

Asian Journal of Biology

5(4): 1-7, 2018; Article no.AJOB.40012 ISSN: 2456-7124

Biolog Identification of Fermenting Yeasts from Fermented Teff (Eragrostis teff (Zucc.)) Dough

Belay Tilahun^{1*}, Eyob Kassaye¹, Getaw Abera¹, Anteneh Tesfaye², Diriba Muleta², Andualem Bahiru² and Zewdu Terefework³

> ¹Department of Biotechnology, Wolkite University, Wolkite, Ethiopia. ²Institute of Biotechnology, Addis Ababa, University, Ethiopia. ³MRC-ET Molecular Diagnostics Addis Ababa, Ethiopia.

Authors' contributions

Author BT conducted all the experiments and wrote the manuscript with the collaboration of all authors. Authors EK and GA involved in write up and managed in searching resources for write up. Authors AT, DM and AB coordinated the research work, designed portions of the experiments and involved in the initial draft and the revision of the manuscript. Author ZT participated in laboratory work. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJOB/2018/40012 <u>Editor(s):</u> (1) Xing Li, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, USA. <u>Reviewers:</u> (1) Jbi Aderiye, Ekiti State University, Nigeria. (2) John Godwin Egbe, University of Calabar, Nigeria. Complete Peer review History: <u>http://prh.sdiarticle3.com/review-history/24237</u>

Original Research Article

Received 5th January 2018 Accepted 13th March 2018 Published 20th April 2018

ABSTRACT

Background: Injera is one of the baked product, which is commonly prepared from teff (Eragrostis teff (Zucc.)) flour. It is a staple food and believed to be consumed on daily basis by two-thirds of Ethiopians, a population of nearly 100 million. As it is a product of naturally fermented dough, the course of fermentation is done by consortia of microorganisms. Therefore, this study was aimed to isolate and identify yeasts from fermenting Teff (Eragrostis teff) dough.

Place and Duration of Study: Samples were collected from different sources in Addis Ababa, Ethiopia. Laboratory isolation and identification of isolates were carried out at Holeta Biotechnology Institute, Microbial Biotechnology laboratory and Ethiopian Institute of Biodiversity, Microbial laboratory from December to April 2015 to June 2016 G. C.

Methodology: A total of 200 dough samples were collected from households with different fermentation stage. Twenty (20) yeast isolates with different cultural characteristics were selected

and further identified by ominilog identification systems. **Results:** The seven yeast isolates obtained from teff dough were identified as *Pichia fermentans*, *Pichia* spp., *Rhodotorula aurantiaca* B, *Pichia fluxuum*, *Candida humilis*, *Trichosporon beigelii* B and, *Cryptococcus albidus Var aerus* **Conclusion:** This study has confirmed the presence of different yeast in the fermenting teff dough and also supports the involvement of consortia of various groups of microorganisms in the course of

Keywords: Teff dough; injera; microbial identification; ominilog.

1. INTRODUCTION

the fermentation.

Yeasts are unicellular. eukaryotic and polyphyletic organisms classified in the kingdom fungi. They are ubiquitous, and commonly found on fruits, vegetables, insect and other plant materials. Some yeast is found in association with soil and water. Approximately 100 genera comprising more than 1500 species of yeast have been described [1]. The significance of yeasts in food technology in a world of low agricultural production and rapidly increasing population makes the production of food grade yeasts extremely important [2]. In Ethiopia, there are several fermented foods such as, kocho, bulla, tella, tej, milk product and injera, etc. A wide variety of fermented foods and beverages are consumed in Ethiopia being prepared from a wide range of raw materials using traditional techniques. These include Injera, kocho, tella, awaze, borde and tejj [3]. Injera is one of the fermented foods that is made from different cereals, including sorghum, teff, corn, wheat, barley, or a combination of some of these cereals [4]. Injera from teff (Eragrostis teff) is much more relished by most Ethiopians than that from any other source. It is a thin soft fermented baked food usually obtained after the flour of cereals has been subjected to 24 to 96 h of traditional fermentation depending on the ambient temperature [3,5].

The fermentation process uses natural inoculants from different sources in a mixed form [6]. Teff injera is getting popular in the developed world because of its gluten free nature and being a whole grain product [7]. Teff is a cereal crop which is mainly cultivated in Ethiopia for the purpose of making injera [5,4]. For injera making, teff grain is considered by many as superior when compared to other cereal grains used in the country [8].

