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Abstract

Modern observational surveys allow us to probe the distribution function (DF) of the Keplerian orbital elements of
wide binaries in the solar neighborhood. This DF exhibits nontrivial features, in particular a superthermal
distribution of eccentricities for semimajor axes a 103 au. To interpret such features we must first understand
how the binary DF is affected by dynamical perturbations, which typically fall into two classes: (i) stochastic kicks
from passing stars, molecular clouds, etc. and (ii) secular torques from the Galactic tide. Here we isolate effect (ii)
and calculate the time-asymptotic, phase-mixed DF for an ensemble of wide binaries under quadrupole-order tides.
For binaries wide enough that the phase-mixing assumption is valid, none of our results depend explicitly on
semimajor axes, masses, etc. We show that unless the initial DF is both isotropic in binary orientation and thermal
in eccentricity, then the final phase-mixed DF is always both anisotropic and nonthermal. However, the only way
to produce a superthermal DF under phase mixing is for the initial DF to itself be superthermal.

Unified Astronomy Thesaurus concepts: Binary stars (154); Galaxy dynamics (591); Milky Way Galaxy (1054);
Celestial mechanics (211); Wide binary stars (1801)

1. Introduction

Measuring the Keplerian orbital elements of individual wide
binaries in the Galaxy is a very difficult observational task
because of the extremely long orbital periods involved.
However, in recent years the arrival of GAIA data has meant
that statistical measurements of the distribution function (DF)
of binary orbital elements are now possible. In particular, both
Tokovinin (2020) and Hwang et al. (2022) have analyzed the
distribution of relative position and velocity vectors of binary
components, which contains statistical information about
binary eccentricities, and thereby claimed detection of a
superthermal eccentricity distribution (P(e)∝ eα with α> 1)
for binaries with projected separations103 au in the solar
neighborhood. The origin of this superthermal distribution is
unexplained, but is presumably affected by the birth distribu-
tion of binaries, and the subsequent dynamical perturbations
those binaries experience due to (i) scattering from passing
stars, molecular clouds, and so on, and (ii) the torquing effect
of Galactic tides.

How do we expect effects (i) and (ii) to drive the eccentricity
DF? For effect (i), conventionally it is thought that a sufficient
number of strong scatterings will drive the binary ensemble to
uniformity in orbital phase space, leading to a thermal
eccentricity DF P(e)= 2e (e.g., Heggie 1975; Binney &
Tremaine 2008—though see Geller et al. 2019, who argue
that the timescale for this “thermalization” can be prohibitively
long). Stone & Leigh (2019) found that chaotic three-body
interactions produce a surviving population of binaries that is
somewhat superthermal in eccentricity. Meanwhile, a succes-
sion of weak, distant encounters causes binary eccentricity to
undergo a random walk; the DF diffuses until it settles on a
steady state that prefers low eccentricities, approximately

P(e)∝ e−0.16 (Hamers & Samsing 2019). Conversely—and
perhaps more importantly for the wide, soft binaries we have in
mind here—Collins & Sari (2008) found that under impulsive
encounters binaries perform not random walks but Levy flights
in both eccentricity and inclination. Unfortunately one cannot
extract a useful steady-state DF from their study as it applied to
near-circular binaries only.
The impact of Galactic tides (effect (ii)) upon the eccentricity

DF has not been studied in much detail. An exception is
Peñarrubia (2021), who simulated the evolution of very wide
binaries formed in stellar streams. The initial DF he considered
resulted from the binary formation process, and was initially
almost thermal with a small deficit of highly eccentric binaries.
He found that after 3 Gyr the eccentricity DF of these binaries
was even closer to thermal (with similar results when including
kicks from passing substructure, i.e., combining effects (i) and
(ii)). Aside from this, the impact of Galactic tides upon wide
binaries with an arbitrary initial DF is still an open question.
The time evolution of individual binaries under Galactic tidal

