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Ground-based remote sensing of nitrous oxide (N2O) over Hefei, eastern China 
from high-resolution solar spectra
Youwen Sun a, Hao Yin a,b, Wei Wanga, Changgong Shana and Cheng Liua,b

aAnhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China; bDepartment of Precision Machinery and 
Precision Instrumentation, University of Science and Technology of China, Hefei, China

ABSTRACT
We for the first time demonstrate ground-based remote sensing of Nitrous Oxide (N2O) over 
Hefei in eastern China from high resolution Fourier Transform Infra-Red (FTIR) solar spectra. We 
have retrieved Column-averaged Abundance of N2O (XN2O) from both Near-Infrared (NIR, 4000 
to 11,000 cm−1) and Mid-Infrared (MIR, 2400 to 3200 cm−1) solar spectra and inspected their 
agreement. Generally, NIR and MIR measurements agree well with a correlation coefficient of 
0.86 and an average difference of (1.33 ± 4.05) ppbv (NIR – MIR). By correcting the bias of the 
two datasets, we combine the NIR and MIR measurements to investigate seasonality and inter- 
annual trend of XN2O over Hefei. The observed monthly mean time series of XN2O minimize in 
June and maximize in September, with values of (316.55 ± 12.22) ppbv and (322.05 ± 12.93) 
ppbv, respectively. The XN2O time series from 2015 to 2020 showed an inter-annual trend of 
(0.53 ± 0.10) %/year over Hefei, China. We also compared the FTIR XN2O observations with GEOS- 
Chem model XN2O simulations. They are in reasonable agreement with a correlation coefficient 
(R) of 0.71, but GEOS-Chem model underestimated the seasonality of the observations. This 
study can enhance current knowledge of ground-based high-resolution FTIR remote sensing of 
N2O in the atmosphere and contribute to generating a new reliable N2O dataset for climate 
change research.
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1. Introduction

N2O ranks as the third largest contributor to global 
warming (Stein and Yung 2003). In stratospheric 
atmosphere, N2O is a significant anthropogenic driver 
of ozone depletion and a major source of Nitric Oxide 
(NO) (Nevison et al. 2011; Portmann, Daniel, and 
Ravishankara 2012; Ravishankara, Daniel, and 
Portmann 2009). N2O is a very stable Greenhouse 
Gas (GHG) and it has a lifetime of about 114 years in 
the atmosphere (United States Environmental 
Protection Agency 2019). Globally averaged N2O in 
2016 relative to 1750 has increased by 22%, corre
sponding to an inter-annual increase trend of 0.7 to 
1.0 ppbv/year (Machida et al. 1995; Prinn et al. 1990,  
2000). On global scale, the source of N2O is attributed 
to natural emissions by 60% and anthropogenic emis
sions by 40%. The sink of N2O is mainly depleted by 
ultraviolet photolysis in the stratosphere (Morgan 
et al. 2004). Additional sink of N2O is through photo 
oxidation with O(1D) to produce Nitrogen Oxides 
(NOx) (Montzka, Dlugokencky, and Butler 2011). 
The Kyoto Protocol has included N2O as one of the 
major GHGs targeted for emissions reduction 
(UNFCC 1997). Precise detection of the abundance 

and variability of N2O is of great significance not only 
for understanding its source, transport, chemical 
mechanism, and thus establishing a scientific link 
between its variability and climate change, but also 
for improving theoretical Chemical Transport 
Models (CTMs) and potential control purposes.

Compared with in situ surface data, column obser
vations pass through a larger portion of the atmo
sphere, resulting in a less temporal variability but 
still keeping information on surface fluxes (Wunch 
et al. 2011; Yin et al. 2019). As a result, the horizontal 
gradients of column observations are more associated 
with sources and sinks of underlying regional fluxes 
(Sun et al. 2020, 2018a, 2021a, 2021b). Ground-based 
high-resolution FTIR spectroscopy has been verified 
as one of the most precise remote sensing tools to 
derive total columns and Vertical Mixing Ratio 
(VMR) profile of N2O. Both the Total Columns 
Carbon Observing Network (TCCON) and Network 
for Detection of Atmospheric Composition Change 
(NDACC) networks use high resolution FTIR spectro
meters to monitor atmospheric N2O abundance. The 
TCCON/NDACC networks initiated in 2004/1992 
and a few stations have provided datasets of total 
columns and VMR profile of N2O for more than 20  
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years. The California Laboratory for Atmospheric 
Remote Sensing (CLARS) which is not afflicted with 
the TCCON/NDACC networks also uses high resolu
tion FTIR spectrometer to observe the long-term 
variability of N2O over the Los Angeles basin 
(Addington et al. 2021). The inter-annual trends of 
N2O have been reported in different regions with 
ground-based high resolution FTIR observations. 
Angelbratt et al. (2011) estimated that N2O inter- 
annual trends varied between (0.19 ± 0.01) and (0.40  
± 0.02) %/year in four European FTIR stations during 
1996–2007. Zhou et al. (2019) have compared the 
abundance and inter annual trends of N2O from the 
TCCON and NDACC observations at seven FTIR 
observation sites around the globe, and concluded that 
N2O in these sites varied over (0.81 ± 0.04) to (0.93 ±  
0.02) %/year during 2007–2017. Sagar et al. (2022) also 
retrieved CO2, CH4 and CO concentrations using 
ground-based EM27/SUN FTIR in India.

