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1 Introduction 
In traditional shear wave elastography, mechanical 
waves are generated in a sample and measured by various 
imaging modalities [1]. One modality that is often used 
for this purpose is optical coherence tomography, which 
utilizes backscattered light to obtain images with 
micrometer resolution [2]. By determining the speed of 
the mechanical wave traveling through a material, 
mechanical properties can be estimated, which can be a 
powerful tool for early disease detection, disease 
progression monitoring, or therapy guidance [3]. Small 
displacements on the order of nanometers to micrometers 
are typically induced in optical coherence elastography 
(OCE), and the ability to evaluate these displacements 
determines the quality of speed estimation regardless of 
the speed calculation method. Motion estimators are 
often used for this task, which computes the motion 
between temporal and/or spatial samples utilizing the raw 
data acquired from the imaging system. Three of the most 
often used motion estimators are the Kasai [4] and 
Loupas [5] autocorrelation estimators and the recently 
introduced vector method [6]. The Kasai autocorrelator, 
which is also known as the 1D autocorrelator, was used 
extensively in initial elastography publications due to its 
computational simplicity [5]. Later, Loupas was able to 
derive a superior estimator known as the 2D 
autocorrelator, which deals with some of the limitations 
of the Kasai method (which are discussed in Ref. [5]). 
The most recent of the three, the vector method tracks 
subpixel displacements between scans to ensure that the 
same scatterers are compared when determining 
displacement [6, 9]. This method has been shown to be 

more accurate and more noise-tolerant than other 
methods but only for static/quasi-static 
elastography [6, 9]. However, its application to wave-
based elastography has yet to be demonstrated. Though 
these three methods have been and continue to be used 
throughout elastography, there are no studies showing 
which motion estimator is best for a given set of 
circumstances. 

In this work, we performed simulations and collected 
experimental data to determine what effect varying the 
amplitude and signal-to-noise ratio (SNR) had upon the 
measured group velocity. We used normalized fitted 
profiles to create ideal displacement profiles with infinite 
SNR to be used as a baseline for comparison. White 
Gaussian noise was added at various levels to match 
desired SNR values. Profiles were reconstructed using 
the three methods mentioned earlier and using only the 
raw data with and without averaging. Following this, the 
group velocity of the mechanical wave was calculated, 
and the results of each method were compared to the 
normalized fitted profiles. We show that there is an 
apparent lower bound on the SNR required to accurately 
obtain the wave speed with a given speed calculation 
method. We also show that the vector method is more 
resistant to the effects of noise than the Loupas or Kasai 
motion estimators but at the cost of a slight loss of 
accuracy.  
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2 Materials and Methods 

2.1 Data acquisition 
Elastography data was acquired from several gelatin 
phantom concentrations (8%, 12%, and 16%) with an 
optical coherence elastography imaging system. The 
system and acquisition procedure is described in a 
previous publication [7]. The OCE system contains a 
broadband swept-source laser (HSL 2000, Santec Corp., 
Hackensack, NJ, USA) with a central wavelength of 
1310 nm, the axial resolution of 11 μm in air, transverse 
resolution of 16 μm, and a scan rate of 30 kHz. A focused 
micro air pulse [8] was synchronized with the frame 
trigger [9] to give an effective temporal resolution of 
30 kHz. This air pulse generated a wave on the surface of 
the phantom, which was then recorded at 251 points in a 
line over ~6.3 mm. The excitation was performed in the 
center of this line, causing wave motion to the left and 
right. The OCE data was obtained as the raw spectral 
interference pattern, which was then converted to linear-
in-wavenumber spectral data by linear interpolation 
based on calibration. The raw complex OCT data was 
then obtained by fast Fourier transform (FFT) of the 
linear-in-wavenumber data. In the following simulations, 
profiles were generated from this experimental OCT data 
at each concentration mentioned above. 