perturbations is well understood as a secular phenomenon akin
to the Lidov–Kozai (LK) mechanism that operates in
hierarchical triples (Kozai 1962; Lidov 1962). In LK theory,
an inner binary can be torqued by its tertiary perturber into
undergoing eccentricity and inclination oscillations on long
timescales. In the doubly averaged, test-particle, quadrupole-
tide limit1 the LK dynamics are governed by a simple
Hamiltonian such that the binary orbital elements evolve along
a one-dimensional contour of constant Hamiltonian in phase
space. Heisler & Tremaine (1986) showed that similar secular
behavior arises when a wide binary (in their case consisting of
the Sun and an Oort comet) is perturbed by the Galactic tide.
More recently, Hamilton & Rafikov (2019a, 2019b) general-
ized the LK and Heisler & Tremaine (1986) studies to cover
any binary in any axisymmetric potential (see also Brasser et al.
2006; Mikkola & Nurmi 2006; Petrovich & Antonini 2017; a
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further extension to triaxial potentials was studied by Bub &
Petrovich 2020). They derived an effective secular Hamiltonian
HΓ that encompasses all information about the external
potential and the binary’s barycentric orbit around that
potential in a dimensionless number Γ. They showed that the
LK Hamiltonian is recovered exactly in the limit Γ= 1, while
the Heisler & Tremaine (1986) problem corresponds to Γ= 1/
3, and they mapped out the details of the resulting dynamics for
arbitrary Γ.

Thus, there is no shortage of analytical studies of secular
dynamics of individual binaries in external potentials. These
calculations have been used in many semianalytical/numerical
studies and population synthesis calculations of LK (and
similar) evolution (e.g., Fabrycky & Tremaine 2007; Antonini
& Perets 2012; Stephan et al. 2016; Hamilton &
Rafikov 2019c; Grishin & Perets 2022), which were mostly
concerned with using eccentricity excitation to produce exotic
phenomena such as black hole mergers, hot Jupiters, and blue
stragglers. However, in the age of high-precision missions like
GAIA it is becoming possible to measure the dynamical
properties of an entire ensemble of binaries.

In this Letter we develop a new tool for understanding the
orbital element distribution of wide stellar binaries by
calculating the time-asymptotic, “phase-mixed” DF of binaries
undergoing secular dynamical evolution governed by the
Hamiltonian HΓ. The key idea is that on long timescales, the
final coarse-grained distribution of binaries in phase space can
be calculated by smearing the initial distribution uniformly
along individual Hamiltonian contours. This idea extends back
at least as far as the classic work by O’Neil (1965), who used it
to calculate the phase-mixed velocity distribution of electrons
trapped in an electrostatic plasma wave. It has been used
recently in the galactic dynamics context to calculate the DF of
stars and dark matter particles that are trapped by various
Galactic resonances (Binney 2016; Monari et al. 2017; Chiba &
Schönrich 2022).

The rest of this Letter is organized as follows. In Section 2
we introduce our notation and write down the expression for
the Hamiltonian HΓ governing the dynamics of a single binary.
In Section 3 we turn to a statistical description and show how to
calculate the time-asymptotic, phase-mixed DF of binaries in
phase space for arbitrary Γ and initial DF. In Section 4 we
show the resulting final eccentricity and inclination distribu-
tions for several example cases. We discuss our results in
Section 5 and conclude in Section 6.

2. Secular Dynamics of a Single Binary

Here we recap some results and notation from Hamilton &
Rafikov (2019a) and Hamilton & Rafikov (2019b) concerning
the secular dynamics of one binary.