Historically, most FTIR sites are distributed in 
Northern America and Europe, but the number of 
sites in other parts of the world is very sparse. 
Currently, only two TCCON stations have been set 
up in China, the Hefei station in eastern China (117.2° 
E, 32.0°N) and the Xianghe station in northern China 
(116.96°E, 39.75°N) (Tian et al. 2017; Wang et al. 2017; 
Yang et al. 2020; Yin et al. 2021a). In this manuscript, 
we first retrieve and characterize the variability of 
atmospheric N2O over the Hefei station by using high- 
resolution FTIR spectroscopy. The N2O retrievals 
derived from high resolution NIR (4,000 to 11,000  
cm−1) and MIR (2,400 to 3,200 cm−1) solar spectra 
are compared. Furthermore, the NIR and MIR mea
surements from 2015 to 2020 are combined to inves
tigate seasonality and inter annual trend of XN2O over 
Hefei. In addition, a comparison between GEOS- 
Chem simulations and FTIR observations are also 
performed. This study can enhance current knowledge 
of ground-based high-resolution FTIR remote sensing 
of N2O in the atmosphere and contribute to generate 
a new reliable N2O dataset for climate change 
research.

2. Methodology

2.1. FTIR observation

2.1.1. Instrumentation
The operational FTIR observation site (117.2°E, 31.5° 
N, 30 m a.s.l. (above sea level)), run by the Anhui 
Institute of Optics and Fine Mechanics, Chinese 
Academy of Sciences (AIOFM-CAS), is located in 
the suburb of Hefei city (the capital city of Anhui 
Province) in central-eastern China. The downtown 
Hefei is located to the southeast of this site and is 
densely populated with eight million people. The site 
is surrounded by wetlands or cultivated lands in other 

directions. The anthropogenic emissions mainly come 
from the city and the natural emissions are originated 
from cultivated lands or wetlands. Routine observa
tions at the site have been implemented since 2014. 
The observatory is currently the only site in China that 
has a continuously-operating solar FTIR, making it 
crucial to calibrate and validate the satellite data or 
model simulations in this important region.

The observatory at Hefei includes a high-resolution 
FTIR spectrometer, a solar tracker, and a weather sta
tion. The FTIR spectrometer is installed inside a room, 
while the solar tracker and the weather station are 
placed on the roof of the room. The IFS125HR spec
trometers show outstanding capabilities such as the 
accuracy and stability, and have been extensively 
applied within the TCCON/NDACC networks (Sun 
et al. 2021a, 2021b; Yin et al. 2020, 2021a, 2022b). The 
IFS125HR spectrometer at the Hefei site includes four 
beam splitters, nine optical path compartments, and 
six detectors. This spectrometer covers a wide wave
number range of 400 to 50,000 cm−1 with a maximum 
spectral resolution of 0.001 cm−1. With the state-of-the 
-art Camtracker mode, the solar tracker captures and 
guides solar beam uninterruptedly into the FTIR spec
trometer with a precision of ±0.1 mrad (Hall et al.  
2011). The meteorological station includes sensors 
for relative humidity (±3.0%), air temperature 
(±0.30°C), air pressure (±0.1hpa), solar radiation 
(±5.0%), wind speed (±0.40 m/s), and wind direction 
(±4.0°) (Sun et al. 2018a, 2017). These meteorological 
data are applied for retrievals or source attribution of 
the measurements.

In present work, we equip the FTIR spectrometer 
with a CaF2 beam splitter and an InGaAs detector for 
N2O observations in the NIR range (4000–11,000  
cm−1) and a KBr beam splitter, a filter with a center 
wavenumber of 2800 cm−1, and an InSb detector for 
N2O observations in the MIR range (2400–3100  
cm−1). We restricted the entrance aperture size to be 
1 mm for all NIR measurements, while a size varying 
from 0.10 to 2.5 mm was implemented for the MIR 
measurements. Entrance aperture implemented in this 
manner can maximize the signal-to-noise ratio (SNR) 
while retaining unsaturated signals. The NIR and MIR 
solar spectra are saved alternatively during routine 
operations. The number of NIR and MIR N2O 
observations within a sunny day range from 1 to 48.

