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ABSTRACT 
 

Aims: Determining effects of spatial variation of some soil properties on wheat quantity and quality 
variation in order that proper soil and inputs management can be applied for sustainable wheat 
production. 
Study Design: Analyzing data of a field with center pivot irrigation system and uniform 
management using the geostatistical method. 
Place and Duration of Study: Soil and Water Research Department, Fars Agricultural and Natural 
Resources Research and Education Center, Darab, Iran, from September 2013 to February 2014. 
Methodology: Wheat yield data harvested by class lexion 510 combine from 25 m2 plots (11340 
locations) with the corresponding geographical location were used. Besides, soil properties and 
wheat yield were measured at 36 randomly selected points on the field. Interpolation of parameters 
was predicted with the best semi-variogram model using kriging, inverse distance weighted (IDW), 
and cokriging methods. 
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Results: Results showed that wheat yield varied from 2 to 10.08 tons per hectare. Cokriging with 
cofactor of kernel weight interpolator had more accuracy compared to the combine default 
interpolator (kriging). A logical, linear correlation was found between different parameters. The best 
variogram model for pH, OC, and ρb was exponential, for EC, TNV, SP, soil silt and clay 
percentage was spherical, and for soil, percentage sand was Gaussian model. Data of soil sand, 
silt, and clay percentage, EC, TNV, and SP had strong spatial structure, and soil pH, OC, and ρb 
had moderate spatial structure. The best interpolation method for soil pH, EC, sand and silt 
percentage was kriging method; while, for TNV, SP, OC, ρb, and clay percentage was IDW. 
Conclusion: There was a close relationship between wheat yield variation and changes in the soil 
properties. Soil properties and wheat yield distribution maps provided valuable information which 
could be used for wheat yield improvement in precision agriculture.  

 
 
Keywords: Geostatistics; precision farming; semi-variogram; spatial variability; wheat. 
 

1. INTRODUCTION 
 
Applying identical and similar management to 
different parts of a field can make sever problem 
in the long term. Using synthetic fertilizers and 
intensive irrigation are two important 
environmental problems that associated with 
degradation of soil [1]. Crop production and soil 
management can influence soil carbon formation, 
decomposition, and soil sustainable productivity 
[2]. Junqueira et al. [3] showed that soil fertility 
negatively correlated with plot size, distance, and 
length of the cultivation period. Farmers may 
make a considerable variation in soils at very fine 
scales when developing and adapting their 
cultivation strategies [4]. Human activity has an 
adverse effect on global cycle of carbon, 
nitrogen, and phosphorus which play a significant 
role in climate change and influences entire 
organisms and ecosystem [5,6]. 
 
Climate and topography conditions combined 
with soil properties could explain the soil organic 
carbon (SOC) variations across the tropical 
region; also high SOC is related to high clay 
content and high root development [7]. Global 
warming and climate change is an important 
challenge; therefore, the high potential of topsoil 
to sequester C is an indicator of soil health and 
soil potential to mitigate climate change [8]. The 
soil organic carbon could affect the soil biological 
activity and diversity, soil fertility and nutrient 
cycles, soil hydraulic parameters, and soil 
structure, thus their results have a positive 
impact on plant productivity [8,9]. Therefore, 
applying precision agriculture and site-specific 
management to each part of field is necessary 
for conserving of soil organic matter.  
 
Accurate estimation of soil properties is very 
important in precision farming, because 

optimization of these properties has positive 
effect on soil productivity and crop yield [10,11]. 
Recognizing potentials and limitations of different 
locations of field is very important for effective 
scheduling and field management. On the other 
hand, extrapolation of results obtained from point 
sampling, scattering experiment, and field 
measurements creates high uncertainty when 
generalizing to larger scales. Having a 
comprehensive knowledge about soil texture, 
moisture content, bulk density, and cation 
exchange capacity is necessary for evaluating 
soil quality and applying precision agriculture 
[12]. Therefore, several methods such as         
spatial variables theory and geostatistical  
method have been introduced to solve this 
problem [13]. 
 