Consider a binary with component masses m1 and m2,
orbiting in a smooth, axisymmetric Galaxy potential Φ whose
symmetry axis is Z. Let (X,Y) describe the Galactic plane
perpendicular to Z. Then on long timescales the binary’s
barycentric (“outer”) orbit usually fills an axisymmetric torus
(Binney & Tremaine 2008). The binary’s internal (“inner”)
orbital motion traces a Keplerian ellipse, described by the usual
orbital elements (Murray & Dermott 1999): semimajor axis a,
eccentricity e, inclination i (relative to the (x,y) plane),
longitude of the ascending node Ω (relative to the x-axis),
argument of pericenter ω, and mean anomaly η. Crucial for our
purposes is the introduction of Delaunay actions

L G m m a J L e, 11 2
2( )= + = - and J J icosz = , and

their conjugate angles η, ω, and Ω, as well as the dimensionless
variables

j J L e1 , 12 ( )º = -

j J L e i1 cos . 2z z
2 1 2( ) ( )º = -

Clearly, j must obey |jz|� j� 1 to be physically meaningful at
a fixed jz.
We assume that the outer orbit is given and fixed (i.e., there

is no relaxation of outer orbits). The evolution of the binary’s
inner orbit is then dictated by the mutual Newtonian
gravitational attraction of the binary components and the
perturbing tidal influence of the Galactic potential Φ. Expand-
ing the tides to quadrupole order and averaging over the inner
and outer orbital motion we can show that the binary undergoes
oscillations in ω, j at a fixed jz and L. Precisely, the binary
moves around the (ω, j) plane on contours of constant
dimensionless Hamiltonian

H j j j j j j

j j j

, , 3 5 3

15 1 cos 2 . 3

z z

z

2 2 2 2

2 2 2

( ) [( )( )

( )( ) ] ( )

w

w

º - G -

- G - -

G
-

Here the dimensionless quantity Γ depends on the Galactic
potential and the choice of outer orbit, and measures the time-
averaged curvature of Φ as felt by the binary. Typical values of
Γ are in the range (0, 1). In particular, for binaries orbiting a
thin disk we find Γ= 1/3 (Heisler & Tremaine 1986). It turns
out that very high eccentricities are much more readily
achieved if Γ> 1/5 compared to Γ< 1/5 (Hamilton &
Rafikov 2019b).
The nodal angle Ω also evolves under secular dynamics; its

equation of motion is dΩ/dt∝∂HΓ/∂jz. However, since HΓ is
independent of Ω, none of the other quantities depend on Ω for
their evolution, so it is effectively decoupled from the rest of
the phase space and we will integrate it out in Section 3.
The secular period—i.e., the time it takes for the binary to

perform the oscillation in the (ω, j) plane—differs depending
on the precise initial conditions, but a reasonable estimate is
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where TZ is the period of vertical oscillations of the outer orbit
in the Galactic potential, and T a G m m2b

3
1 2[ ( )]p= + is the

inner orbital period. In the numerical estimate (5) we used the
epicyclic approximation to write T G2 4Z

2
0( )p p r» , where ρ0

is the local dynamical density (Widmark 2019). From the
estimate (5) we see that a wide binary (a 104au) may
complete multiple secular oscillations in the lifetime of the
Galaxy.

3. The Phase-mixed Distribution Function

We do not observe the time evolution of individual wide
binary orbital elements. Instead, what we observe is a snapshot
of the orbital element DF. Ignoring scattering from passing
stars, we expect that an initial distribution of binaries with a

2
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given Γ and jz value will end up (on timescales long compared
to tsec) uniformly distributed (i.e., phase mixed) along contours
of HΓ(ω, j, jz) in the (ω, j) phase space. In this section we
introduce the phase-space DF (Section 3.1) and demonstrate
how one may calculate the time-asymptotic, phase-mixed DF
for an arbitrary initial DF (Section 3.2) and then for a DF that is
initially isotropic in binary orientation (Section 3.3).

3.1. Time-dependent Distribution Function

Considering only binaries whose secular periods are much
shorter than their lifetime (which is not always a good
assumption; see Section 5.1), none of the results we derive
will depend explicitly on a, m1, m2, galaxy mass, etc. Instead
the only variables of concern are Γ and w where

w j j, , , . 6z( ) ( )wº W

Let us therefore consider such an ensemble of binaries all with
the same value of Γ (e.g., all on similar outer orbits in the same
Galactic potential Φ). To describe this ensemble we introduce
the smooth 4D probability distribution function f (w, t), such
that f (w, t)dw is the fraction of binaries in the phase-space
volume element (w, w+ dw) at time t. This DF is normalized
so that

wj j f td d d d , 1. 7
j

j

z
0

1

0

2

0

2
( ) ( )ò ò ò ò wW =

p p

-

The limits on the jz integration reflect the requirement
|jz|� j� 1. The shape of the 3D phase space (ω, j, jz) at fixed
(arbitrary) Ω is illustrated in Figure 1 for jz> 0.

