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In this paper, we propose a new two-parameter class of iterative methods to solve a nonlinear equation. 
It is proved that any method in this class is cubically convergent if and only if the parameters sum up to 
one. Some of the existing third-order methods, by suitable selection of parameters, can be put in this 
class. Every iteration of the class requires an evaluation of the function, three of the first derivative, and 

none of the second derivative. Hence, its efficiency index is  that is worse than all other 

cubically convergent methods considered. However, numerical experiments show that a special 
method in our class is comparable to those in terms of iterations number. 
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INTRODUCTION 
 
One of the most basic problems in numerical analysis 
(and of the oldest numerical approximation problems) is 

finding values of the variable , say , which satisfy 

 for a given function . There are numerous 

methods for solving the nonlinear equation , 

 is a scalar function and  is an open interval 

containing the root . Most of these methods have fixed 

point style: they transform the equation  to 

the  in such a way that  is a fixed point of 

, namely . With an initial approximation  

to the , these methods generate the sequence , in 

which ,   It is obvious that if  

is continuous and the sequence  is convergent, 

then . 

The Newton method is the most popular method for 
solving such equations. Some historical points about this 
method can be found in Yamamoto (2000). 

In recent years, a number of authors have considered 
methods to solve the nonlinear equations. These 
techniques calculate the new approximation to a zero of 
the given function by sampling per iteration of the 
function and possibly its derivatives for a number of 
values of the independent variables. All these techniques 
are variants of Newton’s method and the main practical 
difficulty associated with these techniques is that they fail 
miserably if at any stage of computation, the derivative of 
the function is either zero or very small in the vicinity of 
the required root, [For example, Ujević et al. (2007) and 
references therein]. It is known that some of these 
methods can be obtained using Taylor or interpolation 
polynomials.  

In this paper, we focus on the third-order convergence 
methods that do not use any second derivatives. We 
propose a class of such methods, containing two 
parameters, and show that some of existing methods can 
be put in our class. 
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BASIC FACTS 
 
Definition 1 
 

Let  be a real function with a simple root  and let 

 be a sequence of real numbers that converges 

towards . Then, we say that the order of convergence 

of the sequence is , if there exist a real  such 

that: 
 

 
 

for some .  is known as the asymptotic error 

constant. 

If , 2, or 3, the sequence is said to have linear 

convergence, quadratic convergence or cubic 
convergence, respectively.  
 
 
Definition 2   
 

Let  be the error in the -th iteration. We 

call the relation  
 

 
 
as the error equation.  

If we can obtain the error equation for any iterative 

method, then the value of  is its order of convergence. 

 
 
Definition 3   
 

Let  be the number of new pieces of information 

required by a method. A “piece of information” typically is 
any evaluation of a function or one of its derivatives. The 
efficiency of the method is measured by the concept of 
efficiency index (Gautschi, 1997) and is defined by 
 

 
 

Where  is the order of the method. 

As mentioned before, most of the methods used to 

solve  have fixed point structure, say 

, . Using the -th order Taylor 

series of  about , it is 

easy to prove the following theorem. 

 
 
 
 
Theorem 4  
 

Let sequence , , be convergent to 

the fixed point  of . If  

 

 
 

then the sequence  is convergent of order  with 

asymptotic error constant  (Gautschi, 

1997). 
 
 

THE NEW CLASS 
 

Recently, there have been some developed new 
modifications for Newton method with third-order 
convergence (Chun, 2005, 2006, 2007, 2008; Chun and 
Kim 2010; Forntini and Sormani, 2003a, b; Homeier, 
2003, 2005; Jian, 2007; Jisheng et al., 2007; Kou et al., 
2006; Özban, 2004; Potra and Pták, 1984; Ujević et al., 
2007; Weerakoon and Fernando, 2000), almost all of 
which are based on the computation of the integral 
 

                                      (1) 

 

arising from Newton’s theorem, using different quadrature 
formulae. For example, Weerakoon and Fernando (2000) 
re-derived the Newton method 
 

                                                (2) 

 
by approximating the integral by the rectangular rule 
according to  
 

 
 

and using . It is well known that the Newton 

method is quadratically convergent with error equation  
 

 
 