Point or station study has limitation like a low 
number of sampling and comparing with a 
contortion of soil parameters pattern, provides 
small amount of information [14]. Variability of 
natural soil increased at different spatial and 
temporal scales, because of, complicated soil 
formation process and application of materials on 
soil with cultivation [15]. Soil variability increased 
with different agricultural crop management [16]. 
Variation of a relationship between soil properties 
was also reported at sugar-cane lands with 
uniform management and with aid of precision 
agriculture [17]. Also, nowadays geostatistical 
methods are using for explain of variability. 
Variability of soil organic carbon severely 
depends on natural processes and human 
activities [18]. Soil organic carbon at different 
locations has been estimated with geostatistical 
methods especially kriging method [19,20]. Soil 
physical and chemical properties are varied 
because of parent material nature and location of 
soil at the nature [21]. 
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For estimation of spatial pattern of soil properties 
(pH, EC, CaCO3), universal kriging model is 
more suitable compared to the other methods 
(ordinary kriging, IDW, and splines) [22]. The 
best interpolator for calcium and soil electrical 
conductivity is cokriging method, for saturation 
percentage, magnesium, sodium, and silt and 
clay percentage is disjunctive kriging and for 
zoning of potassium and sand percentage is 
ordinary kriging method [23]. 
 
Also, Pearson correlation and regression 
analysis are used for determining relationship 
between soil electrical conductivity and other soil 
properties [24]. Understanding relationships 
between crop yield and soil parameters is useful 
for making accurate decision and applying better 
field management. There is a significant 
correlation between soil texture and soil salinity 
and moisture content of 0-20 cm soil depth; soil 
salinity and moisture have high variability, but 
soil organic carbon and total nitrogen of 0-20 cm 
soil depth have low variability [25]. Soil electrical 
conductivity has a correlation with soil clay 
content [26], soil water content [27], and amount 
of soil organic carbon [43]. Reduction in 
agricultural inputs utilization (e.g. organic 
farming), biodiversity conservation, and 
improving water, soil, and air quality are 
proposed for conserving environment [28,29]. 
 
Crop yield is affected by inherent soil properties 
and management factors; therefore, for optimum 
using of inputs, protecting the environment, 
producing healthy food, using variable rate 
fertilizer spreaders, adapting irrigation system 
designs, and sustainable and economic 
producing, a comprehensive understanding of 
variability pattern of soil properties and yield is 
necessary.  

The target of this research was to determine the 
spatial variability of wheat yield and soil 
properties and choose the best geostatistical 
model for characterizing these spatial variations. 
In addition, soil properties and wheat yield 
distribution map were provided using the            
best interpolator and obtained results were 
analyzed. 
 

2. MATERIALS AND METHODS 
 
Fars province and Darab plain is one of the most 
important regions in Iran for producing 
agricultural products. In this plain, a field with 40 
ha area, which irrigated with a center pivot 
irrigation system was selected. This field was 
located from 28◦, 46״59 ,׳ N to 28◦, 47״23 ,׳ N and 
from 54

◦
, 16

׳
, 47

״
 E to 54

◦
, 17

׳
, 14

״
 E (Fig. 1). The 

moisture and temperature regimes of this area 
are Aridic-Ustic and Hyperthermic, respectively. 
Wheat yield data harvested by class lexion 510 
combine from plots of 25 m2 areas (11340 
points) with the corresponding geographical 
location were used. In addition, soil samples 
were randomly taken from 0-30 cm soil depth of 
36 sites (points) of this field and analyzed for soil 
EC, pH, Total Neutralizing Value (TNV), OC, SP, 
and soil sand, silt and clay particles [30]. Wheat 
yield was also measured by manual harvesting 2 
m

2
 area of these sites. Besides, soil bulk density 

was measured by taking undisturbed soil 
samples from 0-15 and 15-30 cm soil depths. 
Collected data were analyzed using Microsoft 
Excel 2007, SPSS 16, AGRO-MAP 4, Surfer 10, 
and GS

+ 
7 software's. Data were Interpolated for 

parameters at the points without measured data 
using kriging, inverse distance weighting, and 
cokriging methods by fitting spherical, 
exponential, linear, and Gaussian models to the 
experimental semi-variograms. 

