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ABSTRACT 
 

Aims: The availability of large cDNA datasets make it feasible to find new genetic variants. In this 
study, we focused to perform micro array differential analysis of breast cancer dataset to reveal 
genetic mutants of this disease.  
Methodology: Human drug targets of breast cancer (BC) was found by comparing normal breast 
tissue samples and breast invasive cancer samples using GSE31138 DNA microarray dataset. 
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The dataset was accessed from Gene Expression Omnibus (GEO) NCBI. The differential analysis 
was performed using “R” software and Bioconductor packages. 
Results: In differential expressed genes (DEGs), LIFR and PSMD10 were significant BC-linked 
genes. Matrix analysis of these DEGs showed interdependencies between the probe levels of two 
groups. Gene ontology and interactomic analysis explored the functional enriched map. These 
critical protein targets are involved in ubiquitin-dependent protein degradation, cell morphogenesis, 
anti-apoptosis, and positive regulation of cell proliferation and their dysregulation are responsible 
for tumorigenesis.  
Conclusion: These protein targets not only reveal the understandings about BC but can also 
progress into biological markers for diagnosis or treatment. 
 

 

Keywords: Breast cancer; microarray; DEGs; functional analysis; PPI network. 
 

1. INTRODUCTION 
 

Genomics methods have transformed the way 
we do research in biology and medicine. We now 
can measure the majority of mRNAs, proteins, 
protein-protein interactions, genomic mutations, 
epigenetic alterations, and micro RNAs in a 
single experiment. Target-based drug discovery 
starts by recognizing important genes for which 
trepidation of activity can produce a required 
phenotype and find to discover the molecules 
that interact with these genes selectively to 
modify the disease state or symptoms in a 
positive way. Breast cancer (BC) is one of the 
most multifaceted diseases that accounts for 
22.9% of all cancers in women worldwide. 
Prognosis rates of the disease vary and it 
depends on cancer type, stage, treatment, 
cultural and geographical sites [1]. Genetics and 
molecular based approaches showed that the 
pathological mechanism of BC is a developing 
procedure involving several stages and factors. 
However, the mechanism and full therapeutic 
role of these genes in pathophysiology, tumor 
growth rate, metastatic spread and molecular 
physiology of BC has not been entirely 
understood [2] and therefore substantial slits in 
clinical-results still raises questions, leading 
scientists to investigate the mechanisms for 
expansion and advancement [3,4]. 
 

Microarray technique is a valuable tool to find out 
variations in frequency and progress of cancer 
comprehensively [5]. Currently, diagnostic and 
treatment predictive biomarkers for BC are being 
established employing gene expression 
techniques. The gradual increase of data from 
gene expression studies on BC in public 
repositories provides a chance to construct 
pooled gene expression datasets containing a 
larger number of patients. Microarray based 
differential expression analysis of BC hold 
promise for future advances in diagnosis, 
treatment and prognosis. Therefore, in this study 

we accessed the breast cancer related 
microarray dataset, performed the differential 
and functional analysis which supports the 
hypothesis that differentially expressed genes 
could be valuable biomarker or therapeutic 
targets. 

 
2. MATERIALS AND METHODS 
 
2.1 Microarray Data 
 
The CEL format files of DNA microarray               
dataset GSE31138 were accessed from                   
NCBI-Gene Expression Omnibus 
(http://www.ncbi.nlm.nih.gov/geo/) [GEO: 
GSE31138], involving 03 breast invasive cancer 
samples and 03 normal samples. The genetic 
chip comprises GPL570 [HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array 
(Affymetrix, Inc., Santa Clara, CA, 95051, USA, 
Technology: in situ oligonucleotide) and the 
functional annotation facts (hgu133plus2) of 
genetic probes were used to identify the genetic 
expression levels. 

 
2.2 Analysis of Differential Expression 
 
Raw and pheno-data files were changed into 
identifiable format, and redundancies are errors 
were removed [6]. The bioconductor packages of 
R software were used to execute the 
normalization and quality control [7,8,9]. RNA 
degradation analysis was done to assess the 
quality of RNA by using AffyRNAdeg, summary 
AffyRNAdeg, and plot AffyRNAdeg bioconductor 
packages on R software [10,11]. After 
normalization, statistical analysis on R software 
was executed to find the genetic variants (DEGs) 
by comparing normal with case samples and 
multiple testing corrections were completed by 
Benjamini-Hochberg method [12]. A false 
discovery rate (FDR) less than 0.05, p-value 
≤0.05, Average Expression Level (AEL) ≥40% 



and an absolute logFC>1 were considered as the 
substantial cutoffs [13]. 
 