In which 
 

 
 
When they used the trapezoidal approximation  
 

 



 
 
 
 
In combination with the approximation 

 and , they arrived at 

the modified Newton-type iterative scheme   
 

                   (3) 

 
and proved that this scheme converges cubically in some 

neighborhood of . Its error equation is  

 

 
 
Frontini and Sormani (2003a, b) considered the midpoint 
rule 
 

 
 
and arrived analogously at a further modified Newton-
type iterative scheme 
 

                                (4) 

 
This scheme has also been derived in Homeier (2003 
2005) by requiring that the iteration function  
 

 
 

satisfies , . Hence, 

 follows. This is satisfied for 

. The Scheme (4) 

is obtained for the special case  

and using . As the modified Newton-

type method of Weerakoon and Fernando (Equation 3), 
Scheme (4) converges cubically in some neighborhood of 

. Its error equation is  

 

 
 
Frontini and Sormani (2003b) also proved that every 
interpolatory quadrature formula of order higher than zero 
give a cubically convergent modification of Newton 
method.  

Paying attention to methods of Equations 2, 3, and 4, 
we consider the class of iterative methods 

Rezaei and Esmaeili         19 
 
 
 

        (5) 

 

in which  and  are parameters.  

It is noticed that the choice  give the Newton 

method (2),  and  gives the Weerakoon and 

Fernando method of Equation 3, whereas  

gives the Frontini and Sormani method of Equation 4. 

Also, whenever , for the special case 

, after some calculations, we have 

 

 
 

That is Halley method for computing   . 

We notice that every iteration of the method of 
Equation 5 requires one evaluation of the function and 

three of the first derivative . Hence, its efficiency index 

is . On the other hand, the efficiency index 

of Newton method of Equation 2 is , and 

that of the methods of Equations 3 and 4 is 

. Although the index efficiency of our 

method is worse than that of all methods of Equations 2, 
3, and 4, numerical experiments show that it is 
comparable to those in terms of the number of iterations. 
In the following theorem, we prove that the method (5) 
has third-order convergence.  
 
 
Theorem 5 
 
Let  be a simple root of a sufficiently differentiable 

function  for an open interval . If  is 

sufficiently close to , then the method defined by 

Equation 5 has third-order convergence if and only if 

, satisfying the error equation 

 

 
 

where   and . 

 
 
Proof 
 
Using Taylor expansion and taking into account 

, we have 
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                   (6) 

 
        (7) 

 
Dividing Equation 6 by Equation 7 gives 
 

              (8) 

 
Let 
 

 
 
Using Equation 8 and some simplifications, we get  
 

        (9) 

 
         (10) 

 
Now, using Equation 9 in the Taylor expansion of 

 about , we have that  

 

  

 

 

 
In a similar way, 
  

 
 
Hence,  
 

 
 
in which  
 

 
 
Therefore,  
 

 
 
and, by Equation 6, 
 

                (11) 

 
 
 
 
In summary, Equations 11 and 5 result in  
 

  

 

 
 
It has been shown that the Maple package can be 
successfully employed to re-derive error equations of 
iterative methods, that is, to find their order of 
convergence (Chun, 2005, 2006) for details). The method 
of Equation 5 in this case is found to be third-order 
convergent as shown in the following:  
 

Let  be a simple zero of . Consider the iteration 

function  defined by  

 

 
 
According to Theorem 4, it is sufficient to show that 
 

 
 
The computations of the above derivatives can be 
performed using mathematical software package Maple, 
one of computer algebra systems. To do that, we run the 
following Maple statements consecutively: 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 



 
 
 
 

 
 

 
 

0 
 

 
 

 
 

One special choice of parameters is  and 

. In this case,  and we 

obtain the following new modification of Newton method: 
 

     (12) 

 
This modification is cubically convergent and has the 
error equation 
 

 
 
The method of Equation 12 is corresponding to the two-
point Gauss-Legendre quadrature formula to approximate  
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the right integral of of Equation 1. Comparing the error 
equations of the third-order methods of Equations 3, 4, 5, 

and 12, we can see that if , , for 

all  in an neighborhood of the root , then the method 

of Equation 12 is the best. Numerical methods show this 
fact, too.  
 