For later use we also define the 1D distribution of
dimensionless angular momenta F( j, t):

wF j t j f t, d d d , , 8
j

j

z
0

2

0

2
( ) ( ) ( )ò ò ò wº W

p p

-

which satisfies j F j td , 1
0

1
( )ò = . Ultimately we care about the

1D distribution of eccentricities, which we call P(e, t); we can
convert between F and P using |F( j, t)dj|= |P(e, t)de|, i.e.,

P e t
e

e
F e t,

1
1 , , 9
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One can check that e P e td , 1
0

1
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Since the Galactic plane picks out a special direction it is
natural to ask whether a nontrivial phase-mixed inclination
distribution can arise. To calculate this we introduce the 1D DF
of icos values

N i t
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3.2. Phase-mixed Distribution Function

Now we wish to calculate the time-asymptotic, phase-mixed
DF f (w, t→∞ )≡ f∞(w) for a given Γ and initial DF f (w,
t= 0)≡ f0(w).

2 To do this, we note that individual binaries are
advected around HΓ contours periodically by the Galactic tide.
In the canonical Delaunay phase-space coordinates we are
using here, Liouville’s theorem tells us that these advected
binaries carry with them the local phase-space density f.
Binaries on adjacent contours have slightly different secular
periods tsec, so f is continually sheared out until its coarse-
grained value reaches a steady “phase-mixed” state in which it
is spread uniformly over each contour (O’Neil 1965; Lynden-
Bell 1967; Tremaine 1999).
The phase-mixed DF f∞(w) may therefore be calculated as

follows. First, we use f0 to calculate the fraction  w( ) of
binaries that are born on the Hamiltonian phase-space contour
defined by w:




w f j jd , , , . 11
w

z0∮( ) ( ( ) ( ) ) ( )
( )

l w l lº ¢ W ¢
G

Here we have labeled this contour

 w j H j j H j j, , , , , , 12z z( ) { ∣ ( ) ( )} ( )w w wº ¢ ¢ ¢ ¢ =G G G

and parameterized it by λ. Next, we calculate the length  w( )
of the contour  w( )G in phase space:




w d . 13
w

∮( ) ( )
( )

lº
G

The initial density will ultimately be smeared evenly over the
full length of the contour, so the value of the phase-mixed
distribution function at the location w is simply

 w w wf . 14( ) ( ) ( ) ( )=¥

It is straightforward to show that the DF constructed in this way
is properly normalized, i.e., ∫dwf∞= 1 (Equation (7)). In the
Appendix we go into more detail about how f∞ is calculated in
practice.

Figure 1. The shape of the allowed (ω, j, jz) phase-space “wedge” at a fixed
(arbitrary) value of Ω, showing jz > 0 only. Colors represent values of the
initial DF, wflog10 0 ( ). In this case f0 is isotropic with Gaussian eccentricity
distribution, P e e2 exp 2e e e0

2 1 2 2 2( ) ( ) [ ( ) ]ps m s= - -- where μe = 0.5 and
σe = 0.1. Black contours on the front face of the wedge are of constant
Hamiltonian HΓ, in this case for Γ = 1/3. Within each constant jz “slice,” the
Hamiltonian flow induced by the Galactic tide transports binaries periodically
around the black contours in the (ω, j) plane, leading to phase mixing—see
Figure 2.