2.3 Cluster Analysis 
 
Cluster analysis [14] was performed based on 
expression data in individual sample to validate 
the variations in gene expression levels between 
BC tissue samples and normal samples.
 
2.4 Analysis of Functional Enrichment
 
Functional enrichment analysis uncovers the 
biological and cellular role of each
different physiological pathways [15]. The 
functional annotation of these DEGs was 
determined by using the online DAVID (Database 
for Annotation Visualization and Integrated 
Discovery) [16] and EMBL-EBI databases with p
value < 0.05 as the significant cutoff.
 

2.5 Construction of Protein
Interaction (PPI) Network 

 
Proteins usually relate and interact each other to 
perform biological functions [17]. Therefore, 
interacting partners of the most important DEGs 
were anticipated, using the STRING
Tool for the Retrieval of Interacting 
Genes/Proteins) [18] and HAPPI (Human 
Annotated and Predicted Protein Interaction) 
databases [19] and then the interaction networks 
 

Fig. 1. Normalized probe-level gene expression data (a) Boxplot of gene expression data.
medians are almost at the same level, indicating high normalization performance (b) 
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and an absolute logFC>1 were considered as the 

Cluster analysis [14] was performed based on 
expression data in individual sample to validate 
the variations in gene expression levels between 
BC tissue samples and normal samples. 

Functional Enrichment 

Functional enrichment analysis uncovers the 
biological and cellular role of each gene in 
different physiological pathways [15]. The 
functional annotation of these DEGs was 
determined by using the online DAVID (Database 
for Annotation Visualization and Integrated 

EBI databases with p-
cant cutoff. 

Construction of Protein-protein 

Proteins usually relate and interact each other to 
perform biological functions [17]. Therefore, 
interacting partners of the most important DEGs 
were anticipated, using the STRING (Search 
Tool for the Retrieval of Interacting 
Genes/Proteins) [18] and HAPPI (Human 
Annotated and Predicted Protein Interaction) 
databases [19] and then the interaction networks 

of these aberrant genes with their interactors 
were constructed by using Cytoscape software 
[20].  

 
3. RESULTS 

 
3.1 Normalization and RNA 

Plots 
 
The probe-level data that represent expression 
levels of genes was normalized (Fig. 1) and each 
gene in a probe set were arranged by location 
relative to the 5′-end of the sample RNA 
molecule. A side-by-side plot was produced by 
the function plot AffyRNAdeg (Fig.
function summary AffyRNAdeg produced a 
distinct statistic summary for individual array in 
the batch (Table 1), presenting an assessment of 
the severity of degradation and significance level.

 
Table 1. A summary statistic for each array i

the batch, assessing the severity of RNA 
degradation and significance level

 
 Arrays/Samples Slope 
 GSM770819.CEL 5.74E+00 
 GSM770820.CEL 5.16E+00 
 GSM770821.CEL 7.76E+00 
 GSM770822.CEL 5.90E+00 
 GSM770823.CEL 5.69E+00 
 GSM770824.CEL 6.81E+00 

 
level gene expression data (a) Boxplot of gene expression data.

medians are almost at the same level, indicating high normalization performance (b) 
Histogram of log intensity 
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of these aberrant genes with their interactors 
scape software 

Normalization and RNA Degradation 

level data that represent expression 
levels of genes was normalized (Fig. 1) and each 
gene in a probe set were arranged by location 

end of the sample RNA 
side plot was produced by 

g (Fig. 2) and the 
function summary AffyRNAdeg produced a 
distinct statistic summary for individual array in 
the batch (Table 1), presenting an assessment of 
the severity of degradation and significance level. 

Table 1. A summary statistic for each array in 
the batch, assessing the severity of RNA 

degradation and significance level 

P-value 
 4.81E-07 
 7.74E-07 
 1.31E-07 
 4.61E-10 
 1.94E-09 
 2.21E-07 

 

level gene expression data (a) Boxplot of gene expression data. The 
medians are almost at the same level, indicating high normalization performance (b) 
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Fig. 2. Side-by-side plot produced by plotAffyRNAdeg representing 5’ to 3’ trend 
 

3.2 Differentially Expressed Genes 
(DEGs) 

 
A list of 50-DEGs were selected in BC samples 
associated with normal tissues, comprising 44 
up-regulated and 6 down-regulated DEGs. 
 

