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ABSTRACT 
 

In this study we consider Archimedean copula functions to obtain estimates of cause-specific 
distribution functions in bivariate competing risks set up. We assume that two failure times of the 
same group are dependent and this dependency can be modeled by an Archimedean copula. Based 
on the Archimedean copula which gives best fit to the competing risk data with independent 
censoring we obtain the estimates of cause specific sub distributions.  
 

 
Keywords: Archimedean copulas; cause specific distribution; cumulative incidence function; 

competing risks; nonparametric estimation. 
 

1. INTRODUCTION  
 
In the classical competing risk setting, there are 
two observed outcomes which one is time to 
failure ( 𝑇 > 0 ) and the other one is cause of 

failure (𝐶 = {1,2, … , 𝑘}). Here, 𝑇 is considered as 

a continuous variable and 𝐶 is considered as a 
discrete variable. Under the assumption of that 

every failure is assigned to only one cause, the 
set of 𝑘 causes are called risks before the failure 
occurs and then they are called causes after the 
failure occurs. In other words, the risks compete 
to be the cause [1]. 
 
The basic mathematical framework of bivariate 
competing risk setting can be defined as a joint 
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distribution of  (𝑇, 𝐶) . There are two basic 
quantities to analyze competing risks data which 
are the cause specific hazard ( 𝜆𝑗(𝑡) ) and the 

cause specific sub distribution or cumulative 
incidence function (CIF), (𝐹𝑗(𝑡)). These quantities 

are defined for the cause 𝑗  by time  𝑡 , 
respectively. 
 

𝜆𝑗(𝑡) = lim
∆𝑡→0

𝑃(𝑇<𝑡+∆𝑡,𝐶=𝑗|𝑇≥𝑡)

∆𝑡
;  𝑗 = 1,2, … , 𝑘  (1) 

 

𝐹𝑗(𝑡) = 𝑃(𝑇 ≤ 𝑡|𝐶 = 𝑗);  𝑗 = 1,2, … , 𝑘         (2) 

 

Competing risks data commonly occur in 
biomedical, epidemiological, medical studies and 
analyzing such kind of data becomes an 
important task for the goal of the researches. 
One of the procedures of analyzing competing 
risks data is estimating CIF and consequently 
compare estimated CIFs. Therefore, Kaplan-
Meier method which is a well known 
nonparametric method in survival analysis to 
estimate survival function from lifetime data is 
also considered to obtain estimates of CIFs in 
competing risks data. The cases with no 
competing risks, one minus Kaplan-Meier 
estimates of survival function provides an 
estimate of CIF. However, in the cases with 
competing risks Kaplan-Meier method to 
estimate CIFs yields incorrect and unbiased 
results. Because, it is assumed in the traditional 
approach in competing risk model all causes of 
failure and consequently failure times are 
considered independent. It has been studied by 
[2-4]. We recommend [1,5-7] for comprehensive 
sources for analysis of competing risks data.  
 
The competing risks models can be defined via 
latent failure times representation. In the 
presence of competing risks, the basic 
assumption is that there is a potential  𝑇 =
(𝑇1, 𝑇2, … , 𝑇𝑘)  survival time vector which is 
assigned to every individual. Since these failure 
times are not observable they have a latent 
structure and the actual lifetime span is the 
minimum of the , 𝑇2, … , 𝑇𝑘 . Mathematically, these 
failure times are treated as non-negative random 
variables and their joint distribution function is a 
multivariate distribution. Many authors state that 
in real life applications 𝑇1, 𝑇2, … , 𝑇𝑘 are likely to be 
dependent and this dependency can be 
modelled by copula functions, [8-12]. 
  
In some studies, multivariate competing risks 
data with multiple cause of failure can be 
obtained from the subjects in the same group or 
family. Estimating the joint distribution of such 

kind of multivariate data provides the better 
understanding of the dependence among failure 
times. 
 