2 Though we refer to f0 as the “initial” DF, given that the results we derive are
time asymptotic there is nothing particularly special about t = 0. In other
words, it is not important whether the binaries were all born in a single burst at
t = 0 or gradually over billions of years. What matters is that the ensemble
under consideration is sufficiently old for the phase-mixing assumption to be
valid—see Section 5.1.
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As an illustration, in Figure 2 we consider binaries with
Γ= 1/3 and at a fixed jz=0.1, for an initially Gaussian
eccentricity distribution,
P e e2 exp 2e e e0

2 1 2 2 2( ) ( ) [ ( ) ]ps m s= - -- , with mean
μe= 0.5 and standard deviation σe= 0.1. In the left panel the
colored contours map the initial DF wflog10 0 ( ) in (ω, j) space,
while the solid black contours denote lines of constant
Hamiltonian HΓ (in fact this panel is nothing more than the
jz=0.1 “slice” of the 3D wedge shown in Figure 1). In the right
panel of Figure 2 we show the resulting phase-mixed DF f∞.
We see that it overlays the Hamiltonian contours precisely, and
that binaries are able to spread over a large range of
eccentricities.

Once we have calculated the final 4D phase-mixed DF
f∞(w), we can easily get the final 1D angular momentum
distribution F∞( j) by plugging f (w, t)= f∞(w) into
Equation (8). The final 1D eccentricity distribution then
follows from Equation (9) as
P e eF e e1 12 2( ) ( )= - -¥ ¥ . Similarly for inclination,
the 1D phase-mixed DF N icos( )¥ is found by substituting f (w,
t)= f∞(w) in Equation (10).

3.3. Initially Isotropic Distributions

A key simplification can be made if we assume that the birth
DF f0 is isotropic in binary orientation, i.e., uniform in ω, Ω,
and icos (= jz/j). Then f0 only depends on j, and consequently
we can relate it to the initial 1D distributions of angular
momentum F( j, t= 0)≡ F0( j) and/or eccentricity P(e,
t= 0)≡ P0(e) as follows:

wf
F j

j

P j

j8

1

8 1
. 150

0
2

0
2

2 2
( ) ( ) ( )

( )
p p

= =
-

-

With this our final results for the phase-mixed DF f∞ will
depend only on Γ and the choice of initial eccentricity
distribution P0. For the remainder of this Letter we will assume
f0 has the isotropic property.

One important special case to check is that of an initially
completely uniform phase-space distribution over all w,
namely, f0(w)= 1/(2π)2. This corresponds to a thermal
eccentricity distribution, P0(e)= Pthermal≡ 2e, and an isotropic
inclination distribution, N i Ncos 1 20 isotropic( ) = º . In this
case f0 can be pulled out of the integral in Equation (11) and
so we find from Equation (14) that f∞= f0= 1/(2π)2, i.e., the

final phase-mixed DF is uniform also. It follows that a
population of binaries that is initially isotropic with a thermal
eccentricity distribution remains so, despite the Galactic tide
continually advecting individual binaries around the (ω, j)
plane.

4. Numerical Results

In this section we provide results on the 1D phase-mixed
eccentricity and inclination distributions, P∞(e) and N icos( )¥ ,
for different initial eccentricity distributions P0(e) (the initial
orientations are assumed to be isotropic so N icos 1 20 ( ) = —

see Section 3.3). We calculated these DFs numerically using
the method described in the Appendix. We performed
calculations for several different values of Γ and found that
while the results for Γ> 1/5 and Γ< 1/5 differ greatly (as
expected, see Hamilton & Rafikov 2019b), if we stick to
Γ> 1/5 then the results depend on Γ only very weakly.
For binaries whose outer orbit is confined to the midplane of

a thin Galactic disk, Γ≈ 1/3> 1/5. In fact, all binaries in the
solar neighborhood will have Γ not too far from 1/3. In the rest
of this work we display results exclusively for Γ= 1/3, but the
qualitative conclusions should hold for any sensible population
of outer orbits.
In Figure 3 we fix Γ= 1/3 and consider four different

choices of initial power-law DF, P0(e)= (1+ α)eα with α= 0,
0.7, 1.3, and 2, respectively:

