (f1, f2). After logistic 
transformation to binary variables, such large 
measurement errors and strong confounding 
produced some very misleading crude odds 
ratios and the lack of power as judged by the 
95% confidence intervals (Table 1), thus leading 
to distorted logistic regression parameters. 
Observed binary variables only partially reflect 
the causal process defined on continuous (logit) 
scale. In addition, the missing information was 
not “missing at random”, i.e. fully explainable by 
the observed data, and the sample size was 
small to evaluate a large number of parameters 
and their complex relationships in the data 
generating process. From this perspective, only 
partial elucidation of this process via the 
Bayesian SEM parameters obtained comes as 
no surprise and almost fourfold bias reduction in 
comparison with the logistic regression 
parameters can be considered a very satisfactory 
result. 
 
There is a growing number of Internet surveys 
which are particularly susceptible to self-
selection of the respondents in a way that affects 

the outcomes of interest because the motivation 
to participate is correlated with personal 
characteristics which enhance the chances of 
modifying the outcomes (e.g. unhealthy 
behaviors). If there is a follow-up to such a 
survey, the self-selection process tends to gather 
strength and eventually may become the 
strongest predictor of the outcome change over 
time. The same process also reduces the 
precision of the estimates with growing depletion 
of the respondents, thus enhancing the 
measurement error components in regression 
model and reducing statistical power. In addition, 
many sources of confounding are multi-factorial, 
i.e. include several related but distinct sources 
(e.g. motivation to improve own health, 
motivation to follow medical advice, motivation to 
please friends and family, etc.). Therefore many 
statistical analyses of the data gathered in this 
way do not share methodological advantages of 
a well designed study and have to deal with large 
measurement errors and with multiple sources of 
confounding. This can lead to large biases when 
standard logistic regression is used whereas 
Bayesian SEM is better suited to include 
additional information which can reduce the bias. 
For example, a common factor of personal 
characteristics associated with both respondent 
self-selection and the outcome of interest may be 
added to logistic regression to arrive at more 
realistic effect size estimates.  
 
In epidemiology, confounding is generally viewed 
as a nuisance, an obstacle to sound scientific 
results. From a different angle, however, 
unmeasured confounders are just another 
causes unaccounted for in a particular research, 
so elucidating their nature through associations 
with other already established causes is a 
common scientific endeavor. Structural causal 
modeling framework [22] aims at integrating SEM 
and causal modeling by examining the 
hypothesis of interest as a “counterfactual 
probability” to be compared with an alternative 
hypothesis in order to arrive at causal effect. EFA 
in the present study can be seen as a method to 
derive the counterfactual under unmeasured 
confounding scenario conditional on observed 
variables. The conditions under which 
counterfactual hypothesis may be inferred from 
the data define it empirically [22] and provide the 
basis for the sensitivity analysis of causal effects. 
 
Direction of unmeasured confounding can be 
determined for a binary intervention variable if its 
sign is ascertained and there is only one 
confounder or a set of mutually uncorrelated 
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confounders [23]. However, these conditions do 
not apply for the example presented in this paper 
because of the correlation between two latent 
confounding variables and seem unlikely to hold 
in many observational studies. In addition, the 
requirement that no unmeasured confounder is 
the cause of another unmeasured confounder 
rules out its use for a sequence of outcomes 
which naturally arise in chronic disease 
progression where one outcome (e.g. high 
arterial blood pressure) is a predictor of another 
(e.g. tissue damage) and so on (e.g. myocardial 
infarct). Statistical framework for analyzing such 
models includes mediation and latent growth 
analysis in SEM, and instrumental and marginal 
structural modeling in medical statistics tradition. 
The way these methods deal with confounding is 
outlined next. 
 
Latent growth models [20] search for the patterns 
that best describe individual trajectories in terms 
of the variables relevant for a time-related 
process, typically risk factors, sequential 
outcomes and intervention variables. 
Longitudinal observational studies are prone to 
time-dependent confounding as intervention at a 
given point in time may depend on the 
effectiveness of the previous interventions as 
indicated by successive outcome evaluations. 
For example, a patient who responded well to the 
first anti-hypertensive medication prescribed may 
carry on with it as opposed to the one whose 
response was not satisfactory and therefore was 
prescribed another drug regimen. As treatment 
decisions lie on the causal pathway of disease 
progression, their allocation is not independent of 
the outcomes, so both of them may be influenced 
by unmeasured confounder (e.g. the lifestyle 
characteristics that increase the hypertension 

risk also decrease adherence to its treatment). 
The so-called confounding by indication is driven 
by a similar process where confounders are 
clinical and other indicators for treatment.  
 