In this study, we consider bivariate competing 
risks set up in which dependence structure of 
failure times can be modelled by an 
Archimedean copula. The Archimedean copula 
function that provides best fit for the dependency 
between two dependent competing risks is 
estimated non-parametrically, by the method that 
is suggested by [13].  
 
Under independent censoring a non-parametric 
estimation of cause-specific sub distribution 
which is developed in [14] is employed and the 
same data set is used for comparison of the 
empirical results. 
 
In this study, we revisited the approach in the 
work of [12] in which Archimedean copulas are 
considered to model failure times in the presence 
of competing risks. Following the approach we 
model the dependency of the competing risks by 
an Archimedean copula and obtain the estimates 
of cause-specific sub distributions. Under 
independent censoring and Archimedean copula 
approach the obtained estimates are compared 
to the estimates in [14].  
 
The rest of the paper is organised as follows. In 
Section 2, a brief mathematical framework of the 
bivariate competing risks and Archimedean 
copulas are revisited. In Section 3, the results 
are obtained and compared. In Section 4 we 
conclude the paper. 
 

2. THE MATHEMATICAL FRAMEWORK 
 

2.1 Bivariate Competing Risks Models  
 
The basic probability framework of bivariate 
competing risks is considered as a bivariate 
distribution. Let, 𝑇1  and 𝑇2  are failure times of 
each member of the same group and random 
variables on a probability space. The survivor 
function of 𝑇 = (𝑇1, 𝑇2) is defined as 
 

𝑆𝑇(𝑡1, 𝑡2) = 𝑃(𝑇1 > 𝑡1, 𝑇2 > 𝑡2), 0 < 𝑡1, 𝑡2 < ∞    (3) 
 
From the nature of the failure time data we can 
observe the  𝑌𝑖 = 𝑚𝑖𝑛(𝑇𝑖 , 𝑍𝑖 ) where𝛿𝑖 = 𝐼(𝑇𝑖 = 𝑌𝑖 ) 
with pair of random censoring times, 𝑍 = (𝑍1, 𝑍2). 

The assumption here is 𝑇  and 𝑍  are 

independent. The survivor function of 𝑌 = (𝑌1, 𝑌2) 
is  
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𝑆𝑌(𝑡1, 𝑡2) = 𝑃(𝑌1 > 𝑡1, 𝑌2 > 𝑡2);  0 < 𝑡1, 𝑡2 < ∞    (4) 
In bivariate competing risk set up, suppose that 
the causes 𝐶 = (𝐶1, 𝐶2)  corresponding to 𝑇 =
(𝑇1, 𝑇2) are represented. The cause specific sub 
distribution function is defined as follows  
 

𝐹𝑖𝑗(𝑡1 , 𝑡2) = 𝑃(𝑇1 ≤ 𝑡1, 𝑇2 ≤ 𝑡2, 𝐶1 = 𝑖, 𝐶2 = 𝑗);  

𝑖 = 1,2, … , 𝑘;  𝑗 = 1,2, … , 𝑘                        (5) 
 
The cause specific sub distribution function can 
be interpreted as the probability that the failure of 
both the individuals due to the causes (𝑖, 𝑗)  is 
prior (𝑡1, 𝑡2) . Under the independent censoring, 

the cause specific sub distribution function, 𝐹𝑖𝑗 is 

defined in (6).  
 

𝐹𝑖𝑗(𝑡1, 𝑡2) = 𝑃(𝑇1 ≤ 𝑡1, 𝑇2 ≤ 𝑡2, 𝛿1 = 1, 𝛿2 =

1, 𝐶1 = 𝑖, 𝐶2 = 𝑗)                                    (6) 
 
The simple non parametric estimator of (6) is 
defined and presented with the properties in [14]. 
We consider the following unbiased estimator 
rest of the paper. Suppose that random sample 
with size of 𝑛  and  𝑌𝑢 = (𝑌1𝑢 , 𝑌2𝑢), 𝛿𝑢 = (𝛿1𝑢, 𝛿2𝑢) 
with cause of failure pair 𝐶𝑢 = (𝐶1𝑢, 𝐶2𝑢) . The 

unbiased estimator of 𝐹𝑖𝑗 is defined by (7). 