P ea 1, “Uniform”, 160( ) ( ) ( )=

P e eb , “Subthermal”, 170
0.7( ) ( ) ( )µ

P e ec , “Superthermal”, 180
1.3( ) ( ) ( )µ

P e ed , “Superthermal”. 190
2( ) ( ) ( )µ

In the left panels of Figure 3 we plot the resulting phase-mixed
eccentricity distribution P∞(e) in black, and the initial DF of
choice P0(e) in red. For reference we show the thermal DF
Pthermal= 2e with a dashed gray line. We additionally plot
power-law fits to the black curves with green dotted–dashed
lines, with the best-fit α indicated in the panel. In the right
panels of Figure 3 we plot the corresponding phase-mixed DF
of inclination N icos( )¥ in black, and the initial
N icos 1 20 ( ) = in red. We also plot vertical blue dotted lines
at i icos cos 1 5 10 0.894c∣ ∣ ∣ ∣ ( )= º + G G » , which corre-
sponds to |i|= |ic|≈ 26°.5. This is the critical inclination angle

Figure 2. Illustration of phase mixing. Colors show flog10 0 (left) and flog10 ¥ (right) in the (ω, j) phase space at fixed Γ = 1/3 and jz = 0.1, for the same initial DF
used in Figure 1. Solid black lines show contours of constant Hamiltonian HΓ. The black dashed line shows the lowest possible angular momentum j = |jz|.
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below which there are no fixed points in the (ω, j) phase space
for initially near-circular binaries3—see Section 9.1 of
Hamilton & Rafikov (2019b).

From these panels (and several corroborative examples not
shown here) we can draw the following conclusions:

1. Only initially superthermal DFs remain superthermal as
t→∞ ; the result is another superthermal DF with a
slightly reduced power-law index.

2. Initially subthermal DFs also retain a power-law form and
their index is increased slightly, but never beyond 1, i.e.,
they remain subthermal.

3. Unless a DF is initially both thermal and isotropic, it will
be neither thermal nor isotropic in the t→∞ limit.

The last bullet point is worth discussing further. It implies
that Galactic tides produce a phase-mixed DF in which

eccentricities and inclinations are correlated, even if the
binaries are initially distributed isotropically for any eccen-
tricity. The further the initial DF is from thermal, the stronger
the resulting anisotropy will be; in examples (b) and (c)
(Equations (17) and (18)) it reaches the level of several percent,
while in examples (a) and (d) (Equations (16) and (19)) it can
be tens of percent. It is also easy to predict the angle at which
the anisotropy will be most pronounced. Roughly speaking, for
Galactic tides to drive large-scale eccentricity and inclination
oscillations there must be a fixed point in the (ω, j) phase space
around which trajectories can librate (Figure 2). For an initially
low-e binary with i icos cos c∣ ∣ ∣ ∣ (i.e., |i| |ic|), such fixed
points do not exist, so these low-e binaries are effectively
“trapped” at low i. In examples (a) and (b) (Equations (16) and
(17)), there is an initial surplus of low-e binaries compared to a
thermal distribution; these binaries pile up at low inclinations,
resulting in the maximum of N∞ around i icos cos c∣ ∣ ∣ ∣= .
Conversely, in examples (c) and (d) (Equations (18) and (19))

Figure 3. Numerically computed 1D phase-mixed eccentricity DF P∞(e) and inclination DF N icos( )¥ are shown in black for different initial DFs shown in red. The
P∞ curves in the left panels are well fit by power laws P = (1 + α)eα, shown with green dotted–dashed lines; for comparison we also show the thermal eccentricity
distribution Pthermal = 2e with a dashed gray line. In the right panels we show a special value of inclination, i icos cos 0.894c∣ ∣=  =  , with vertical blue dotted
lines—see Section 4 for details.

3 This is just the Galactic tidal analog of the classic LK result ic = 39°. 2 (e.g.,
Fabrycky & Tremaine 2007).
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there is a deficit of initially low-e binaries compared to the
thermal DF, so this maximum becomes a minimum.