2.1.2. Retrieval and characterization of N2O in the 
NIR range
We utilize the GGG version 2020 to retrieve N2O total 
columns from NIR solar spectra. GGG (Wunch et al.  
2011) is a TCCON standard software which operates 
a suite of software package to retrieve total columns of 
various gaseous constituents from FTIR solar spectra. 
In order to obtain a site-to-site consistency of the 
retrievals, a same version of software is mandatorily 
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used for all TCCON sites (Wunch et al. 2015). The 
GGG first operates a subroutine procedure of inter
ferogram-to-spectrum (I2S) to convert the interfero
grams into spectra. A subroutine procedure of 
“GSETUP” is then operated to generate a priori pro
files of N2O and other trace gases. Meanwhile, a priori 
profiles of temperature, pressure, and H2O are 
straightly interpolated from the NCEP/NCAR reana
lysis. This subroutine procedure takes into account 
a series of issues, including an interhemispheric gra
dient, a secular increase, stratospheric decay, and sea
sonal cycle. Finally, a subroutine procedure called the 
nonlinear least-squares fitting algorithm “GFIT” scales 
iteratively the a priori profiles to produce calculated 
spectra until the best fit to the measured spectra. The 
total columns of N2O (TN2O) is thus calculated via 
Equation (1). 

TN2O ¼

ðztop

zs

AmðzÞ � fN2OðzÞdz; (1) 

where fN2O (z) represents the integral of the mole 
fraction of N2O, Am(z) is air-mass profile. The upper 
and lower limits of the integration, ztop and zs, denote 
the top of atmosphere (TOA) and the surface, respec
tively. Unlike total columns which is affected by topo
graphy and surface pressure, column-averaged 
abundance has a low sensitivity to fluctuations of sur
face pressure and H2O. This characteristic allows 
direct comparisons of column observations with 
in situ data in different seasons and thus is advanta
geous for atmospheric cycle investigations (Wunch 
et al. 2015). TN2O can be converted into column- 
averaged abundance of N2O (XN2O) via Equation (2). 
Taking the ratio in Equation (2) minimizes the sys
tematic errors which are common to N2O and O2. 

XN2O ¼
TN2O

Tair
¼

TN2O

TO2

� 0:2095 (2) 

where Tair and TO2 are total columns of dry air and O2, 
respectively. Input parameters and setups for N2O and 
O2 retrievals from NIR spectra using GGG version 
2020 are summarized in Table 1 (Kalnay et al. 1996). 
As described in Wunch et al. (2011) and Wunch et al. 
(2015), N2O is retrieved in three spectral micro win
dows (MWs: 4373.5–4416.9 cm−1, 4418.55–4441.65  

cm−1 and 4682.95–4756.05 cm−1), and O2 is retrieved 
in the spectral window of 7765.0–8004.0 cm−1. The 
cross-interferences of H2O, CO2, and HF are consid
ered in the O2 window and the cross-interferences of 
CH4, H2O, HDO and CO2 are considered in the N2 

O window. Spectroscopic parameters of all gases are 
extracted from the HITRAN 2020 database (Hill et al.  
2013; Rothman et al. 2009).

We collect and retrieve NIR spectra at Hefei 
following the TCCON recommendation, and thus 
the error budget for N2O by the TCCON commu
nity could also apply to Hefei observations. Wunch 
et al. (2011) perturbed each potential error by 
a realistic amount in the GGG forward model and 
calculated the relative difference in XN2O relative to 
the unperturbed case. This sensitivity study was 
proceeded with solar spectra collected on a clear day 
at the Lamont site, which spanned a large difference 
in H2O, temperature, and solar zenith angle (SZA). 
The total error is estimated as the sum in quadra
ture of all potential errors. According to Wunch 
et al. (2015), the total errors of XN2O are ~1% and 
reasonably independent of SZA. The dominant error 
sources are shear misalignment, a priori profile 
shape, observer-sun Doppler stretch (OSDS), and 
zero level offsets. At high SZAs, the a priori tem
perature profile and pointing offsets become signifi
cant. The a priori profile and the column AVK for 
XN2O retrieval at Hefei in the NIR range are pre
sented in Figure 1(a,b), respectively. The results 
show that the sensitivity of XN2O retrieval at Hefei 
in the NIR range decreases as the SZAs increases, 
but all sensitivities are greater than 0.5 between 
surface and 70 km. It means that more than 50% 
of retrieval information comes from observation, i.e. 
the a priori information affects the retrieval by less 
than 50% in both troposphere and stratosphere. It 
also indicates that the NIR observations for N2O at 
Hefei are sensitive to both troposphere and strato
sphere regardless of SZAs.