 

�̂�𝑖𝑗 =
1

𝑛
∑ 𝐼(𝑌1𝑢 ≤ 𝑡1

𝑛
𝑢=1 , 𝑌2𝑢 ≤ 𝑡2, 𝛿1𝑢 = 1, 𝛿2𝑢 =

1, 𝐶1𝑢 = 𝑖, 𝐶2𝑢 = 𝑗)                                     (7) 
 

2.2 Archimedean Copulas 
 
According to [15], the bivariate cumulative 
distribution function 𝐻  of any pair (𝑋, 𝑌)  of 
continuous random variables may be written in 
the form 
 

𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)), 𝑥, 𝑦 ∈ ℝ               (8) 
 
where  
 
𝐹(𝑥)  and 𝐺(𝑦)  are continuous marginal 
distributions and 𝐶  is the copula function with 

𝐶: [0,1]2 → [0,1] . It should be noted that if the 

marginal distributions are continuous, there is a 
unique copula representation [15]. 
 
Archimedean Copula family which is a special 
class of copulas can be expressed in the 
following form  
 

𝐶(𝑥, 𝑦) = ϕ −1(ϕ(𝐹(𝑥)) + ϕ(𝐺(𝑦)))          (9)  

   
Here, ϕ: [0,1] → [0, ∞]  is called a generator 
function which is a convex, decreasing function. 
For  0 < 𝑡 < 1 , the generator function ϕ  is such 
that ϕ(1) = 0 , ϕ(0) = ∞ , ϕ′(t) < 0 , ϕ′′(t) ≥ 0 . 

Thus, ϕ is a continuous, strictly decreasing and 
convex function and always has an inverse, 
ϕ⁻¹: [0, ∞] → [0,1] which has the same properties 
except ϕ⁻¹(0) = 1 ve ϕ⁻¹(∞) = 0.  
 
An Archimedean copula is indexed by a 
parameter (𝜃) which is called copula parameter. 
The copula parameter can be estimated by using 
some estimation methods such as maximum 
likelihood and method of moments which is 
based on Kendall’s tau. The performances of 
these two methods are compared and it is stated 
that the method of moments based on Kendall’s 
tau performs as well as the maximum likelihood 
method does, [12].  
 
Additionally, the direct relationship between 
Kendall’s tau and Archimedean copulas provides 
some benefits for mathematical calculations. The 
relationship between parameters of some 
Archimedean copulas and Kendall’s tau is 
defined in [16].  
 

𝜏 = 4 ∬ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣)
1

0
− 1         (10) 

 
We consider four Archimedean copula functions 
[5,17-19] to model failure times. These copula 
functions, corresponding parameter space and 
the relationship with Kendall’s tau are listed in 
Table 1. 

 

Table 1. Archimedean copulas and Kendall’s  

 

Family Bivariate copula 

 𝑪(𝒖𝟏, 𝒖𝟐) 

Copula Parameter 

Space 
𝛕 

Gumbel 𝑒𝑥𝑝[−[(−𝑙𝑛𝑢1)𝜃 + (−𝑙𝑛𝑢2)𝜃 ]1/𝜃] 𝜃 ≥ 1 (𝜃 − 1) 𝜃⁄  

Clayton ((𝑢1)−𝜃 + (𝑢2)−𝜃 − 1)
−1/𝜃

 𝜃 > 1 𝜃 (𝜃 + 2)⁄  

Frank 
(−

1

𝜃
) 𝑙𝑛 {

(1 − 𝑒−𝜃) − (1 − 𝑒−𝜃𝑢1)(1 − 𝑒−𝜃𝑢2)

(1 − 𝑒−𝜃)
} 𝜃𝜖(−∞, ∞) 1 −

4

𝜃
[1 − 𝐷1(𝜃)] 