3.3 Cluster-analysis 
 

In Fig. 3, cluster profile of gene expression level 
has been shown. The genetic expression of BC 
samples can be differentiated from the normal 
samples which indicated that there are 
understandable changes occurs between the 
comparative groups. 
 

3.4 Analyzing Functional Enrichment 
 
We performed the enrichment analysis of DEGs 
which showed that 10 and 16 terms for down-
regulated and up-regulated genes respectively 
were significantly enriched. The total number of 
enriched terms was counted with their significant 
false discovery rate (Table 2). 
 

3.5 Gene Expression Levels and 
Interaction Network 

 
The expression levels of breast cancer 
associated differentially expressed genes 

PSMD10 (Uniprot ID: PSD10_Human), and LIFR 
(Uniprot ID: LIFR_Human) in each sample 
(normal and cancer) were determined. LIFR is 
down-regulated while PSMD10 gene is up-
regulated in breast cancer samples as compared 
to normal expression levels (Fig. 4). The 
interacting molecules of these two source genes 
were obtained from HAPPI and STRING 
databases and their interaction-network were 
generated (Fig. 5). In total, 46, 14 and 11 genes 
were involved in the molecular network of 
PSMD10 (Uniprot ID: PSD10_Human), and LIFR 
(Uniprot ID: LIFR_Human) respectively.                   
The network contained IL6RA_HUMAN, FST_ 
HUMAN, STAT3_HUMAN, PPTN6_HUMAN, 
FSHB_HUMAN, MPIP1_HUMAN, ONCM_ 
HUMAN, CNTFR_HUMAN and other genes. 
 

4. DISCUSSION 
 

Microarray data of normal and breast cancer 
samples (6 samples) were compared to identify 
the differentially expressed genes (DEGs). A 
total of 50 DEGs were obtained in BC samples. 
The functional enrichment analysis showed 10-
downregulated and 16-upregulated genes 
contributing cancer progression. Cell 
proliferation, cell morphogenesis, leukemia 
inhibitory signaling and positive control of anti-
apoptosis were expressively observed in the 



down-regulated genes, whereas cell cycle 
process, mitosis, and control of cell death were 
enriched in the up-regulated genes. These 
factors are contributing in the progression of 
cancer [21]. During DEGs analysis, significant 
genes including PSMD10, and LIFR were 
screened that were curated to be involved in 
breast cancer. The expression levels of these 
genes in each sample showed that LIFR is down
regulated while PSMD10 genes are up
in breast cancer samples as compared to normal 
samples. 
 
In the regulation of cell proliferation and 
apoptosis, [22] identified LIFR as a breast cancer 
metastasis suppressor that functions through the 
HIPPO-YAP pathway. The aberrant function of 
this gene is associated with genetic instability 

 

Fig. 3. Cluster analysis results for gene expression data. The expression values clustered in the 
red-shaded areas indicate over
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genes, whereas cell cycle 
process, mitosis, and control of cell death were 

regulated genes. These 
factors are contributing in the progression of 
cancer [21]. During DEGs analysis, significant 
genes including PSMD10, and LIFR were 

ed that were curated to be involved in 
breast cancer. The expression levels of these 
genes in each sample showed that LIFR is down-
regulated while PSMD10 genes are up-regulated 
in breast cancer samples as compared to normal 

ell proliferation and 
apoptosis, [22] identified LIFR as a breast cancer 
metastasis suppressor that functions through the 

YAP pathway. The aberrant function of 
this gene is associated with genetic instability 

and occurrence of breast cancer. PSMD10 h
been reported to encode a regulatory factor of 
26S proteasome which is essential for ubiquitin
dependent protein degradation. Similarly, this 
non-ATPase protein subunit has functional 
interaction with other proteins and therefore 
irregularity in the expression of this protein may 
progress to tumorigenesis [23]. 
 
Additionally, it has been observed that inhibin 
concentration in serum is associated with the 
enlargement of granulosa-cell tumors and can 
therefore be used as a prognostic biomarker for 
primary and recurring cancer [24,25]. These up 
and down regulated genes in a number of breast 
cancers might serve as therapeutic targets or 
diagnostic tools and these findings may provide 
useful future directions. 