2.2 Simulations 
From the raw complex OCT data, the top surface of each 
phantom was determined using a surface tracking 
algorithm, and displacement profiles were taken for 
50 pixels (~200 µm) below the surface. Stationary phase 
profiles were obtained from the experimental OCT phase 
data (i.e., angle of the raw complex OCT data). A 
Gaussian fit was performed on the stationary phase 
profiles to generate ideal noiseless profiles used in the 
following simulations. Following this, only the ideal 
noiseless profiles generated from the Gaussian fit were 
used. The width of the fit was fixed to eliminate any 
effect of dispersion on the results. For these simulations, 
the amplitudes and SNRs of the displacement profiles 
were modified before motion estimation. The 
displacement profiles were first normalized and 
multiplied by the desired amplitude to give profiles with 
infinite SNR but definite amplitude. An example profile 
corresponding to an amplitude of –0.1 is shown in Fig. 1.  

To modify the SNR, white Gaussian noise was added 
to each profile using until the desired SNR was obtained, 
where the SNR was given by: 

!"# = 20 '()!" *
#!"#$
$!%&'()"

+. (1) 

Here, -%&'(  is the average of the 3 central samples at 
the known maximum peak location obtained from the 
fitted profiles (e.g., the minimum in Fig. 1), and 
.%)*+,-& is the standard deviation of the profile after 
subtraction of the fitted profile. 

Several example profiles with varying SNRs are 
shown in Fig. 2. Twelve individual amplitudes and SNR 
values were combined to study their effects on group 
velocity calculation. The amplitudes and SNRs 
investigated are listed in Table 1. From these noise-added 
profiles, the various motion estimators were applied: no 
motion estimator was applied (i.e., only the angle of the 
complex data was utilized), smoothing the noise-added 
profiles in-depth and time, Kasai estimator, Loupas 
estimator, and vector method. For all techniques, a kernel 
size of 5 pixels was utilized. Since some techniques, such 
as the Kasai and Loupas estimators, provide the particle 
velocity, i.e., the time derivative of the displacement, the 
cumulative sum was applied to obtain the displacement 
from the particle velocity. 
 

	
Fig. 1 A normalized fitted phase profile with amplitude 1 
is shown here. 

Table 1 Amplitude and SNR values used in the 
simulations. 

Amplitude 
(radians) 

0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 5, 7.5, 
10, 25, 50, 100 

SNR (dB) 
0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 5, 7.5, 
10, 25, 50, 100 

3 Motion Estimation Algorithms 
The Kasai autocorrelation algorithm can be used to 
calculate the average phase change over a given axial 
range, Δϕ1111:  

Δϕ#### ≈	
≈ − tan!" *∑ [-(/)1(/ − 1) − 1(/)-(/ − 1)]#!"

$%"
∑ [1(/)1(/ − 1) + -(/)-(/ − 1)]#!"
$%"

5, (2) 

where Q and I are the imaginary and real parts of the 
complex OCT signal, respectively; N is the number of 
averaged A-scans, and i is the signal of the ith A-scan at a 
given depth [10, 11].  
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Fig. 2 Example profiles at various SNR values. Each profile started with an amplitude of 1. 

The Loupas autocorrelator can similarly be used to 
find Δϕ [1, 10]: 

Δϕ(7) =	

=
9:;!" <∑ [((*!,,").(*!,,#)!.(*!,,")((*!,,#)]$%#!&"

∑ [.(*!,,").(*!,,#)0((*!,,")((*!,,#)]$%#!&"
=

1 +
,12%#3∑ ∑ [)(+!,-.)0(+!1#,-.)%0(+!,-.))(+!1#,-.)]3%#.&"$%4!&"

∑ ∑ [0(+!,-.)0(+!1#,-.)1)(+!,-.))(+!1#,-.)]3%#.&"$%4!&"
4

56

, (3) 

where 2. is the mth element along the z-axis, M is the size 
of the window in the axial direction, N is the size of the 
window in time, and Q and I are the imaginary and real 
parts of the complex OCT signal, respectively. 