 

 
Fig. 1. Schematic of study area 
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Firstly, spatial variation of studied property was 
shown based on regionalized variable theory 
according to the following formula: 
 

Z(x)=m(x)+ε(x)              (1) 
 

Where, Z(x) is regionalized variable, m(x) is 
structural variation, and ε(x) is random 
component. 
 

The resulting graph of semi-variance versus 
different lag distances that called experimental 
semi-variogram was drawn for each parameter. 
For obtained data, empirical semi-variogram was 
calculated using the following equation:  

                    


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Where, γ(h) is Semi-variance, Z(xi) is the 
observed value of variable Z in Xi, Z(Xi+h) is the 
observed value of variable Z in Xi+h, h is lag 
distance, and N(h) is the number of comparisons 
between a given distance h. Spatial structure of 
data was determined by fitting spherical, 
exponential, linear, linear to sill and Gaussian 
models to the experimental semi-variogram 
[31,32]. In order to compare the spatial 
correlation of different semi-variograms, nugget 
variance to sill [C0/(C0+C)] ratio was used. When 
this ratio was ≤0.25, the measured variable was 
considered strongly spatially dependent; when 
the ratio was between 0.25 and 0.75, the 
measured variable was considered moderately 
spatially dependent; and when the ratio was 
>0.75, the variable was considered weakly 
spatially dependent [33]. Coefficient of 
determination of the best model fitted to the 
semi-variogram was also used to compare the 
spatial correlation of different semi-variograms. 
When this coefficient was <0.5, the spatial 
correlation was considered week [34]. 
 

In kriging method, the weights are chosen in 
such a way that the estimate Z*(x0) of the true 
value Z(x0) is unbiased and the prediction 
variance is minimized. In the kriging method, the 
predictor Z(x0) for a non-sampled location x0, is 
calculating as follow [35]: 
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(3) 
 

 
Where λi, is weight associated with the sampling 

point i, )( ixZ is amount of observation data 
around of un-sampled point, and 

ix  is location 

of observation points. The best fitted model to 
the experimental variogram was determined, and 
kriging, cokriging, and IDW interpolators were 
used for explanation of spatial variability of each 
parameter. For evaluation of models and 
geostatistic estimation validity, mean absolute 
error (MAE), mean biased error (MBE), root 
mean square error (RMSE), and variance of error 
(MSDR) criteria were used by the following 
equations [36]: 
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Where n is number of samples, )(ˆ xz  is amount 

of estimated value at point x, )(xZ  is amount of 

measured, and )( x  is standard deviation at 

point x. Amounts of values calculated for criteria 
showed the amounts of biased values. Positive 
biased values showed overestimation of 
predicted data and negative biased values 
showed underestimation of predicted data. For 
cokriging method, experimental cross semi-

varogram function )]([ hij  was used as follows 

[37]: 
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(8) 

 

Where, 
)]([ hij  is sample cross semi-variance to 

the distance h, N(h) is the number of sample pair 
of points separated by the distance h, Zi and Zj 
are the values of the main variable and co-
variable, respectively at locations of xk and xk+h. 
After calculating cross semi-variogram, 
theoretical models were fitted to the experimental 
cross semi-variogram. Cokriging interpolator 
equation is as follows: 
 


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1 1

)()(ˆ 
 

(9) 

 

Where, U is main variable, V is co-variable, iv  
is 

weight of each observation for co-variable, Z(xiv)   
is measured amount of co-variable at location xiv 
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and )(
ˆ

xu
Z  is amount of estimated main variable 

at non sampled point 
x . 