Mediation analysis has rarely been advocated in 
medical statistics in the way it has been used in 
econometrics and psychometrics [18,24]. 
Instrumental variable method is a kind of 
mediation analysis in which an “instrument” 
variable affects intervention allocation but not 
directly the outcome of interest. If such variable 
is a cause or a proxy for a cause to intervention 
and is not associated with unmeasured 
confounding, then an unbiased estimate of the 
intervention effect can be obtained by comparing 
the effect size between the intervention and the 
outcome on one side and the effect of the 
instrument on the outcome on the other 
[4,25,26]. 
 
The attraction of the instrumental variable 
method is that the average causal effect can be 
correctly estimated even in the presence of 
unmeasured confounding under following 
conditions: no correlation between instrumental 
variable and unmeasured confounder, no direct 
causal relationship between instrumental variable 
and the outcome (must be mediated through 
exposure/intervention), and instrumental variable 
must be a cause of the outcome variable 
[4,25,26]. However, these conditions may prove 
pretty restrictive, especially for the observational 
studies. The best way to calculate the mediated 
regression effects, including that of confounding 
variables, particularly in the non-linear models 
used to analyze binary outcomes, has been 
debated in the literature for some time [7,18,24]. 

 

Table 1. Descriptive statistics for observed binary variables: Variance on diagonal, crude odds 
ratios (95% confidence intervals) in the lower triangular matrix and Yule’s Q measure of 

association in the upper triangular matrix 
 

N=100 YBIN X1BIN X2BIN X3BIN X4BIN X5BIN X6BIN 
YBIN 0.066 -0.55 -0.71 -0.18 0.57 0.061 0.42 
X1BIN 0.29 

(0.05-1.57) 
0.249 0.14 -0.12 0.07 0.22 0.31 

X2BIN 0.17 
(0.02-1.47) 

1.32 
(0.59-2.91) 

0.252 0.13 0.06 0.26 0.20 

X3BIN 0.70 
(0.15-3.32) 

0.78 
(0.34-1.79) 

1.29 
(0.56-2.96) 

0.230 0.00 0.00 -0.07 

X4BIN 3.62 
(0.67-19.63) 

1.16 
(0.52-2.59) 

1.14 
(0.51-2.52) 

1.01 
(0.44-2.31) 

0.248 0.15 0.13 

X5BIN 1.13 
(0.25-5.37) 

1.56 
(0.69-3.53) 

1.71 
(0.76-3.83) 

1.00 
(0.43-2.31) 

1.356 
(0.60-3.04) 

0.242 -0.15 

X6BIN 2.45 
(0.45-13.25) 

1.89 
(0.85-4.20) 

1.51 
(0.69-3.33) 

0.87 
(0.38-1.98) 

1.31 
(0.59-2.90) 

0.74 
(0.33-1.65) 

0.252 
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Table 2. Bayesian structural equation modeling (SEM): The structure of two latent common factors (F1, F2) with respect to observed binary 
indicators 

 
Factors Binary indicators Code

a
 True values SEM coefficients 95% CI 

Lower Upper 
F1 X1BIN a1 0.5 0.078 -1.368 1.165 
F1 X2BIN a2 0.2 0.303 -0.533 1.082 
F1 X3BIN a3 -0.8 -0.092 -1.453 1.449 
F1 X4BIN a4 1.4 -0.114 -1.380 0.515 
F1 X5BIN a5 0.0 0.000 -0.166 0.187 
F1 X6BIN a6 0.0 -0.023 -1.247 1.594 
F2 X1BIN b1 0.0 -0.098 -1.176 1.177 
F2 X2BIN b2 0.0 0.007 -0.731 0.846 
F2 X3BIN b3 -0.4 0.029 -1.454 1.202 
F2 X4BIN b4 0.5 0.017 -1.136 0.745 
F2 X5BIN b5 2.0 0.960 0.351 1.026 
F2 X6BIN b6 0.6 0.144 -1.274 1.417 

a
 Used in Fig. 1

 