In the vector method, there are four steps [6]. First, 
the complex data from two temporally consecutive OCT 
frames are multiplied together according to  

3(5, 7) = 9!(5, 7) ∙ 9/
∗(5, 7), (4) 

where 9! is the first frame, 9/ is the second frame, and 
5 = 1…"1	 and 7 = 1…"2  are the horizontal and 
vertical indices of the processing window, respectively. 
Then, 3  is averaged laterally across a window of the 
desired length, giving the vector B(j): 

3(>)11111 ≡ @(7) exp[E ⋅ Φ(7)] = 	∑ 3(5, 7)3*
.4! , (5) 

where Φ  is the phase variation. After this, complex-
valued quantities c(j) are formed via: 

J(7) = 3(> + 1)11111111111 ⋅ 3(>)∗1111111, (6) 

and averaged across the vertical index as: 

J̅ = ∑ J(7)3+5!
64! = M̅NOP[E ⋅ ΔΦ1111], (7) 

where C is the complex vector. The angle ΔΦ1111  is the 
desired quantity and is the averaged inter-pixel phase-
variation across the processing window.  

4 Group Velocity Calculations 
A cross-correlation-based algorithm was utilized to 
quantify the elastic wave group velocity [12]. The 
temporal phase profiles along the propagation path for a 
given depth were cross-correlated with a reference signal 
near the excitation to obtain the wave propagation lags. 
The least-squares regression fitting of the wave 
propagation lags with the propagation distances resulted 
in the wave speed. The speed was calculated for the 
various motion estimators: noiseless fitted profiles, 
noise-added data, averaged noise-added profiles, Kasai 
estimated motion, Loupas reconstructed profiles and 
vector method data.  

5 Comparison with Noiseless Profiles 
Following the wave propagation simulations, the results 
of each method were compared with the results of the 
noiseless profiles. For the 8%, 12%, and 16% phantoms, 
the group velocities of the noiseless fitted profiles were 
2.518 m/s, 3.139 m/s, and 8.085 m/s, respectively. The 
mean and standard deviation of the group velocities for 
each method were calculated and used to calculate 
percent error for each method, with the group velocity 
generated from the noiseless profiles serving as the true 
value. The mean and standard deviation were taken for
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Fig. 3 Comparison of the RMS error of the three motion estimators from 8%, 12%, and 16% gelatin phantom data. 

the 50 depth-wise pixels. The root-mean-square (RMS) 
error of the individual profiles as compared to their noise-
added counterparts, which was the given motion in the 
samples, was also calculated to estimate the accuracy of 
each method to reconstruct the given motion. Finally, a 
summary of the SNR improvement was also quantified, 
where the SNR is given by Eq. 4. 

6 Results 
Fig. 3 shows the RMS error between the reconstructed 
phase profiles and the noiseless profiles for each method. 
In these figures, RMS error is capped at 20% to provide 
better contrast. The vector method has a larger area of 
RMS error less than 5% (indicated by the blue region) 
than either of the other two methods. Kasai outperforms 
Loupas here as well. In the low-SNR region, the vector 
method largely performs worse than either method 
except at very low SNR and amplitude.  

Group velocity results for the three motion estimation 
methods are shown in Fig 4. The percent error is capped 
at 100% in these figures to provide better contrast for the 
lower values. The average percent error across all three 
phantom concentrations at SNRs greater than 50 was 
1.94 ± 1.56%, 2.07 ± 1.44%, and 2.30 ± 2.10% for the 
Kasai, Loupas, and vector methods, respectively. For an 

SNR of 25, only the amplitudes less than 10 rad had 
percent error values less than 10%, at 3.09 ± 2.29% for 
Kasai, 2.3 ± 1.62% for Loupas, and 2.39 ± 2.22% for the 
vector method. However, for SNR values lower than 
10 dB all methods had difficulty accurately determining 
wave speed except at extremely low amplitudes 
(< 1 – 2 rad), with percent errors sometimes exceeding 
900%. The vector method accurately determined the 
group velocity in the areas where low SNR meets with 
low amplitudes in all cases, unlike either Kasai or 
Loupas. This can be seen in the lower-left corner of Fig. 4 
in plots (c), (f), and (i). 