2.1.3. Retrieval and characterization of N2O in the 
MIR range
We use the SFIT4 software to retrieve N2O from MIR 
spectra. Inputs and setups of the SFIT4 follow the 

Table 1. Input parameters and setups for N2O and O2 retrievals from NIR solar spectra.
Species N2O O2

Retrieval Code GGG2020 GGG2020
Spectroscopy HITRAN 2020 HITRAN 2020
A priori profiles of temperature and pressure NCEP NCEP
A priori profiles of gases GGG2020 code GGG2020 code
Micro windows (cm−1) 4373.5–4416.9 7765–8005

4418.55–4441.65
4682.95–4756.05

Micro spectral window width (cm−1) 43.4 240
23.1
73.1

Retrieved interfering species CH4, H2O, CO2, HDO CO2, H2O, HF

GEO-SPATIAL INFORMATION SCIENCE 3



NDACC recommendation and are tabulated in 
Table 2. We take monthly mean profiles of WACCM 
model simulations between 1980 and 2020 as the 
a priori profiles of all gases (not including H2O). The 
a priori profiles of meteorological parameters such as 
Temperature, humidity, and Pressure are straightly 
taken from NCEP/NCAR reanalysis (Kalnay et al.  
1996). Three MWs of 2441.8–2444.6 cm−1, 2481.2– 
2482.5 cm−1 and 2806.05–2806.55 cm−1 were used to 
retrieve N2O profiles. CH4, HDO, and H2O show 
absorption interference with N2O in all retrieval win
dows. In addition to N2O profile, we also retrieve total 
columns of CH4 and HDO, and H2O profile in the 
same MWs to minimize the cross absorption interfer
ences. The spectroscopic parameters of all gases are 
extracted from the HITRAN 2020 database, which is 
same as the NIR spectra retrievals (Hill et al. 2013; 
Rothman et al. 2009).

To regularizing the retrieval, we set the diagonal 
values of the noise covariance matrix Sɛ to be 
square inverse of the SNR of each spectrum, and 
its non-diagonal values to be zero. We set the 
diagonal values of a priori covariance matrices Sa 

to be covariance of WACCM simulations between 
1980 and 2020, and their non-diagonal values to be 
zero. In order to avoid inconsistencies in the total 
columns due to optical misalignment, we use the 
true instrumental line shape (ILS) derived from 
regular low-pressure HBr cell measurements to 
retrieve the time series of N2O. (Hase 2012; Hase, 
Blumenstock, and Paton-Walsh 1999; Sun et al.  
2018a, 2018b).

The AVK matrix A characterizes vertical informa
tion of the retrieval. The trace of A is called the degrees 
of freedom for signal (DOFS), which indicates that 
how much independent information can be derived 

Figure 1. (a) The a priori profile of N2O used in NIR spectra retrieval. (b) Averaging kernel (AVK) matrix for N2O retrieval with 
GGG2020.

Table 2. Inputs and setups for N2O retrieval from MIR spectra at Hefei.
Gases N2O

Code SFIT4
A priori profiles for all gases (not including  

H2O)
Statistics of WACCM simulations

A priori profiles of Temp., Humid., and Pres. NCEP
Spectroscopy HITRAN2016
Micro-widows (cm−1) 2441.8–2444.6

2481.2–2482.5
2806.05–2806.55

Micro spectral window width (cm−1) 2.8
1.3
0.5

Retrieved interfering gases CH4, CO2, HDO
Regularization Sε Real SNR (calculated in the actual observation in each spectrum)

Sa Covariance of WACCM simulation
ILS measured
Error (2.20%) Random error: (1.18%) 

-measurement error (measurement) 
-interference errors: interfering gases (interfering_species), retrieval parameters (retrieval_parameters) 
-other errors: zero level (zshift), Temp. (temperature)

Systematic error: (1.86%) 
-smoothing error (smoothing) 
-other errors: optical path difference (max_opd), spectral curvature (curvature), solar strength 
(solstrnth), field of view of incident solar beam (omega), shift of solar line (solshft), background slope 
(slope), solar zenith angle (sza), phase (phase), pressure induced line broadening (linepair_gas), 
temperature induced line broadening (linetair_gas), intensity of spectroscopic line (lineint_gas)
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from the retrieval. The area of A represents the retrie
val sensitivity at each layer. Figure 2 demonstrates the 
a priori and retrieved VMR profiles of N2O (a), cumu
lative sum of DOFS (b), and the AVKs (c) for N2 