 
NUMERICAL EXPERIMENTS 
 
All computations were done using MATLAB 6.5 with 
format of long floating point arithmetics. We accept an 
approximate solution rather than the exact root, 

depending on the precision ( ) of the computer. We use 

the following stopping criteria for computer programs: 

. So, when the stopping criterion is 

satisfied,  is taken as the exact root  

computed. For numerical illustrations in this section we 
used the fixed stopping criterion .  

We present some numerical test results for various 
cubically convergent iterative schemes in Table 1. 
Compared were the methods of Newton (Equation 2), 
Weerakoon and Fernando (Equation 3), Frontini and 
Sormani (Equation 4), and our method (Equation 12) 
introduced in the present contribution. We used the 
following test functions and displayed the approximate 

zeros  found up to the 20 digits.  

 

 
 
 
As convergence criterion, it is required that the distance 
of two consecutive approximation for the zero is less than 

. Also, displayed is the number of iterations to 

approximate the zero (IT) and the value of . 

The test results in Table 1 show that for most of the 
functions we tested, our method (Equation 12) has at 
least equal performance compared to the other third-
order methods, and can also compete with Newton 
method (Equation 2). 

CONCLUSIONS 

 
In this paper, we proposed a new cubically convergent 
class of modifications for Newton method. It is shown 
that, by suitable selection of parameters, some methods 
can be obtained from this class. Every iteration of the 
class requires one evaluation of the function , three of 

the derivative , no evaluation of the second derivative 

. Hence,  its  efficiency  index  is    that  is  
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Table 1.  Comparison of various cubically convergent methods and the Newton’s method. 
 

 Method  IT  

 

(2) 1.3652300134140968879 53 0.70e-15 

(3) 1.3652300134140968879 6 0.70e-15 

(4) 1.3652300134140968879 18 0.70e-15 

(12) 1.3652300134140968879 4 0.70e-15 

     

 

(2) 1.4044916482153411152 6 0.28e-15 

(3) 1.4044916482153411152 4 0.28e-15 

(4) 1.4044916482153413373 4 0.28e-15 

(12) 1.4044916482153413373 4 0.28e-15 

     

 

(2) 0.25753028543986078436 5 0.90e-16 

(3) 0.25753028543986078436 3 0.90e-16 

(4) 0.25753028543986072885 3 0.12e-15 

(12) 0.25753028543986072885 3 0.12e-15 

     

 

(2) 0.73908513321516067229 247 0.51e-16 

(3) 0.73908513321516067229 8 0.51e-16 

(4) 0.73908513321516067229 5 0.51e-16 

(12) 0.73908513321516067229 5 0.51e-16 

     

 

(2) 2 1 0 

(3) 2 65 0 

(4) 2 7 0 

(12) 2 1 0 

     

 

(2) 1.8954942670339809396 5 0.62e-17 

(3) 1.8954942670339809396 3 0.62e-17 

(4) 1.8954942670339809396 3 0.62e-17 

(12) 1.8954942670339809396 3 0.62e-17 

     

 

(2) -1.2076478271309187829 8 0.29e-14 

(3) -1.2076478271309187829 6 0.29e-14 

(4) -1.2076478271309187829 5 0.29e-14 

(12) -1.2076478271309187829 5 0.29e-14 

     

 

(2) 3 35 0 

(3) 3 24 0 

(4) 3 21 0 

(12) 3 22 0 

     

 

(2) 1.0137725000771651285 7 0.45e-14 

(3) 1.0137725000771651285 5 0.45e-14 

(4) 1.0137725000771651285 5 0.45e-14 

(12) 1.0137725000771651285 4 0.45e-14 

     

 

(2) -0.13161801809960649301 8 0 

(3) -0.13161801809960649301 7 0 

(4) -0.13161801809960646525 5 0.89e-15 

(12) -0.13161801809960649301 5 0 



 
 
 
 
worse than all other cubically convergent methods 
considered. However, numerical experiments show that a 
special method in the class is comparable to those in 
terms of iterations number.  
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