A lot of research was undertaken on microbial profile of these commodities through conventional methods. In most cases, strain of Saccharomyces cervisiae, Rhodotorula spp, pichia, were found to dominate fermenter in tella, injera, milk product and other fermented foods. However, the yeast species involved in injera fermentation not studied well using standard Biolog Micro Station identification technology for shortening fermentation time and selecting the potential fermenter yeast in future. The aim of this study was isolation, identification and characterization of yeast species involved in injera fermentation by using biolog identification system.

2. MATERIALS AND METHODS

2.1 Sample Collection and Description of the Study Sites

A total of 200 teff dough samples (two hundred gram each) were collected from each of 14 sampling sites of fermenting dough samples with different time of fermentation [9] from around Addis Ababa, the capital of Ethiopia. The samples were transported aseptically to Holeta Biotechnology Institute, Microbial Biotechnology laboratory, for processing and microbial isolation. Sample processing and laboratory isolation of yeast were carried out in Holeta Biotechnology Institute, Microbial Biotechnology Institute, Microbial Biotechnology Institute, Microbial Biotechnology Institute, Microbial Biotechnology Institute, Ominilog identification was carried out at the microbial laboratory at Ethiopian Biodiversity Institute.

2.2 Isolation and Selection of Yeasts

After the samples were transported to the laboratory 10 g dough samples was transferred aseptically into the separate flask with 90 mL sterile 0.1% peptone water and homogenized. Thereafter, a tenfold serial dilution was made. From appropriate dilution factor, 1 ml of the suspension was streaked onto pre-solidified yeast extract glucose Chloramphenicol Bromophenol blue agar medium. The plates were incubated at 25°C for 24h. Then after 24 h incubation, the selected colonies (10-20)

were sub-cultured on yeast extract glucose Chloramphenicol Bromophenol blue agar medium three times to purify the isolates. Yeast isolates were selected according to their cultural characteristics (colony size, colony color, colony texture) on yeast extract glucose Chloramphenicol Bromophenol blue agar based on Bergey"s Manual [10].

2.3 Biolog Omnilog Identification and Characterization of Isolates

Yeasts were sub cultured to Biolog Universal Yeast (BUY) agar and Biolog Universal and were incubated at 26°C for 24 to 48 h. Yeast suspension were prepared in 9ml sterile distilled water and adjusted to 47% T using Biolog YT turbidity standard. One hundred micro liters of inoculums were added to each well of the YT Micro Plate (Biolog Inc) and incubated at 26°C. (Kurtzman and Fell) AYT Micro Plate was read by the Biolog Micro Station Reader (BiologInc) at 24 h, 48 h, and 72 h at a single wavelength of 590 nm. The Biolog software micro log3 ver. 4.20.05 compared the results obtained with the test strain to the database and provided identification based on distance value of match and separation score produces similarity index value and probability. An acceptable species identification must have similarity index value>0.5 or probability >75% were Chosen only for species identification and characterization [11]. Since some yeast species are inhibited by the tetrazolium violet redox dye used in Biolog Micro Plates, the YT Micro Plate was configured with both oxidation tests and assimilation tests. The first 1-36 column panel contained carbon source for oxidation tests using tetrazolium violet as a colorimetric indicator of oxidation. Because the last column panel of 49-60 wells contained 2 carbon sources; these wells test was used for coutilization of various carbon sources with Dxylose. The read is going to be positive on the Micro Plate, if <X>, and when the database result for that well was negative the printout showed <X- to indicate a mismatch where the database reaction was negative. If there were a negative read. X with no brackets and database value for that well were positive the well reads X+ indicating a positive reaction in the database. At the time of a read the data were compared to the database in order to determine the ID [1].

2.4 Data Analysis

Omnilog clustering of yeasts based on the carbon utilization was done using past software.

3. RESULTS AND DISCUSSION

3.1 Isolation of Yeast and Gas Production from Glucose

The yeast isolates recovered were observed to have different features of colonial morphology. The yeast isolates showed diverse cultural characteristics with regard to colour (white, gray pigmentation or blue), shape (circular or irregular), edge (irregular or smooth) and elevation (flat or raised). Furthermore, the sizes of the colonies ranged from medium to large.