O retrieval randomly selected in the MIR range. 
Ground-based FTIR N2O retrievals in the MIR range 
at Hefei has a DOFS of 2.0 from surface to 12 km and 
2.1 from 12 km to 40 km, which means that the MIR 
retrievals are sensitive in both troposphere and strato
sphere. Typical DOFS over the total atmosphere for 
N2O retrievals in the MIR range is 4.1, indicating that 
we can obtain almost four independent information 
on the retrieved VMR profile. Therefore, the N2O total 
columns and XN2O discussed in this study are reliable. 
The N2O total columns is obtained by integrating the 
N2O profile from ground to the TOA. The XN2O is 
then obtained by a weighting average of the air mass 
and the N2O profile from ground to the TOA. Figure 2 
shows that the retrieved profile deviates slightly from 
the a priori profile and is weighted for both tropo
sphere and stratosphere due to the higher DOFS.

Error analysis for N2O retrievals in the MIR range at 
Hefei follows the methodology of Rodgers (2000). We 
classified each individual error source as random or 
systematic error depending on if it varies randomly or 
is constant over observation. In present work, the ran
dom errors include z-shift error, measurement noise, 
and uncertainties of interfering species temperature, 
and retrieval parameters. The systematic errors include 
uncertainties of optical path difference, background 
curvature, solar line shift, the field of view of the inci
dent solar beam, interferogram phase, the strength of 
solar line, pressure induced line broadening, tempera
ture induced line broadening, and spectroscopic line 
intensity. Table 2 concludes the random, systematic, 

and total error for the N2O retrieval exemplified in 
Figure 3. The input covariance matrix of observation 
noise was set to be the inverse square of the SNR of each 
spectrum and the temperature was estimated to be 2–7 
K in the profile. The input covariance matrix of each 
interfering species was based on the WACCM climatol
ogy between 1980 and 2020. The input covariance 
matrix of field of view, background curvature, interfer
ogram phase, optical path difference, shift of solar line, 
and strength of solar line were estimated to be 0.1%. 
The input covariance matrix of smoothing error and 
each retrieval parameter were obtained straightly from 
SFIT4 output. Spectroscopic uncertainties of spectro
scopic line intensity, temperature, and pressure induced 
broadening coefficients for N2O in the HITRAN 2020 
line-list database were estimated to be 2%.

As shown in Figure 3, for N2O retrieval in the MIR 
range at Hefei, the largest random error and systema
tic error are smoothing uncertainty (1.12%) and line 
intensity uncertainty (1.66%), respectively. Total error 
estimated as the sum in quadrature of total random 
errors (1.18%) and systematic errors (1.86%) is 2.20%.

2.1.4. Data filter criteria
We established a series of filter criteria to exclude the 
outliers that are heavily impacted by unstable weather 
conditions. Observations satisfying all the following 
criteria were regarded as valid observations and were 
applied in subsequent analysis, which excluded 23.4% 
of total observations.

(1) Auxiliary data such as solar flux, surface tem
perature, humidity, and pressure must be col
lected synchronously with the observations.

Figure 2. (a) The a priori and retrieved profiles of N2O, (b) cumulative sum of DOFs for N2O retrieval, (c) the AVK matrix A and their 
area. The demonstrations are randomly selected N2O retrieval in the MIR range.
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(2) The signal intensities of NIR spectra much vary 
between 7,000 and 22,000 counts and those of 
MIR spectra must vary between 10,000 and 
20,000 counts. These thresholds well balanced 
the SNR and the non-linearity in the detector.

(3) The observation scenario must be nearly cloud 
free. We reject any spectra which were saved 
when the variation of solar intensity is larger 
than 10%.

(4) For both NIR and MIR solar spectra, the SZA 
must be smaller than 80°.

(5) All retrievals must be converged and the con
centrations at all vertical heights must be posi
tive. For MIR spectra retrievals, the total DOFs 
must be greater than 3.0 to make sure that the 
retrieval at each partial layer comes more from 
observation.

(6) The root means square error (RMS) of the fit
ting residual has to be smaller than 3% for N2 

O retrieval in the NIR range and 5% in the NIR 
range.

2.2. GEOS-Chem model

We use GEOS-Chem model v12.2.1 to simulate N2 

O around the globe at a 2° latitude × 2.5° longitude 
spatial resolution and 72 vertical pressure levels. We 
refer to Yin et al. (2019) for detailed description of 
model configuration. Briefly, the GEOS-Chem model is 
operated in a standard mode and driven by the GEOS-FP 
meteorological field. In order to drive the GEOS-Chem 
model, the GEOS-FP with an original spatial resolution 
of 0.25°×0.3125° has been downgraded to 2°× 2.5°. The 
meteorological data has a vertical pressure resolution of 
72 levels starting from ground to 0.015 hPa, and 

temporal resolutions of 1 h for surface meteorological 
elements and 3 h for other meteorological elements.