7 Discussion 
All three methods allowed for highly accurate (< 5% 
error) group velocity calculations regardless of amplitude 
above an OCE SNR of ~50 dB. However, at SNRs above 
50 dB, motion estimation algorithms are not necessary, 
as the group velocities can be calculated directly from the 
raw phase data, as shown in Fig 5. This may not be the 
case for samples with more complicated excitation 
patterns (e.g., chirps) or in cases with irregular noise. 
More complicated excitation patterns, especially those 
with multiple excitation waveforms, may present 
difficulty in retrieving group velocity due to errors in 
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Fig. 4 Comparison of the percent error of the three motion estimators from 8%, 12%, and 16% gelatin phantom data. Gray 
areas indicate that values could not be calculated in that region. 

	
Fig. 5 Comparison of the percent error using (a) no motion estimator and (b) after averaging in-depth and time. 

cross-correlation. Hence, other techniques for velocity 
calculation can be applied, such as frequency-domain 
methods. This result indicates that the SNR can be 
purposefully lowered by adjusting other parameters such 
as detector speed without any penalty in velocity error, 
provided that the SNR remains greater than 50 dB.  

In this paper, we discuss the OCE SNR (i.e., the SNR 
of the displacement of the elastic wave), not the OCT 

SNR. However, Park showed in Ref. [13] that the 
minimum detectable phase difference, .78, is related to 
the OCT SNR by 

σ78 = (!"#)5
,
-. (8) 
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This means that having a high OCT SNR will 
contribute to having a high OCE SNR. 

As shown in Fig. 4, averaging the phase information 
in-depth and time did not improve group velocity 
calculation. Though the vector method also involves 
similar averaging, it averages the complex data. The 
averaging of the real and imaginary parts of the vectors 
instead of directly averaging their angles makes the 
vector method robust and noise-tolerant [6].  

There is also a lower bound on SNR required for 
accurate group velocity retrieval regardless of the method 
or amplitude at ~20 dB. Above this SNR, at least some 
amplitudes allow for group velocity retrieval, but below 
20 dB, errors increase for all methods. Typical SNRs of 
modern imaging systems are well above this, but this 
could be a factor when measuring extremely weak waves, 
designing low-cost imaging systems with relatively weak 
lasers in optical coherence tomography and other optical 
techniques, in portable single-fiber-based probes, etc. 
The minimum phase difference that can be detected 
depends on the image SNR and is given by: 

σ78 =
!

9:3;./0	
. (8) 

This equation assumes that the SNR is ≫ 1	[13]. At 
an SNR of ~20 dB and an amplitude of ~20 rad, both the 
vector method and Loupas allow for reliable group 
velocity calculations, but Kasai does not. This is likely 
due to the limitations mentioned previously [5, 10, 14] by 
virtue of the Kasai autocorrelator being a 1D technique. 
In the square region from 20 dB to 50 dB and 0 rad to 
25 rad, the vector method is more reliable across all wave 
speeds (i.e., elasticities). This is due to phase unwrapping 
and the errors that may result from using phase 
unwrapping algorithms. When the SNR and amplitudes 
are low, the amplitudes of the profiles remain wrapped 
(i.e., < ±π), and there are no unwrapping errors, leading 
to very low error in the final group velocity estimation. 
As the noise increases and/or the phase jumps increase 
above Δ2π , the unwrapping algorithm accumulates 
errors causing a significant final error in the final group 
velocity estimation due to large erroneously unwrapped 
jumps. The focus of this manuscript was to isolate the 
motion estimators, so various phase unwrapping 
algorithms were not examined. However, phase 
unwrapping is still not well solved [15]. It should be 
given consideration when attempting to reconstruct 
profiles that are either particularly noisy or that have 
signals significantly above the Δ2π  threshold. When 
considering the entirety of the contour map, the vector 
method typically produces more reasonable group 
velocities than either Loupas or Kasai techniques, as 
evident by comparing the regions in Fig. 3. However, this 
effect is limited to a very small range of SNRs and 
amplitudes, indicating that either the vector method or 
the Loupas autocorrelator can be used in the majority of 
circumstances.   