 
In IDW method, the highest weight was allocated 
to the nearest sample and lowest weight was 
allocated to the sample with the maximum 
distance from estimated value. In this method, 
amount of variable for each points of without data 
was calculated using the following equation: 
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(10) 

 

Where, Z is estimated value of variable at non-
sampled point, di is distance of non-sampled 
point from the estimated point, n is number of 
samples, and m is exponent of distance (d). 
 

3. RESULTS AND DISCUSSION 
 
Results showed that variation range of wheat 
yield was from 2 to 10.08 ton/ha which was very 
high (Table 1). Reason of this high variation was 
existence of effective parameters on spatial 
heterogeneous including amount of soil organic 
matter, non-leveled farm, micro-relief, vegetation 
accumulation, soil texture, drainage, erosion, 
cultivation system and tillage, crop rotation, and 
similar fertilizing system in all part of a field. 
These factors are strongly affected by human 
activities which should be effectively managed. 
 

Evaluation of wheat yield at 11340 points with 
area of 25 m

2
 for each point indicated that 321 

points had zero wheat yields. These data points 
where the points located at the borders of the 
field with very shallow or without crop canopy; 
therefore, software installed on the combine was 
not able to record data for these points. 
Therefore, these data points were eliminated 
from the collected data and the rest were 
analyzed again. Variation of wheat grain yield 
showed that wheat yield and yield components 
could be considerably increased by applying 
precision agriculture, improving management 
system, and eliminating existing limitations at the 
field. 
 

Exponential model was the best fitted to the grain 
yield data with the maximum coefficient of 
determination and the minimum residual sum of 
squares, and wheat yield and 1000 kernel weight 
had strong spatial structure (Table 2). 
 

Based on evaluation criteria, accuracy of point 
kriging method for estimating wheat grain yield 
was higher than IDW method (Table 3). Spatial 
distribution of wheat grain yield using point 
kriging interpolator is shown in Fig. 2, and wheat 
grain yield had very high variability. Diacono et 
al. [38] also found high spatial variations for 
durum wheat yield and quality parameters, and 
related these variations to the spatial variability of 
effective factors on crop yield. Kernel weight of 
wheat grain was influenced by soil properties and 
soil salinity had the higher effect on the kernel 
weight than the others. According to the findings 
of Martínez et al. [39] and Ben Hassine et al. 
[40], drought and salinity are two important 
abiotic stresses in the world that reduce crop 
vegetation and increase soil erosion. In the 
studied field, variation of soil properties such as: 
soil texture, soil salinity, and uniform field 
management and fertilizer application caused to 
variation of wheat yield. Sambatti and Caylor [41] 
and Rozema and Flowers [42] also found that 
drought and salinity reduced crop yield 
considerably. Therefore, divided of field to 
uniform parts and doing proportional 
management and using variable and sufficient 
rate of fertilizer or irrigation water for every part 
of field will be leading to more yield and 
sustainability of production. 
 
Wheat kernel weight had significantly negative 
correlation with soil salinity and soil silt 
percentage. Also, there was positive correlation 
between soil saturation percentage and soil 
organic carbon and fine particles (soil silt and 
clay percentage), but soil saturation moisture had 
significantly negative correlation with sand 
percentage and TNV. Besides, Soil pH had 
positive correlation with soil clay percentage, but 
negative correlation with EC. Also, soil EC had 
positive correlation with soil organic matter and 
negative correlation with soil clay   percentage. 
Correlation between TNV, and soil sand 
percentage was positive; while, correlation 
between this factor and soil organic carbon and 
clay percentage was negative. Soil organic 
carbon had positive correlation with soil silt 
percentage (Table 4). 
 