Global anthropogenic emissions of aerosol species 
(mainly black carbon and organic carbon) and gases 
(SO2, NH3, NOx, CO, CH4, NMVOCs, etc.) between 
2015 and 2017 are based on the MIX inventory over 
Asia and the CEDS (Community Emissions Data 
System) inventory in other parts of the world (Hoesly 
et al. 2018). Biomass burning emissions of atmospheric 
species are coupled with the GFED4 (Global Fire 
Emission Database version 4) inventory (Giglio, 
Randerson, and Van Der Werf 2013). The UCX 
(Universal tropospheric-stratospheric Chemistry 
eXtension) chemical mechanism and the FAST-JX 
v7.0 photolysis algorithm are implemented, which 
includes a detailed “NOx-Ox-hydrocarbon-aerosols” 
chemistry in the troposphere (Eastham, Weisenstein, 
and Barrett 2014). In stratosphere, bromine gases con
centrations are based on climatology (Mclinden et al.  
2000), ozone concentrations are estimated by the line
arized ozone (Linoz) parameterization (Parrish et al.  
2014), and other species concentrations are calculated 
by using archived monthly mean production s and loss 
rate from NASA’s GMI scheme (Murray et al. 2012; 
Rothman et al. 2009).

3. Results and discussion

3.1. Comparisons between NIR and MIR 
observations

We compare N2O retrievals in the NIR and MIR 
ranges at Hefei to inspect the agreement of these 
two datasets and to determine how they can be 
combined to evaluate the variability of N2O. The 

Figure 3. (a) Systematic error budgets for N2O retrievals in the MIR range. (b) Same as (a) but for random error budgets. 
Descriptions of the error components inside each panel are listed in Table 2.
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NIR and MIR solar spectra in present work were 
saved with the same instrument, but the optical 
components such as optical filter, beam-splitter 
and detector, and the retrieval strategies such as 
a priori profiles, spectroscopic MWs, and spectral 
iterative method are different, which could result in 
discrepancy in NIR and MIR N2O retrievals. To 
properly compare the NIR and MIR N2 

O retrievals, we use the methodology of Rodgers 
and Connor (2003) to conform their differences in 
a priori information and AVKs. Both NIR and MIR 
N2O total columns associated with the a priori 
information and the true atmospheric state can be 
expressed as, 

TCr ¼ TCa þ AðPCt � PCaÞ þ ε; (3) 

where A represents the AVKs associated with the NIR 
or MIR retrievals; PCa and PCt represent a priori and 
true N2O partial columns, respectively; TCr and TCa 
represent retrieved and a priori N2O total columns, 
respectively. The ε represents characterization error. 
Therefore, the discrepancy in N2O total columns 
between MIR (TCN2O;MIR) and NIR (TCN2O;NIR) obser
vations can be expressed as, 

TCN2O;NIR � TCN2O;MIR ¼ ðX
apriori
NIR � Xapriori

MIR Þ

þ ðANIR � AMIRÞXtrue

þ ðANIRXapriori
NIR

� AMIRXapriori
MIR Þ; (4) 

where Xapriori
NIR and Xapriori

MIR are a priori profiles of N2 

O for NIR and MIR observations, respectively; Xtrue 
is the XN2O in the true atmospheric state; ANIR and 
AMIR are the AVKs of the retrievals in the NIR and 
MIR ranges, respectively. As a result, in addition to 
their different sensitivities of forward model to the 
real atmospheric state in different spectroscopic 
MWs, the discrepancy in N2O total columns 
between MIR and NIR observations are dominated 
by the following two factors: (a) the difference in 
AVKs and (b) the difference in a priori profiles. To 
reconcile these differences, we use the methodology 
of Rodgers and Connor (2003) to project the NIR 
dataset into MIR retrieval scenarios. We first inter
polate the NIR daily mean profiles of N2O into the 
MIR vertical height to obtain a common height grid. 
We then use the a priori profiles to correct the 
interpolated NIR profiles by, 

X
0

NIR ¼ XNIR þ ðANIR � IÞðXapriori
NIR � Xapriori

MIR Þ; (5) 

where X0NIR is a N2O dataset that has been corrected by 
the a priori profile, XNIR is the original NIR N2 

O dataset, matrix I is the unity diagonal matrix. 
Finally, we further correct X0NIR using the smoothing 
function by, 

X
00

NIR ¼ Xapriori
MIR þ ANIRðX

0

NIR � Xapriori
MIR Þ; (6) 

where X00NIR represents a N2O dataset that has been 
corrected by a priori profile and smoothing function. 
This characteristic allows direct comparisons of column 
observations with in situ data in different seasons.