 
Table 3. Absolute bias for regression on the binary outcome (logit scale) 

 
Predicting 
variables 

True 
effects 

Code
a
 Logistic regression Bayesian SEM 

Coef. 95% CI Abs. bias (%) Coef. 95% CI Abs. bias (%) 
Lower Upper Lower Upper 

X1BIN 0.2 d1 -1.77 -3.75 0.21 197.15 0.132 -0.254 0.473 6.80 
X2BIN 0.3 d2 -2.13 -4.40 0.15 242.57 0.539 0.081 1.793 23.90 
X3BIN -0.1 d3 -0.57 -2.37 1.23 47.11 -0.313 -0.714 0.19 21.30 
X4BIN 0.8 d4 1.53 -0.30 3.36 73.16 0.429 0.048 0.716 37.10 
X5BIN 0.5 d5 0.65 -1.10 2.40 15.04 -0.065 -7.134 4.507 56.50 
X6BIN 0.4 d6 1.33 -0.54 3.20 92.91 0.060 -0.344 0.736 34.00 
F1 0.8 c1 0

b
 0

b
 0

b
 0

b
 0.133 -2.055 1.653 66.7 

F2 -0.2 c2 0b 0b 0b 0b 0.307 -5.162 7.216 50.7 
a
 Used in Fig. 1, 

b
 By definition 
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Marginal structural modeling [27] uses inverse 
probability weights to account for individual 
differences in propensity to follow a particular 
trajectory (e.g. disease evolution) given the 
observed covariates. The method is based on 
potential outcome framework [3] and assumes 
absence of unmeasured confounding, possibility 
of following any course of treatment at any point 
in time and consistent estimation of the weights 
[27].  
 
Several limitations of the present study should be 
kept in mind. First, only one among many 
possible confounding models was analyzed. 
Albeit the complexity of the model was 
considerable and the sample size pretty small, a 
variety of different covariance structures with 
unmeasured confounding should be tested [28] 
to better evaluate the effectiveness of Bayesian 
SEM in reducing the confounding bias. 
Observational studies based on “big data” are 
particularly prone to selection bias and complex 
dependency structures between observed and 
latent variables. Second, although only artificial 
data guarantee full knowledge of the underlying 
data generating mechanism, real data examples 
should be tested as well to evaluate practical 
gains with the method proposed. The uncertainty 
of the EFA solution regarding true data 
generating mechanism was certainly 
underestimated, although this problem may be 
mitigated by adding parameters which reflect this 
uncertainty (e.g. hyperpriors or sensitivity 
analysis with various EFA models). Third, no 
distinction between different roles of independent 
regression predictors (e.g. treatment versus 
covariates) ruled out informative priors which 
would reduce the model standard errors but this 
can be done with real data examples. Fourth, 
MCMC convergence may be difficult to achieve 
with certain types of SEM. 
 
This paper challenges a frequently stated notion 
that observational studies cannot empirically 
verify the presence of unmeasured confounders 
and the bias they cause. Bayesian SEM may 
considerably reduce such bias providing 
reasonable assumptions about plausible impact 
of confounding bounded between two extreme 
scenarios of no versus maximum confounding. 
The difficulty in eliciting priors for the association 
between observed and unmeasured confounders 
has been recognized and recently dealt with by 
assuming their exchangeability, i.e. similar 
magnitude and distribution of bias effects [7].  In 
this perspective, unmeasured confounder is a 
missing covariate associated with observed 

ones. Bayesian SEM in the present study goes 
along the same line, only it uses EFA to elicit the 
common factor distribution as a plausible 
generating mechanism for the observed 
covariates and evaluates its effect on the 
outcome within the range of two extreme 
scenarios (no versus maximum confounding 
effect). This appears to be a very general 
elicitation method which requires little knowledge 
on the strength of association between observed 
and unmeasured confounders. Furthermore, as 
common factor score is a continuous variable 
similar to propensity score, it has higher 
statistical power than dichotomized latent 
variables representing unmeasured confounding 
[29]. 
 

5. CONCLUSION 
 
Bayesian SEM holds promise to considerably 
reduce the effect size bias due to unmeasured 
confounding. It may be particularly useful for 
observational studies prone to such bias. Further 
research should cast more light on how to apply 
this method for different covariance structures of 
unmeasured confounding variables.  
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