And a total of 20 yeast isolates were selected on the basis their potential in gas production [12]. Yeast isolates with good potential of gas production were believed to be good fermenter and for the formation of many eyes on ready-toeat *injera*, and these were selected for molecular identification. The percentage occurrence on culture media recorded as, 5% *Pichia fermentans*, 15% *Pichia spp., Rhodotorula aurantiaca* B, 15% *Pichia fluxuum*, 10% *Candida humilis*, and, 10% *Cryptococcus albidus Var aerus* other 35% were not identified. Six yeast species were identified which is involved in dough fermentation by Omni Log identification system.

3.2 Biolog Omnilog Identification and Characterization of Isolates

Selected yeasts isolates were aseptically transferred on BUY agar for Biolog identification. Seven yeast species were identified which may involve in dough fermentation by Omni Log identification system. Based on the result, Table 1 shows those species of yeasts: *Pichia fermentans, Pichia spp., Rhodotorula aurantiaca* B, *Pichia fluxuum, Candida humilis, Trichosporon beigelii* B and, *Cryptococcus albidus Var aerus* with their identification statuses in the YT Biolog Micro Plate.

Based on the result, Table 2 shows those species of yeasts: *Pichia fermentans*, *Pichia spp.*, *Rhodotorula aurantiaca* B, *Pichia fluxuum*, *Candida humilis*, *Trichosporon beigelii* B and, *Cryptococcus albidus Var aerus* which exhibited positive result for oxidation test and assimilation potential of different carbon coated in the YT Biolog Micro Plate. Yeast Micro Plate has two different reactions: Assimilation of carbohydrates and oxidation. Six yeast species which were identified by BioLog (*Pichia fermentans*, *Pichia spp. Rhodotorula aurantiaca* B, *Pichia fluxuum*, *Candida humilis, Trichosporon beigelii* B and, *Cryptococcus albidus Var aerus*) have positive oxidative test for Dextrin, stachyose, Dgalactose, glucose, L-aspartic acid, D-gluconic acid, D-melibiose, sucrose, turanose, D-mannitol, tween 80, D- arabitol, D-meleitose, L-sorbose, Xylitol, Glycerol, Gentiobiose, Sucrose, Salicin, Maltotriose, L-sorbose carbon sources.

Based on Biolog reading result different yeast isolates were utilizing different carbon sources. But all isolates utilized dextrin in common and L-aspartic acid, D-gluconic acid and tween 80 were utilized more than seven isolates and the extant of utilizing were presented in Fig. 1.

Based on the carbon utilization and assimilation the yeast was clustered using past analysis software as indicated in Fig. 2. The cluster shows six clusters which resemble similar carbon utilization and assimilation characteristics.

The percentage occurrence on culture media recorded as, 5% Pichia fermentans, 15% Pichia spp., Rhodotorula aurantiaca B, 15% Pichia fluxuum, 10% Candida humilis, and, 10% Cryptococcus albidus Var aerus other 35% were not identified. Six yeast species were identified which is involved in dough fermentation by Omni Log identification system. Those selected isolates were identified using Biolog OmniLog identification system using Biolog OmniLog Micro plates. Six yeast species were identified by OmniLog identification system. From those identified yeast species by OmniLog 54% were similar in genus, 15% were similar at the species level and 8% were different with yeast species which identified by molecular identification system and 23% were unidentified. Yeast Micro Plate has two different reactions: assimilation of carbohydrates and oxidation. Six yeast species which were identified by BioLog (Pichia fermentans, Pichia spp., Rhodotorula aurantiaca B, Pichia fluxuum, Candida humilis, Trichosporon beigelii B and, Cryptococcus albidus Var aerus have positive oxidative test for Dextrin, stachyose, D-galactose, glucose, L-aspartic acid, D-gluconic acid, D-melibiose, sucrose, turanose, D-mannitol, tween 80, D- arabitol, D-meleitose, Glycerol. Gentiobiose. L-sorbose. Xvlitol. Sucrose, Salicin, Maltotriose, L-sorbose carbon sources.