Following above procedures, all NIR N2O data have 
been projected into MIR retrieval states and compared 
with the MIR data. Comparisons between daily mean 
NIR measurements and MIR measurements are shown 
in Figure 4. We can see in Figure 4 that NIR and MIR 
XN2O datasets are in good agreement, with an average 
difference of (1.33 ± 4.05) ppbv (TCN2O;NIR–TCN2O;MIR) 
and a correlation coefficient (R) of 0.86. Seasonal cycles 
of NIR and MIR XN2O data in Figure 5 shows that the 
largest difference of the two datasets occurs in August 
with a value of (−3.11 ± 5.36) ppbv and the lowest 
difference occurs in December with a value of (−0.36  
± 6.71) ppbv (TCN2O;NIR–TCN2O;MIR). The monthly 
mean differences between NIR and MIR XN2O data 
from 2015 to 2020 are within (1.40 ± 3.12) ppbv. 
Considering the XN2O amplitude is seasonal dependent, 
we also investigated the variation of the fractional dif
ference between NIR and MIR datasets, which are 
deduced as the ratios of the absolute discrepancies 
(TCN2O;NIR–TCN2O;MIR) to the monthly mean values of 
the MIR dataset. The results show that the fractional 
differences of the two datasets are seasonal indepen
dent. Therefore, in present work, we first plus a mean 
bias of 1.4 ppbv to all NIR data and then combine the 
NIR and MIR datasets to evaluate the seasonal and inter 
annual variabilities of N2O.

3.2. Seasonality and inter-annual trend

In Figure 6, we have used a second Fourier series plus 
a linear curve to fit the joint NIR+MIR daily mean 
time series of XN2O. Such fitting is based on Gardiner’s 
bootstrap resampling methodology which has been 

Figure 4. Comparisons between daily mean NIR XN2O measure
ments against MIR XN2O observations. The red line represents 
a linear fit to concurrent scatter points.
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used in many studies to determine the seasonality and 
inter-annual trends of many constituents in the atmo
sphere (Sun et al. 2021c; Yin et al. 2019, 2020, 2021a,  
2021b, 2022a). In present work, the measured daily 
mean time series of XN2O related to the regression 
model is formulated as Equation (7),

Vðt; bÞ ¼ b0 þ b1t þ b2 cosð
2πt
365
Þ þ b3 sinð

2πt
365
Þ (7) 

Fðt; bÞ ¼ Vðt; bÞ þ εðtÞ (8) 

d% ¼
Fðt; bÞ � Vðt; bÞ

Vðt; bÞ
� 100%; (9) 

where Vðt; bÞ and Fðt; bÞ are the fitted and measured 
daily mean time series of XN2O, respectively. b0, b1, b2, and 
b3 are the bootstrap resampling regression coefficients 
fitted with the model Vðt; bÞ. b0 represents the intercept, 
b1 is the annual change rate, and b1/b0 is the inter-annual 
trend discussed below. b2 and b3 characterize the season
ality, t represents the fractional of the year elapsed since 
the start year of the time series (i.e. 2015 in present work), 
and ε(t) is the difference between measured and fitted 
time series. Equation (9) that calculates the fractional 
differences of XN2O measurements relative to the 

monthly mean values of Fðt; bÞ is used to analyze seaso
nal enhancements.

The bootstrap resampling model can generally repro
duce the measured seasonality and inter-annual trend of 
XN2O from 2015 to 2020 with an R of 0.81. Figure 5 
showed clear seasonal characteristics of XN2O over 
Hefei: (1) high values of XN2O appear in the late summer 
to early winter and low values of XN2O appear in late 
winter to summer; (2) the variations in XN2O are seaso
nal-independent and relatively stable. (3) the seasonality 
of XN2O varies over a unimodal mode, i.e. the seasonal 
trough appears around June–July and the seasonal peak 
appears around September to November.

The joint NIR+MIR XN2O time series minimize in 
June and maximize in September, with values of 
(316.55 ± 12.22) ppbv and (322.05 ± 12.93) ppbv, 
respectively. The joint NIR+MIR XN2O measurements 
in September were on average (1.71 ± 5.22) % higher 
than those in June. The annual mean values of joint 
NIR+MIR XN2O over Hefei are (317.90 ± 5.04) ppbv, 
(318.41 ± 4.90) ppbv, (319.91 ± 4.11) ppbv, (319.74 ±  
5.82) ppbv, (319.80 ± 6.21) ppbv, and (320.83 ± 3.78) 
ppbv in 2015, 2016, 2017, 2018, 2019, and 2020, 
respectively. The observed XN2O measurements from 
2015 to 2020 showed a positive inter-annual trend of 
(0.53 ± 0.10) % per year (Figure 6). Depending on 

Figure 5. Monthly mean of NIR, MIR, joint NIR+MIR, and GEOS-Chem model XN2O data. The vertical error bars represent the 1-σ 
standard variations.