There was no significant correlation between soil 
bulk density and soil other properties including 
soil OC, EC, pH, SP, TNV and soil sand, silt and 
clay percentage. Results of previous researches 
have also shown contradictory correlation 
between soil bulk density and other soil 
parameters [43]. Similar to results of this
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Table 1. Descriptive statistics of wheat grain yield harvested by class lexion combine 
 

Variable Unit Minimum Maximum Average Variance Skewness Kurtosis 
Wheat yield tons/ha 2 10.8 5.1 1.5 1.19 2.9 
Kernel weight g 23 43 36.3 26.4 -0.93 0.24 

 
Table 2. Fitted model to the experimental semi-variogram and summary of geostatistical 

information of wheat yield harvested by combine and cross semi-variogram information of 

kernel weight with co-factor of soil salinity 

 
Factors Model C0 C0+C 

CC

C

0

0

 

A0 R2 RSS 

Wheat yield exponential 0.032 0.064 0.02 117.2 0.94 1.43*10
-5 

Kernel 
weight-EC 

Gaussian -0.001 -0.332 0.003 229 0.96 6.9*10
-3 

C0: nugget effect, C+C0: sill, [C0/(C0+C)]: spatial correlation ratio, A0: range (m), R
2
: coefficient of determination, 

RSS: residual of sum of square. 
 

Table 3. Evaluation of different interpolation methods for wheat yield harvested by combine 
 

Interpolation method MBE MAE RMSE MSDR 
Inverse distance weighting -0.0672 0.6848 0.9404 0.0012 
Kriging -0.0156 0.6863 0.9386 0.0012 

 

Table 4. Simple correlation coefficient between wheat yield characteristics and measured soil 
properties 

 

 Yeild KW SP pH EC TNV OC ρb15 ρb30 Sand Silt Clay 
Yeild 1            
KW .61** 1           
SP -.02 -.33 1          
pH -.24 -.04 -.03 1         
EC .12 -.39

*
 .27 -.62

**
 1        

TNV .13 .30 -.60** .06 -.11 1       
OC -.05 -.29 .73** -.23 .54** -.39* 1      
ρb15 .08 .07 -.05 .02 -.14 .20 -.19 1     
ρb30 -.01 .01 -.10 -.17 .12 .24 -.19 .37 1    
Sand .16 .17 -.64

**
 -.32 .32 .65

**
 -.28 .14 .28 1   

Silt -.17 -.39* .51** -.08 .25 -.58** .36* -.31 -.28 -.60** 1  
Clay -.07 .06 .44

**
 .46

**
 -.57

**
 -.40

*
 .10 .04 -.15 -.83

**
 .04 1 

KW: Kernel weight, SP: Saturation percentage, TNV: Total neutralized value, OC: Organic carbon,  
ρb: Bulk density 

 

Table 5. Descriptive statistics of measured soil properties at the study area 
 

Variable Unit Minimum Maximum Average Variance Skewness Kurtosis 
pH - 7.7 8.1 7.9 0.01 -0.33 -0.35 
EC dSm

-1
 0.57 0.98 0.76 0.01 0.09 -0.95 

OC % 1.01 1.66 1.32 0.02 -010 -0.01 
TNV % 42 52.5 47.5 7.48 -0.12 -0.64 
SP % 48 63 54.9 9.3 0.35 0.34 
ρb 15 grcm-3 1.22 1.54 1.38 0.01 0.26 -0.78 
ρb 30 grcm

-3
 1.37 1.77 1.54 0.01 0.19 -0.46 

Sand % 22.2 39 28.4 17.3 0.65 -0.79 
Silt % 37.4 46.6 42.3 5.44 -0.21 -0.46 
Clay % 21 35 29.3 11.2 -0.39 -0.46 

SP: Saturation percentage, TNV: Total Neutralized Value, OC: Organic carbon, ρb: Bulk density 
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research, Martins da Silva et al. [44] also 
reported negative correlation between soil silt 
and soil sand percentage. Soil sand had the 
maximum variation across the studied field and 
pH, EC, and ρb showed the minimum variations. 
Soil properties in the nature are variable because 
of variability in parent material and soil location 
[21]. Data of soil organic carbon, silt and clay 
percentage, pH, and TNV had a normal 
distribution, but distribution of soil EC, SP, sand 
percentage, and bulk density was not normal; 
therefore, these data were converted to the 
normal distribution using logarithmic 
transformation (Table 5). 
 