5. Discussion

5.1. Phase Mixing

We have assumed throughout this Letter that the only
perturbation binaries feel is that due to the smooth Galactic disk
potential, and ignored any stochastic effects, i.e., scattering
from passing stars, molecular clouds, dark matter substructure,
and so on. Given that the widest binaries will certainly undergo
many scattering events during a Hubble time—and can even be
disrupted by scattering (Weinberg et al. 1987; Jiang &
Tremaine 2010; Peñarrubia 2021)—stochasticity cannot be
ignored in a proper theory. Nevertheless, our aim here has been
to isolate the Galactic tidal effect and calculate the DF to which
it drives binaries. Its impact is to take the initial phase-space DF
and smear it uniformly along Hamiltonian contours (phase
mixing). A DF that is initially isotropic in orientation and
thermal in eccentricity is already phase mixed, since it has the
same value everywhere in phase space. All nonthermal
distributions must undergo some time evolution before reach-
ing their fully phase-mixed state f∞.

How valid is the phase-mixing assumption? In other words,
ignoring scattering, how long must one typically wait for f∞ to
approximate the true DF? To get a rough idea we can consider
two binaries with initial phase-space locations w0− δw and
w0+ δw. Expanding their equations of motion for small
|δw|= |w0| we can show that these neighboring trajectories
diverge in the (ω, j) plane on a characteristic timescale

wtsec 0( )~ . Thus we can roughly state that a population of
binaries must be significantly older than its typical secular
period for its present-day DF to be approximately phase mixed.
This idea is confirmed by numerical integration of the kinetic
equation governing f (w, t), which shows that the phase-mixed
DF f∞(w) is well established after t5 sec~ , with tsec given in
Equation (5), if we consider phase-space locations w that are
not extremely close to the separatrix between librating and
circulating phase-space families.4 Near the separatrix this rough
criterion breaks down because tsec is formally infinite there.
However, this caveat applies to such a small fraction of binaries
that it does not impact our results significantly.

A more complete understanding of the phase-mixing process
will involve following the detailed time evolution of the 4D DF
for many ensembles of binaries with different initial DFs,
semimajor axes, Γ values, etc. It will also require dropping the
secular approximation, to take account of fluctuations in the
potential felt by the binary on the timescale∼ TZ (Grishin et al.
2018; Hamilton 2021). We leave this to future work.

5.2. Implications for Wide Binaries in the Galaxy

The above discussion suggests that binaries with tsec much
smaller than the age of the Galaxy—say a 104 au; see
Equation (5)—will be well phase mixed. Those binaries that
have tsec comparable to the Galaxy’s age, say a∼ 103 au, will
have undergone some phase mixing, but the process is unlikely
to be complete, and so our results cannot be naively applied to
them. Instead, for these binaries one must integrate forward the
kinetic equation for f (w, t) numerically; doing so suggests that
their eccentricity DF today should lie somewhere in between

the P0(e) and P∞(e) results quoted in Section 4. Finally, for the
binaries with a secular timescale much longer than the age of
the Galaxy (a< 103au) the effect of Galactic tides is negligible.
Observationally, various pieces of evidence regarding

metallicities (El-Badry & Rix 2018; Hwang et al. 2020), mass
ratios (Moe & Di Stefano 2017), and eccentricities (Tokovi-
nin 2020; Hwang et al. 2022) suggest that binaries with a 102

au and a 103 au follow separate formation channels. Let us
take this literally and suppose that all binaries with a 103 au
were formed from some channel that produced an initially
superthermal DF. Then we expect that Galactic tides will not
alter much the DF of a∼ 103 au binaries, whereas for a 104

au the DF will be close to phase mixed, i.e., still superthermal
but with a slightly reduced power-law index (Figure 3(c)).
Interestingly, this is just what is observed by Hwang et al.
(2022, see their Figure 6). Of course there are many subtleties
to be addressed before one can claim this comparison between
theory and observation to be precise. To name just one, Hwang
et al. (2022) inferred their eccentricity DFs assuming an
isotropic DF of binary orientations, whereas we have shown
that the “special direction” picked out by the Galactic plane
actually creates a nonisotropic DF in which e and i are
correlated (and where the special values of i are easily
predicted). In principle one could measure the joint e–i
distribution of wide binaries and use it to distinguish the
impact of Galactic tides compared to other dynamical effects/
formation channels. On the other hand, there will be
complicated degeneracies of this distribution with that arising
from chaotic evolution of very wide triple stars (Grishin &
Perets 2022).