Guloksuz-
Kumar 

1 − (
1

𝜃
) 𝑙𝑛[𝑒𝜃(1−𝑢1) + 𝑒𝜃(1−𝑢2) − 1] 𝜃 > 0 4 (

1 − 𝑒−𝜃 − 𝜃

𝜃2
) + 1 
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𝐷𝑛(Ɵ) =
𝑛

Ɵ𝑛 ∫
𝑡𝑛

𝑒𝑡−1

Ɵ

0
𝑑𝑡, 𝑛 > 0, is a Debye function 

A bivariate Archimedean copula that is defined in 
(9) can be uniquely determined by Kendall 
distribution function, 𝐾𝜙(𝑡), [13] as follows : 

 

𝐾𝜙(𝑡) = 𝑡 −
𝜙(𝑡)

𝜙′(𝑡)
.                                       (11) 

 
It means that a bivariate Archimedean copula 
function can be determined by one-dimensional 
(𝑡) , [13]. In fact, 𝐾𝜙(𝑡) is the distribution function 

of the Archimedean copula function. The 
considered copula functions in this study and 
their distribution functions are listed in Table 2. 
 
Under the assumption of two failure times can be 
modelled by a bivariate Archimedean copula 
function, we consider the method which is 
proposed in [13] to select suitable Archimedean 
copula. The method is based on the comparison 
of empirical and theoretical estimates of Kendall 
distribution in (11) which uniquely determine a 
bivariate Archimedean copula function.  
 
As stated in [13], the empirical estimate of (11) 
which is represented by 𝐾𝑛(𝑡)  from a random 
sample of size n is given by 
 

𝐾𝑛(𝑡) =
#(𝑇𝑖≤𝑡)

𝑛+1
     (12) 

 
where pseudo observations 𝑇𝑖 ′𝑠 are defined as 

  

𝑇𝑖 = 𝐻𝑛(𝑋𝑖 , 𝑌𝑖) =
∑ 𝐼[{𝑋𝑗≤𝑋𝑖&𝑌𝑗≤𝑌𝑖}]𝑛

𝑗=1

𝑛+1
, 𝑖 =

1,2, … 𝑛                                                      (13) 
 

The theoretical estimates of (11) are obtained by 
considering Table 1 which provides the estimator 
of copula parameter and third column of Table 2. 
The selection procedures can be finalized, 
following [20], minimizing the following distance 
which specifies the degree of closeness of the 
𝐾𝑛(𝑡) and 𝐾𝜙(𝑡) in this study. 

 

 𝑀𝐷 = ∫[ 𝐾𝑛(𝑡) − 𝐾𝜙(𝑡)]2𝑑𝐾𝑛(𝑡)  (14) 

3. APPLICATION  
 
In this section we consider the data set which 
refers the times to tumor appearance or death for 
50 pairs of mice from the same litter in a tumor 
genesis experiment, [21], as reported in [22]. In 
this data set, 𝑇1 and 𝑇2 indicate the failure times 

(in weeks) of mice , 𝐶𝑗 = 1 represents the cause 

of failure is the appearance of a tumour , 𝐶𝑗 = 2 

represents that the failure is observed before the 
appearance of a tumour and 𝐶𝑗 = 0  represents 

the censored observations. Since the length of 
the observation period is 104 weeks, censoring 
time is 104 weeks for all mice. The all records of 
the data set are listed in Table 3. The table also 
can be found in [14].  
 
We assume that the dependence structure of the 
failure times can be modelled by an 
Archimedean copula. The considered copula 
functions in this study are listed in Table 1 and 
Table 2. The procedure which is summarized 
briefly in Section 2.2 is applied to estimate the 
bivariate Archimedean copula which gives the 
best fit to the data. The estimates of the 
parameters of the studied copulas and the 
distance measure in (14) are listed in Table 4.  
 
According to the results, Frank copula with the 

estimated parameter �̂� = 0.7592  gives the best 
fit to the data over the considered candidates 
and Fig. 1 demonstrates the comparison of 
empirical and theoretical estimates. 
 