Soil particle size percentage and SP had the 
maximum variation across the farm area. 
Bevington et al. [45] also reported that soil 
hydraulic properties were site dependent 
because of soil intrinsic heterogeneous. The best 
semi-variogram model for soil pH, organic 
carbon, and soil bulk density at the soil depth of 
15 and 30 cm was exponential. The best semi-
variogram model for soil EC, TNV, SP, and soil 
silt and clay percentage was spherical and for 
soil sand percentage was Gaussian. Selection of 
the best model for semi-variogram was done 
based on the maximum determination coefficient 
and the minimum residual sum of squares (RSS) 
(Table 6). 
 
Soil EC, TNV, SP, and soil sand, silt, and clay 
percentage had strong spatial structure; while, 
soil pH, organic carbon, and soil bulk density had 
moderate spatial structure. In the most cases of 
soil properties, nugget effect was very low, 
determination coefficient was high, and residual 
sum of squares was very low (Table 6). The best 
cross-variorum model for SP with cofactor of soil 
clay percentage and for soil EC with cofactor of 

soil pH and soil potassium was spherical model. 
The best cross-variogram model for soil EC with 
cofactor of organic matter was exponential. In 
these cross semi-variograms, nugget effect was 
small, determination coefficient was high, and 
residual of sum of squares was low. The best 
interpolator method for soil pH, EC, organic 
carbon, sand and silt percentage was kriging and 
for TNV, saturation percentage, bulk density at 0-
15 and 15-30 cm, and soil clay percentage was 
IDW method. Having knowledge about spatial 
variations of soil parameters is an important tool 
to assess the region potentials and effective land 
management manners. Access the soil salinity 
and sodicity information can be used as a useful 
tool for making proper decision by policy makers 
at critical times [46]. 
 
Variation maps of soil properties were drawn 
using the best semi-variogram model and the 
best interpolation method. In the northwest of the 
field, that soil salinity as a limitation factor was 
high, the amount of yield and kernel weight were 
low (Fig. 2). The r value of wheat grain yield after 
cokriging was 0.93. 
 
Variation of wheat yield depends on limitation 
factors at different part of the field. Kihara et al. 
[47] reported that limited water holding capacity, 
poor infiltration rate, high surface runoff, and 
poor management practices may contribute to 
the limited availability of water to the crop. 
Different responses of wheat yield to the identical 
management across the field are the most 
important challenge and require site specific 
management at each specific part of the field. 
Rather attention should be devoted to improve 
the wheat production through improving soil 
water management and application of organic 
resources to increase SOC and fertilizer

 

Table 6. Fitted model to the experimental semi-variogram and summary of geostatistical 
information of soil properties 

 
Factors Model C0 C0+C 

CC

C

0

0

 

A0 R2 RSS 

pH Exponential 0.0041 0.0111 0.369 115 0.725 6.36*10
-6 

EC Spherical 0.0093 0.0434 0.214 1328 0.960 1.52*10-5 

TNV Spherical 1.700 9.098 0.187 517 0.911 7.07 
SP Spherical 7.82*10-4 3.79*10-3 0.206 491 0.932 4.38*10-7 
OC Exponential 0.0142 0.0285 0.498 432 0.816 1.02*10

-5
 

ρb 15 Exponential 0.0029 0.0060 0.483 1030 0.885 8.06*10
-8

 
ρb 30 Exponential 0.0036 0.0073 0.493 1205 0.313 1.3*10-6 
Sand Gaussian 0.006 0.1451 0.041 1052 0.912 4.72*10

-5
 

Silt Spherical 1.99 9.989 0.199 1194 0.904 2.63 
Clay Spherical 0.26 21.51 0.012 925 0.955 7.09 

SP: Saturation percentage, TNV: Total Neutralized Value, OC: organic carbon, ρb: bulk density. 
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Fig. 2. Spatial distribution map of wheat grain yield using cokriging method with cofactor 

of kernel weight (left) and kernel weight with cokriging method using cofactor of soil 
salinity (right) 

 
amendment in the different polygons of the field. 
Soil nutrient management through balanced crop 
nutrition and providing macro and micronutrients, 
manure, and other organic soil amendments is 
necessary to achieve optimum crop yield and 
sustainable production [47]. 
 