6. Conclusion

In this Letter we calculated the time-asymptotic DF for wide
binaries under the tidal influence of the Galactic disk. The
central assumption we made was that the secular oscillations of
binary orbital elements induced by Galactic tides were
sufficiently rapid for the whole population of binaries to be
approximately phase mixed. The resulting phase-mixed DFs of
binary eccentricity and inclination are independent of the
binary constituent masses, semimajor axes, the mass of the
Galaxy, etc.
The two key conclusions of this work are the following: (1)

Galactic tides can preserve, but not create, a superthermal
eccentricity distribution. (2) Unless the initial DF is isotropic in
angle and thermal in eccentricity, then the final phase-mixed
DF is neither isotropic nor thermal.
These results may go some way to understanding the

observed nonthermal (including superthermal) eccentricity
distributions of wide binaries in the solar neighborhood
(Tokovinin 2020; Hwang et al. 2022). However, before strong
conclusions can be drawn, both time dependence and scattering
from passing stars must be incorporated into the model.

This project arose out of conversations with Hsiang-Chih
Hwang and Nadia Zakamska, and I am very grateful to them
both for their detailed comments on the manuscript. I also
thank Scott Tremaine and Roman Rafikov for helpful
discussions on phase-space mixing, Kathryn Johnston and
Evgeni Grishin for comments on an earlier draft, and the
anonymous referee for a careful reading. This work was
supported by a grant from the Simons Foundation (816048,
C.H.).4 L. Arzamasskiy (2022), private communication.
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Appendix
Calculating the Phase-mixed Distribution Function in

Practice

As we have seen in Equation (14), the phase-mixed DF f∞ is
given by the ratio  w w( ) ( ), where  is the initial
population on the Hamiltonian contour defined by w, and 
is the length of that contour (Equations (11)–(13)). Both of
those expressions involve integration over some abstract
quantity λ that parameterizes the contour in the j,( )w¢ ¢ plane.
In practice we need to have some explicit way to compute these
integrals. This is easy if we let λ= t, integrate from the time the
binary is at j jmin¢ = to j jmax¢ = , and multiply by 2. Then  is
just the secular period of binaries on that contour, and  is the
amount of time that any binary moving on that contour spends
near w per secular period.

Moreover, we do not need to worry about getting a precise
form of t( )w¢ if we take the initial 4D distribution f0 to be
isotropic in angle, i.e., independent of ω. In that case we can
change the integration variable from t j ¢ and show that (cf.
Equations (30)–(34) of Hamilton & Rafikov 2019b):
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Here K(...) is an elliptical integral of the first kind, and the
quantities jmin, jmax, j±, j0, andΔ are all functions of (Γ, w). All
details of how to compute these quantities can be found in
Hamilton & Rafikov (2019b).

For a given Γ and F0( j), we compute the phase-mixed DF f∞
on a grid in the 3D (ω, j, jz) phase space numerically using
Equation (A1). Symmetry considerations mean that one can
restrict the numerical calculation to ωä (0, π/2) and jz> 0. As
a check of the code, we made sure that the output of a thermal
eccentricity distribution (P0= 2e) is another thermal distribu-
tion to very high accuracy. With the f∞(w) grid established we
compute P∞(e) and N icos( )¥ via Equations (8)–(10) using a
Simpson’s rule integrator.

We note that we have made no reference to the angle Ω,
despite the fact that Ω, just like ω, evolves under secular
dynamics. The reason is that, since Ω is decoupled from the

other variables, if initial Ω values are randomly distributed in
(0, 2π) then the final DF will be uniform in Ω at a given ω, j, jz.
Thus for an initially isotropic DF, integration of f (w, t) over Ω
will always return 2πf (w, t).
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