 
Fig. 3. Cluster analysis results for gene expression data. The expression values clustered in the 

shaded areas indicate over-expression, and the green-shaded areas indicate under
expression 
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Fig. 3. Cluster analysis results for gene expression data. The expression values clustered in the 
shaded areas indicate under-



 
 
 
 

Muhammad et al.; BJPR, 15(3): 1-9, 2017; Article no.BJPR.32138 
 
 

 
6 
 

 
 

Fig. 4. Gene expression levels of PSMD10 and LIFR in each sample. LIFR is down-regulated while 
PSMD10 genes are up-regulated in breast cancer samples as compared to normal expression 

levels 
 

 
 

Fig. 5. Protein-Protein Interaction network of PSMD10 (Uniprot ID: PSD10_Human) and LIFR 
(Uniprot ID: LIFR_Human) based on HAPPY and STRING databases indicating high-confidence. 

Each node represents the protein while dark lines indicate the interaction 



 
 
 
 

Muhammad et al.; BJPR, 15(3): 1-9, 2017; Article no.BJPR.32138 
 
 

 
7 
 

Table 2. Functional enrichment analysis of down-regulated and up-regulated differentially 
expressed genes (DEGs) 

 
Serial #    GO* accession number Count FDR** 
 Down-regulated DEGs 
1 [GO:0000902] Cell morphogenesis 18 2.63E-06 
2 [GO:0007166] Cell surface receptor linked signal transduction 8 4.38E-06 
3 [GO:0008284] Positive regulation of cell proliferation 20 5.71E-06 
4 [GO:0010033] Response to organic substance 5 0.018694 
5 [GO:0019221] Cytokine-mediated signaling pathway 8 7.80E-06 
6 [GO:0030182] Neuron differentiation 9 8.34E-06 
7 [GO:0032990] Cell part morphogenesis 12 8.72E-06 
8 [GO:0042127] Regulation of cell proliferation 14 1.05E-05 
9 [GO:0045768] Positive regulation of anti-apoptosis 10 1.12E-05 
10 [GO:0048861] Leukemia inhibitory factor signaling pathway 20 1.18E-07 
 Up-regulated DEGs   
1 [GO:0000278] Mitotic cell cycle 15 1.46E-05 
2 [GO:0022402] Cell cycle process 5 0.004726 
3 [GO:0043492] ATPase activity 8 2.63E-05 
4 [GO:0007049] Cell cycle 10 7.80E-04 
5 [GO:0022403] Cell cycle phase 10 6.46E-03 
6 [GO:0050000] Chromosome localization 8 0.030496 
7 [GO:0030071] Regulation of mitotic transition 12 5.71E-04 
8 [GO:0007067] Mitosis 11 4.38E-04 
9 [GO:0034622] Cellular macromolecular complex assembly 5 0.006950 
10 [GO:0000279] M phase 6 0.014037 
11 [GO:0051726] Regulation of cell cycle 8 0.014060 
12 [GO:0042981] Regulation of apoptosis 10 1.84E-04 
13 [GO:0043067] Regulation of programmed cell death 13 1.50E-03 
14 [GO:0010941] Regulation of cell death 8 1.01E-02 
15 [GO:0007059] Chromosome segregation 8 1.87E-03 
16 [GO:0045786] Negative regulation of cell cycle 4 0.027306 

*
GO: Gene Ontology, 

**
FDR: False Discovery Rate 

 

The interaction network of the most significant 
genes (PSMD10 and LIFR) was constructed to 
analyze the interactors. It was shown that these 
genes are interacted with IL6_HUMAN [26], 
CDK4_HUMAN [27], STAT3_HUMAN [28], 
GRB2_HUMAN [29], and PLCG1_HUMAN            
[30] genes which have been reported to be 
involved in the progression of cancers and other 
diseases. 
 

5. CONCLUSION 
 

We found a number of DEGs through expression 
profiling of breast cancer samples with normal 
cases. The enrichment analysis particularly 
showed that PSMD10 and LIFR targets were 
closely associated with the pathogenesis. These 
genetic variants play significant roles in the 
development of BC. However, further genetic 
and experimental validation studies are required 
to specify their potential function in diagnostic 
and therapeutic applications. 
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