In the rest of this section, estimates of the cause 
specific distribution functions of the studied data 
are presented. Our aim is comparing the 
estimates of cause specific distribution functions 
which are obtained based on (7) and the ones 
which are obtained with a bivariate Archimedean 
copula approach. The estimator of cause specific 
distribution function in (7) is and its mathematical 
properties are studied in [14]. According to the 

 
Table 2. Archimedean copulas, generator functions and Copula distribution function 

 

Family Generator 𝝓(𝒕) 𝑲𝝓(𝒕) = 𝒕 −
𝝓(𝒕)

𝝓′(𝒕)
 

 

Gumbel (−𝑙𝑛𝑡)𝜃 
𝑡 −

𝑡𝑙𝑛𝑡

𝜃
 

Clayton 𝑡−𝜃 − 1 
𝑡 −

𝑡𝜃+1 − 𝑡

𝜃
 

Frank 
−𝑙𝑛

𝑒−𝜃𝑡 − 1

𝑒−𝜃 − 1
 

𝑡 −
𝑙𝑛

𝑒−𝜃𝑡 − 1

𝑒−𝜃 − 1
𝜃

(𝑒𝜃𝑡 − 1) 
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Guloksuz-Kumar 𝑒𝜃(1−𝑡) − 1 
𝑡 −

𝑒𝜃(1−𝑡) − 1

−𝜃𝑒−𝜃(1−𝑡)
 

Table 3. Data of mice 
 

T1 C1 T2 C2 T1 C1 T2 C2 

49 1 104* 0 104* 0 104* 0 

102 2 104* 0 104* 0 104* 0 

104* 0 104* 0 81 1 64 1 

97 2 79 2 55 1 94 2 

104* 0 104* 0 104* 0 54 1 

96 1 104* 0 87 2 74 2 

94 2 77 1 73 1 84 1 

104* 0 104* 0 104* 0 83 2 

77 2 104* 0 104* 0 73 2 

104* 0 77 2 79 2 104* 0 

91 2 90 2 104* 0 104* 0 

70 2 92 2 104* 0 104* 0 

45 2 50 1 101 1 94 2 

69 2 91 2 84 1 78 1 

104* 0 103 2 81 1 76 2 

72 2 104* 0 95 2 104* 0 

63 2 104* 0 104* 0 66 1 

104* 0 74 2 104* 0 102 1 

104* 0 69 2 98 2 73 2 

104* 0 68 1 104* 0 104* 0 

104* 0 104* 0 83 2 77 2 

104* 0 104* 0 104* 0 104* 0 

83 2 40 1 79 2 99 2 

104* 0 104* 0 91 2 104* 0 

104* 0 104* 0 104* 0 79 1 
*Censored Observation 

 

Table 4. Estimates of parameters and distance 
 

Archimedean Copulas  �̂� Distance 

Clayton 0.1831 0.1302 

Gumbel 1.0915 0.1118 

Frank 0.7592 0.1108 

Guloksuz-Kumar 1.6062 1.1067 
 

results which are proposed in [14], the estimator 
is unbiased, consistent and it has a weak 
convergence. The simulation studies which are 
conducted in [15] show that the estimator has 
low variance and bias.  
 
The results are listed in Table 5 are obtained 
based on (7). They are also found in [14]. 

 
For the aim of the study, the failure times of mice 
( 𝑇1  and 𝑇2  ) are modelled by bivariate Frank 
copula with different parameters and the 
empirical estimates of the cause specific 

distribution functions  �̂�𝑖𝑗(𝑡1, 𝑡2) are obtained. The 

results are illustrated in Fig. 2 and listed in Table 
6. 
The first column of the Table 6 is the estimates of 
cause specific sub distribution function which are 
also listed in Table 5. These estimates are 
obtained based on (7) and the other columns are 
the estimates under the assumption of the pair of 
(𝑇1, 𝑇2)  can be modelled by Frank copula with 
different parameters. We compared the Frank 

copula based estimates of  �̂�𝑖𝑗(𝑡1, 𝑡2)  to the 

estimates which are presented in Table 5 based 
on (7). The results present that copula based 
estimates are close to the non-parametric 
estimates according to the closeness measure 
Mean Square Error (MSE). It can be said that 
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modelling dependence of competing risks by an 
Archimedean copula yields reasonable estimates 

of cause specific distributions.  