Table 1. Biolog micro station identification result

Species	Probability	Similarity	Distance	Remark
Cryptococcus albidus var. aerus	100%	0.73	5.98	Identified
Pichia fermentans	100%	0.653	5.33	Identified
Rhodotorula acheniorum	100%	0.623	5.78	Identified
Trichosporon beigelii B	100%	0.615	5.91	Identified
Pichia spp	99%	0.693	4.62	Identified
Pichia fluxuum	98%	0.668	4.87	Identified
Candida humilis	86%	0.553	5.47	Identified

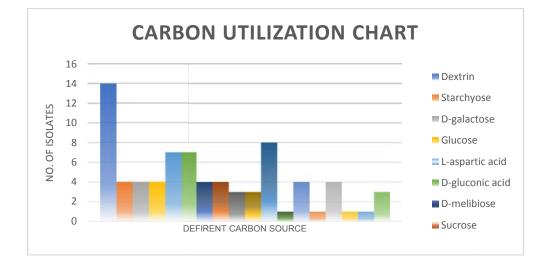


Fig. 1. Number of yeast isolates utilizing the same carbon in the microplate

Isolate code	Oxidation	Assimilations
AAUYT30B	Dextrin, stachyose, D-galactose, glucose,	Fumaric acid, L-malic, methyl succinate, bromo succinic acid, L-glutamic acid, a-
(P. fermentans)		keto- glutaric acid, D- gluconic acid, Dextrin, Cellobiose, Gentiobiose, Maltose,
`````		Maltotriose, Palatinose, D- raffinose, Stachyose, Sucrose, D-trehalose, Turanose,
		glucose, D-galactose, L-rhamnose, D-glucoside, Amygdalin, Arbutin, Salicin, D-
		mannitol, D-sorbitol, adonitol, xylitol, glycerol, tween 80, D- ribose, 1,2-propanediol-
		D-xylose a
AAUYT26C	Dextrin, stachyose, D-galactose, glucose,	Fumaric acid, L-malic, methyl succinate, bromo succinic acid, L-glutamic acid, a-
AAUYT32A		keto- glutaric acid, D- gluconic acid, Dextrin, Inulin, Cellobiose, Gentiobiose,
AAUYT34A		Maltose, Maltotriose, D-melibiose, Palatinose, D-raffinose, Stachyose, Sucrose, D-
(Pichia spp.)		trehalose, Turanose, D-glucosamine, a-D-glucose, D-galactose, L-rhamnose, L-
		sorbose, Amygdalin, Arbutin, Salicin, D-maltitol, D-mannitol, D-sorbitol, adonitol,
		xylitol, glycerol, tween 80, D- ribose, D-xylose, D-galactose+ D-xylose, ,2-
		propanediol+ D-xylose
AAUYT21B	L-aspartic acid, D-gluconic acid, dextrin, D-	Gentiobiose, Maltotriose, Arbutin and D-mannitol, L-rhamnose, L-sorbose,
AAUYT27A	melibiose, sucrose, turanose, D-mannitol	Amygdalin, Salicin, D-sorbitol, adonitol, xylitol, glycerol, tween 80, D- ribose, D-
AAUYT25A	and tween 80	xylose N-acetyl-L-glutamic acid, D-xylose, D-glucuronic acid+ D-xylose, dextrin, D-
(P. fluxuum)		xylose, D-melibiose+ D-xylose, D-galactose+ D-xylose, 1,2-propanediol+ D-xylose
AAUYT31A	Dextrin, D- arabitol	Fumaric acid, L-malic, methyl succinate, bromo succinic acid, Gentiobiose,
(C. albidus Var aerus)		Amygdalin, D-mannitol, D-sorbitol, Adonitol and D-arabitol
AAUYT23B	L-aspartic acid, D-gluconic acid, Dextrin, D-	D- gluconic acid, Cellobiose, Palatinose, D- raffinose, Stachyose, D-trehalose, N-
(Candida humilis)	melibiose, L-sorbose, Xylitol, Glycerol and	acetyl-D-glucosamine, Arbutin, Salicin, D-xylose and a-D-lactose+ D-xylose
	tween 80	
AAUYT22A	Gentiobiose, Sucrose, Salicin and tween 80	Fumaric acid, methyl succinate, 2-keto-D- gluconic acid, D- gluconic acid, Dextrin,
(R. aurantiaca B)		Cellobiose, Gentiobiose, Maltose, Maltotriose, D-melibiose, D-raffinose, Stachyose
		Sucrose, D-trehalose, Turanose, N-acetyl-D-glucosamine, Arbutin and D-xylose
AAUYT28A	L-aspartic acid, D-gluconic acid, Dextrin,	L-rhamnose, L-sorbose, Amygdalin, Arbutin, Salicin, D-maltitol, D-mannitol, D-
AAUYT24C AAUYT35A	Maltotriose, L-sorbose, D- sorbitol, Glycerol	sorbitol, adonitol, xylitol, I-erythritol, glycerol, tween 80, D- ribose, D-galactose+ D-