As the wave speed increases, the ability of the 
estimators to accurately determine velocity also 
increases. This is likely due to differences in the amount 

of peak shifting, also known as jitter, occurring during 
cross-correlation. Several factors can contribute to these 
shifts, including signal decorrelation, noise, and finite 
window length. This causes a jitter in the cross-
correlation values computed as the wave propagation lag, 
which is measured as the standard deviation of the 
displacement error [10]. As the group velocity slope 
increases, the error decreases.  

The RMS error results show that the vector method 
reconstructed the motion most accurately, while Kasai 
and Loupas showed similar performance. This 
comparison eliminates the effects of cross-correlation 
and fitting and shows that the vector method is superior 
to the other methods for profile reconstruction over a 
higher range of SNRs and amplitudes. Averaging the raw 
phase profiles did improve the signal, but the vector 
method was superior because it averages the complex 
data instead of only the phase data. This accounts for the 
speckle properties inherent to coherence imaging 
systems, such as ultrasound imaging and OCT. 

The Kasai autocorrelator works by measuring the 
average phase shift with respect to a central frequency 
but assumes a constant mean frequency. Because of this 
assumption, Kasai’s algorithm can be inaccurate if there 
are fluctuations [10]. Additionally, Kasai’s algorithm 
was useful at a time when computing power was limited. 
Computing power has increased exponentially since the 
introduction of the algorithm, meaning that more 
accurate but computationally expensive methods can be 
used without a significant time penalty. 

The Loupas autocorrelator uses information from two 
dimensions instead of only using axial information for 
filtering [5]. Hence, the Loupas autocorrelator 
outperforms the Kasai algorithm. However, in some 
situations, the denominator of Loupas’ algorithm can 
become small enough that the algorithm yields 
nonphysical results, and therefore a filter must be used to 

limit the displacement range to − =
/ to 

=
/ [10]. The Loupas 

algorithm is also relatively computationally inexpensive, 
meaning that results can be obtained quickly. In fact, it 
was implemented on the GPU for real-time displacement 
estimation ten years ago [16]. 

The vector method, which was first published in 
2018, maintains low error by using complex data for 
calculations until the last step and avoiding phase 
unwrapping [6]. Though it was designed for static/quasi-
static elastography, these results show that it can also be 
utilized for dynamic elastography [6]. Though it is the 
most computationally intense of the three, numerous 
computational approaches optimized for vector 
arithmetic can perform these calculations with minimal 
time penalties. 

8 Conclusions 
The primary goal of this work was to look at the 
relationship between amplitude and SNR when 
considering motion estimation algorithms for various 
mechanical wave propagation speeds in impulsive wave-
based elastography. Our results show that there is a lower 
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bound on SNR at approximately 20 dB that is required 
for accurate group velocity measurement for any of the 
methods. After an OCE displacement SNR of 50 dB, the 
percent error remains below 5% regardless of amplitude 
and motion estimator, which may be useful when trying 
to balance other parameters that may lower SNR. 
Additionally, the vector method has greater coverage of 
lower error values than either Kasai or Loupas methods, 

though Loupas is nearly as good. The role of amplitude 
in profile reconstruction is very small, with SNR being 
the key parameter, except at very low amplitudes. 
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