Because of dry climate and soil excessive 
exploitation, soil physical condition of lands in 
southern part of Iran such as studied area is 
unfavorable. Hebb et al. [48] also reported that 
intensive cropping system leads to the physical 
disruption, decreasing water content, and 
distortion of soil structure, thereby reducing 
macro-porosity and increasing bulk density. 
Frequently use of conventional tillage destroyed 
soil structure in the studied area. More frequent 
tillage operations can lead to aggregate 
disruption, which exposes intra-aggregate 
organic matter to microbial decomposition [49]. 
Following manure application, organic matter is 

incorporated into stable soil aggregates [50]. 
Similar to our research area, long term 
inappropriate management practices may 
destroy soil physical condition and deplete soil C 
stocks, while adoption of best management 
practices can improve soil condition and reduce 
soil C losses [51]. Application of some useful 
practices within the agricultural systems such as 
conservation agriculture, including no-till or 
reduced tillage (RT), residue retention and crop-
pasture rotation have been recognized as an 
effective approach to sustain productivity in dry 
land agro-ecosystems [52]. 
 

Results of soil pH variations showed that there 
was the higher amount of pH in the east half of 
the field and contrarily the lower amount of pH 
was observed in the west half of the study area. 
Especially, amount of soil pH increased         
from the southwest to the northeast of study area 
(Fig. 3). 

 

  

 
Fig. 3. Spatial distribution map of soil pH (right) and soil EC (left) using Kriging interpolation 

method 
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Amount of soil EC increased from the southeast 
to the northwest of study area (Fig. 3). Variation 
of soil salinity together with other soil properties 
effect on crop yield. Therefore, using from 
precision agriculture and varied management at 
different part of field is necessary for better 
production and conservation of ecosystem. 
Intensive use of our area with cultivation of 
wheat-corn and burning residue caused soil 
degradation. Kurwakumire et al. [53] reported 
that crops in the degraded soils are non-
responsive to fertilizer across different farming 
systems. Spatial variation map of soil properties 
showed that amount of TNV increased from north 
to the southwest, and soil saturation percentage 
increased from the southwest to northeast of the 
field (Fig. 4). At the condition of water and 
moisture shortage, soil saturation percentage 
plays the most important rule. 
 
Spatial variation map of soil organic carbon 
showed that this property increased from south 
to the north and especially northwest, similar to 
pH distribution, higher amount of soil clay 
percentage was in the east half of the field and 

contrarily its lower amount was observed in the 
west half of the study area (Fig. 5). In this 
condition uniform management wasn’t correct, 
and should be done varied suitable management 
at the different parts of field. 
 
Soil bulk density increased from north to the 
south, results not presented. Soil organic carbon 
is an indicator for soil nitrogen and soil 
productivity. In this direction artificial adding 
organic materials and nitrogen to soil with 
nitrogen deficiency was caused increased of 
plant biomass, and should be useful for 
increasing carbon sequestration that can be 
effective in world carbon cycle [54]. Several 
study showed that soil organic matter is a soil 
quality indicator and very active part of soil. Soil 
organic matter is very important for soil 
productivity and also has positive effect on 
improving soil physical condition [55,56]. 
Conservation agricultural that can be increasing 
soil organic matter and environmental quality, 
and these practices was considered as 
sustainable activity [57]. 

 

 

 

Fig. 4. Spatial distribution map of soil TNV (right) and soil SP (left) using IDW interpolation 
method 

 

  
 

Fig. 5. Spatial distribution map of soil OC (right) and soil clay percent (left) using IDW 
interpolation method 
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Having sufficient knowledge about soil fertility 
and limitation factors of crop production is very 
important to develop appropriate soil and nutrient 
management. Also, existence of wide variability 
of crop response to nutrients, and manure 
application was reflecting a high degree of 
heterogeneity in soil characteristics and crop 
growing conditions at various spatial scales [47]. 
Thus site specific soil fertility management 
practices are necessary for sustainably 
increasing crop production [47,58]. Also attention 
to site specific and integrated nutrient 
management could be followed for increasing 
crop production, nutrient availability and soil 
carbon pools for long-term [59]. To achieve high 
soil quality and enhancing soil fertility and 
productivity, attention to SOC is necessary. 
 