 
 

Fig. 1. Estimation of distribution functions of studied copulas and empirical distribution 
function of data 

 

Table 5. Estimates of the cause specific distribution function 
 

𝑻𝟏 𝑪𝟏 𝑻𝟐 𝑪𝟐 �̂�(𝑻𝟏, 𝑻𝟐) 

45 2 50 1 0.02 
55 1 94 2 0.04 
69 2 91 2 0.04 
70 2 92 2 0.06 
73 1 84 1 0.04 
79 2 99 2 0.12 
81 1 64 1 0.04 
81 1 76 2 0.06 
83 2 40 1 0.02 
83 2 77 2 0.10 
84 1 78 1 0.12 
87 2 74 2 0.08 
91 2 90 2 0.18 
94 2 77 1 0.14 
97 2 79 2 0.18 
98 2 73 2 0.08 
101 1 99 2 0.34 
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Fig. 2. Estimates of  𝑭𝒊𝒋(𝒕𝟏, 𝒕𝟐) based on frank copula with different parameters 

Table 6. Estimates under Frank Copula modelling with different parameters 
 

�̂�(𝑻𝟏, 𝑻𝟐) �̂��̂�=𝟐 �̂��̂�=𝟑 �̂��̂�=𝟓 �̂��̂�=𝟏𝟎 �̂��̂�=𝟏𝟓 �̂��̂�=𝟐𝟓 

0,02 0 0 0 0,01 0,01 0,01 
0,04 0,02 0,02 0,03 0,04 0,05 0,04 
0,04 0,03 0,03 0,04 0,05 0,06 0,06 
0,06 0,04 0,05 0,06 0,06 0,08 0,08 
0,04 0,04 0,05 0,06 0,05 0,09 0,1 
0,12 0,07 0,08 0,09 0,11 0,13 0,12 
0,04 0,02 0,02 0,03 0,04 0,05 0,06 
0,06 0,04 0,04 0,06 0,07 0,1 0,11 
0,02 0,01 0,01 0,01 0,02 0,02 0,02 
0,08 0,06 0,07 0,09 0,09 0,13 0,15 
0,12 0,07 0,08 0,1 0,12 0,14 0,17 
0,08 0,04 0,05 0,07 0,09 0,09 0,1 
0,18 0,1 0,12 0,14 0,18 0,19 0,22 
0,14 0,07 0,09 0,11 0,14 0,15 0,16 
0,18 0,09 0,11 0,14 0,17 0,19 0,2 
0,08 0,04 0,05 0,06 0,08 0,08 0,09 
0,34 0,16 0,19 0,22 0,32 0,32 0,33 

MSE 0,0037 0,0024 0,0012 0,00007 0,0005 0,001 

 
4. CONCLUSION 
 

Most researches in competing risks, failure times 
are assumed to be independent. However, in 
some cases they are tend to be dependent and 
such cases require different approaches. 
Archimedean copulas can be considered to 
model the dependency between failure times. In 
this paper, Archimedean copula functions in 
bivariate competing risk set up is considered and 
dependent failure times are modelled by a 
bivariate Archimedean copula. A comparison 
study is conducted to present that closeness of 
estimations of cause specific distribution 
functions based on Copula and empirical 
estimates. The empirical estimates of cause 
specific distributions which are presented in [14] 
are treated as standard estimates and the copula 
based estimates are compared to these standard 
estimates. The results show that when the 
dependence of failure times is modeled by an 
Archimedean copula, the estimates of cause 
specific distribution function are estimated as 
close as to the standard empirical estimates. The 
all results are obtained by using one data set. 
The idea of the study can be improved by 
considering a comprehensive theoretical 
perspective. The study can also be extended 
multivariate case with different estimation 
methods and copula functions.  
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