Figure 6. Daily mean time series of joint NIR + MIR XN2O measurements between 2015 and 2020 as well as the fitted seasonality 
and inter-annual trend.
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season and observation time, the seasonal XN2O 
enhancements spanned a narrow range of −3.89% to 
4.05% (Figure 7). The small values of inter-annual 
trend and seasonal enhancement are mainly attributed 
to the chemical stable characteristics of N2O in the 
atmosphere.

3.3. Comparisons with GEOS-Chem model

GEOS-Chem simulations within ±1 hour of the FTIR 
measurement times are compared with the joint NIR  
+ MIR observations. Similar to section 3.1, we also use 
the methodology of Rodgers and Connor (2003) to 
project the GEOS-Chem model dataset into MIR 
retrieval scenarios before using them in comparison. 
The GEOS-Chem simulations sample at the nearest 
ground pixel to the Hefei site are first vertically inter
polated into the MIR vertical height. The interpolated 
data are then smoothed with the AKs and a priori 
profiles of MIR retrievals via Equation (10). 

Xs ¼ Xa þ AðXc � XaÞ; (10) 

where Xc and Xs are the interpolated and smoothed 
GEOS-Chem profile, respectively; A and Xa are AK 
matrix and a priori profile of MIR retrievals, respec
tively. The GEOS-Chem XN2O is obtained by an inte
gration of the smoothed GEOS-Chem profile from 
ground to the 120 km.

GEOS-Chem model XN2O data were generally con
sistent with FTIR XN2O data over Hefei, with 
a correlation of 0.71 (Figure 8). However, GEOS- 
Chem model data tend to underestimate N2 

O concentration and its seasonality in Hefei, especially 
in autumn and winter (Figure 5). The maximum and 
minimum values of GEOS-Chem model XN2O data are 
(320.17 ± 1.31) ppbv and (315.61 ± 1.52) ppbv in 
November and March, respectively. Monthly mean 
differences between FTIR measurements and GEOS- 
Chem data are within (1.34 ± 3.12) ppbv, where the 
maximum and minimum differences are (2.65 ± 2.14) 
ppbv and (0.88 ± 2.05) ppbv in February and June, 
respectively. The discrepancies between GEOS-Chem 
simulations and FTIR measurements are mainly 
attributed to uncertainties of model inputs such as 
emission inventories and meteorological fields.

4. Conclusions

Both NIR and MIR solar spectra saved by ground- 
based high resolution FTIR spectrometer were used to 
retrieve XN2O over Hefei, eastern China. The XN2O 
retrievals derived from NIR and MIR solar spectra 
were characterized and compared. Generally, NIR and 
MIR measurements agree well with an R of 0.86 and an 
average difference of (1.33 ± 4.05) ppbv (NIR – MIR). 
By reconciling this difference, the joint NIR+MIR 
observations disclose that the monthly mean time series 
of XN2O minimize in June and maximize in September, 
with values of (316.55 ± 12.22) ppbv and (322.05 ±  
12.93) ppbv, respectively. The XN2O measurements in 
September were on average (1.71 ± 5.22) % higher than 

Figure 7. (a) Seasonal variabilities of XN2O over Hefei based on joint NIR+MIR XN2O measurements from 2015 to 2020. The red dots 
represent monthly mean values of XN2O. (b) Fractional differences of XN2O measurements relative to the monthly mean values 
represented by the red dots in (a).

Figure 8. Correlation plots of the joint NIR+MIR data against 
GEOS-Chem model data. The red line represents a linear fit to 
the scatter points. The dotted grey line is the 1:1 line.
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those in June. The observed XN2O measurements 
between 2015 and 2020 showed a positive inter- 
annual trend of (0.53 ± 0.10) %/year. We also compared 
GEOS-Chem simulations with the joint NIR+MIR 
measurements. GEOS-Chem model XN2O data were 
generally consistent with FTIR measurement XN2O 
data over Hefei, with a correlation coefficient and an 
average difference of 0.71 and (1.25 ± 4.31) ppbv, 
respectively. This study can enhance current knowledge 
of ground-based high-resolution FTIR remote sensing 
of N2O in the atmosphere and contribute to generating 
a new reliable N2O dataset for climate change research.
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