Accordingly, several studies showed that climate, 
elevation, and soil properties exerted a large 
influence on SOC distribution [60,61]. Climate, 
geology, and soil formation are affecting SOC in 
the long term, while vegetation disturbance and 
land cover change are the main factors affecting 
on soil C storage in the short period [62]. 
Changes in C stock were found to be potentially 
related to altitude, precipitation, temperature, soil 
texture, and root biomass [7]. In our studied area 
rotation is wheat – corn, and this cropping 
system isn't suitable. Because, perennial-based 
cropping systems are associated with increases 
in SOC [63], whereas annual cropping can cause 
a loss of organic matter due to lower levels of 
organic inputs and soil disturbance from frequent 
tillage [64]. Soil properties can also have effect 
on soil organic carbon. In this regard, 
Andriamananjara et al. [7] also showed that the 
SOC was positively correlated with the clay 
content in topsoil. In studied area soil organic 

matter was low and variable, applying different 
sources and amounts of organic matter, 
proportional with different part of field, improved 
soil properties consistent with the findings of [65]. 
 
Spatial distribution map of soil sand percentage 
showed certain trend which was increasing from 
northeast to the southwest and soil silt 
percentage increased from south to north       
(Fig. 6). 
 
Based on results of this research (Fig. 6) and 
previous research works, uniform irrigation and 
other uniform field management in all parts of 
field are incorrect. Besides of this, for anticipation 
of soil degradation and access to sustainable 
production, attention to the following cases is 
very effective in our region. Combination of field 
surveys with spatial data can be used to identify 
preference management for improving 
production at a variety of management levels 
[66]. Reduced soil disturbance increased 
physical protection of SOM within macro-
aggregates [67,68]. Higher SOC can be 
accumulated in macro-aggregates in reduced or 
no-tillage systems [69]. Increasing plant residue, 
root and exudates production, crop rotational 
diversity, which increases microbial biomass and 
activity, will lead to increase in SOC, soil 
aggregation, and crop production [70,71,72]. 
Improvement of SOC and soil quality leads to 
increase soil water holding capacity [73] which is 
important in our region that drought frequency 
and intensity and climate change is developing. 
Our agricultural lands need an ecological 
engineering which increase resource-use 
efficiency, reduce fertilizer requirements and 
nutrient losses, and thereby enhance agricultural 
sustainability [74]. 

  

  

 
Fig. 6. Spatial distribution map of soil sand percent (right) and soil silt percent (left) using 

kriging interpolation method 
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The nutrient management perspective, better 
management of crop residue with sufficient 
chemical NPK fertilizers application, might be a 
better long-term fertilization practice in our region 
that consistent with the findings of [75]. 
 
4. CONCLUSIONS 
 
Results showed that wheat yield variability was 
very high across the studied farm; however, 
wheat yield can be increased with eliminating or 
adjusting of the factors that have negative effect 
on wheat yield at different part of field. Evaluation 
of combine default interpolator showed that this 
interpolator had low accuracy; therefore, data 
collected by this system should be corrected. 
Wheat yield and yield components had 
significant correlation with soil properties which 
should be taken into account in designing a 
suitable management system for different part of 
each field. The best models of semi-variograms 
and the best interpolator for each soil property 
and crop parameter was determined and their 
variation maps were provided. Based on spatial 
distribution maps of soil properties and zoning of 
every of them are very useful for better 
management at different parts of field. 
Complexity, heterogeneity, and anisotropy of soil, 
can affected on crop yield. Therefore, long-term 
evaluation of soil properties, application inputs 
and circumstance of field management is very 
important for sustainable crop production and 
conservation of production resources. 
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