(Unidentified)	and tween 80	xylose, 1,2-propanediol+ D-xylose

## Table 2. Oxidation and assimilation result of yeast using YT biolog microplate

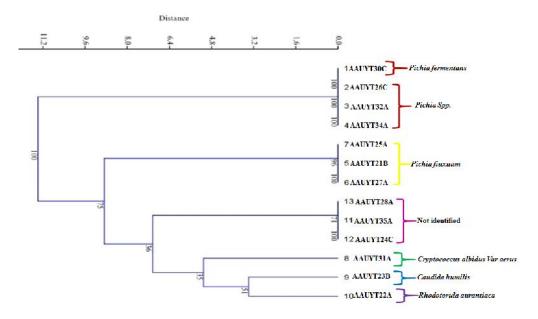



Fig. 2. Clustering of yeast isolates by carbon utilization using past

## 4. CONCLUSION

The study indicated that the fermenting teff dough is composed of different yeast groups. The identification of these isolates could possibly contribute pieces of information needed for understanding and verification of microbial consortia involved in the course of injera dough fermentation. And those microorganisms appeared from 48h to 72h but some were appearing in early stage and others continued up to the last stage (i.e. 72h).

## ACKNOWLEDGEMENTS

I would like to acknowledge the following institutions: - Holeta Agricultural Biotechnology Research Institute and microbial laboratory at Ethiopian Biodiversity Institute.

### **COMPETING INTERESTS**

I declare that this research and the information presented in are my own and has been generated by me as the result of my own original experimental research.

#### REFERENCES

 Kurtzman CP, Fell JW. Yeast systematics and phylogeny—implications of molecular identification methods for studies in ecology. Biodiversity and Ecophysiology of Yeasts, Biodiversity and Ecophysiology of Yeasts. 2006;11-30.

- Bekatorou A. Food grade yeasts. Food. Technol. J. Biotechnol. 2006;44(3):407– 415.
- 3. Askal D, Kebede A. Isolation, characterization and identification of lactic acid bacteria and yeast involved in fermentation of Teff (*Eragrostis tef*) Batter. Intern. J. 2013;1:36-44.
- Mogessie A. A review on the microbiology of indigenous fermented foods and beverages of Ethiopia. Ethiop. J. Biol. Sci. 2006;5:189-245.
- Bultosa G, Hamaker BR, Be-Miller JN. An SEC-MALLS study of molecular features of water soluble amylopectin and amylose of teff [*Eragrostis tef* (Zucc.) Trotter] starches. Starch/Stärke. 2008;60:8-22.
- Stewart BR, Getachew A. Investigation of the nature of Injera. Econ. Bota. 1962; 16:127-30.
- Hiwot TA, Ashore ZW, Gulelat DH. Preparation of injera from pre-fermented flour: Nutritional and sensory quality. Inter. J. of Science Innov. Disco. 2013;3:165-175.
- Yetneberk S, Rooney LW, Taylor JRN. Improving the quality of sorghum injera by decortication and compositing with teff. J. Sci. Food and Agri. 2005;85:1252–1258.
- 9. Brhanu AG. Involvement of lactic acid bacteria in the fermentation of teff

Tilahun et al.; AJOB, 5(4): 1-7, 2018; Article no.AJOB.40012

(*Eragrostis tef*), an Ethiopian fermented food. J. Food Sci. 1985;50:800-801.

- 10. Biolog YT. Microplate instruction for use. Biolog, Inc; 1993.
- Whitman WB. Bergey"s manual of systematic bacteriology. Second Edition Volume Three the Firmicutes. University of Georgia Athens; 2009.
- 12. Bakheit HA. Technological properties of lactic acid bacteria isolated from different fermented foods faculty of agricultureuniversity of Khartoum. Unpublished Dissertation Submitted to the University of Khartoum in partial fulfillment of the requirement of the degree of M.Sc. in Food Science and Technology; 2008.

© 2018 Tilahun et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://prh.sdiarticle3.com/review-history/24237