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ABSTRACT 
 

The criterion of modulational instability of the second order bright solitary wave is studied in this 
article. The Principle consists initially in seeking all solitary wave solutions of the bright type which 
verify the nonlinear partial differential equation which governs the dynamics of propagation in 
flattened optical fibers. When the reference solution to be subjected to a disturbance is identified, 
the next step consists in establishing the condition of modulational stability/instability. 
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1. INTRODUCTION  
 

Modulational instability is defined as a multitude 
of random frequency signals which accompany a 
wave or main signal during its propagation. It 
presents itself as a very negative factor in the 
propagation of signals, since it facilitates the 
dissipation of the signal and above all is the 
source of many disturbances. Over time, the 
study of modulational instability has become a 
field of concern for many researchers and 
authors, in order to ensure the best guarantee of 
propagation or stability of the signals that one 
wishes to propagate [1-14]. Many studies have 
been done to this end. But from a purely 
analytical angle, the study of the modulational 
instability of solitary waves is not always easy, no 
doubt because of the management of the 
calculations which is not always easy as is often 
the case for plane waves. Aware of this difficulty, 
we will want in this work to use an appropriate 
technique that we have set up during our last 
investigations in the field of mathematics for 
nonlinear physics [15-19], to first determine the 
solitary wave solution of the nonlinear partial 
differential equation that governs the propagation 
dynamics in the flattened optical fiber, and then 
establish its stability/instability criterion. We 
assume for this purpose that the solitary wave is 
more robust than the plane wave, which leads us 
in our calculations to choose a plane wave as the 
disturber of the solitary wave. Although the final 
objective of this work is to establish the condition 
for the solitary wave to be modulationally 
stable/unstable, we will first find the solitary wave 
solution worthy of propagation in the flattened 
single-mode fiber and this in section 2, then 
establish the criterion of stability / instability in 
section 3 and quite naturally end our little 
scientific reflection with a conclusion. 
 

2. SOLITARY WAVE SOLUTIONS 
 

The dynamics of propagation in the flattened 
optical fiber is governed by the nonlinear partial 
differential equation of generalized form 

2 4
2

1 2 3 42 4
0 ,

U U U
in n n U U n

z t t

  
   

  

  

                                                                   (1) 

 
where it is assumed that the flattened fiber is 
immersed in a medium such that each variation 
is subject to a characteristic coefficient; in 
particular ( 1, 2 , 3 , 4 )

i
n i   which have very 

precise physical meanings. Thus, we propose to 
determine the solution in the form 

 
    , exp ,U z A t ikz 

                          (2) 

 
and the equation (1) is transformed into 

 
 2 4

2

1 2 3 42 4
0 .

A A
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t t

 
   

 

  

                                                                   (3) 

 
The search for the solitary wave of the bright 
type requires to choose the ansatz solution of 
equation (3) in the form  

 

   ,0
,

n
A t aJ t

                                   (4)  

 
where a , n  and   are constants to be 
determined,  ,n m

J t  being the iB- function of 

characteristics, n , m  and   [20-24]. The 
search for the solution in the form (4), is based 
on the fact that in the case where 0n , we 

have a solitary wave of the bright type. Under 
these conditions, solving equation (3) amounts to 
evaluating the terms of equation (3), in particular 
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                                                                   (5) 
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and 
 

 
2 2

3 ,0
.

n
A a aJ t

                     (7) 

 
Inserting the terms (5), (6) and (7) into (3) gives 
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       (8) 

 
Bearing in mind the transformations 
 

2 , 2 , 0 2 , 0
,
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and 
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The range equation (8) becomes 
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   (11) 

 
The values of n  for which certain terms of equation (9) combine are 0 , 1  and 2 . This leads in what 

follows to seek the solutions of this equation for these corresponding values of n . 
 

 For 0 ,n    

 
The range coefficients equation (9), gives 
 

2

1 5
0 .n k n a  

          (12) 

 
Solving equation (12) gives 
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1

1 2

3

, 0 ,
n k

a n n k
n



                      (13) 

Relation (13), implies that there exists a real   

such that  
 

1

3

ex p .
n k

a i
n



           (14) 

 

The solution of equation (1) under this condition 
is a plane wave given by 
 

   
1

3

, ex p .
n k

U z t i k z
n

 

                      (15) 

 

 For 1,n    
 

The range coefficients equation (9) becomes 
 

 
22 4 2 4 4

1 2 4 2 4 3 3 ,0 4 5 ,0
2 7 2 4 0 6 0 .n ka n a n a n n n a a J a n J            

                                    (16) 

 
Equation (16) holds if for 0a  , we have the following relations 

 
2 4

1 2 4
2 7 0 ,n k n n              (17) 

 
22 4

2 4 3
2 40 0 ,n n n a    

        (18) 

 
and 
 

4
0 .n              (19) 

 
Equations (17) and (18) respectively give 
 

2

1 2
/ ,n n k            (20) 

 
and 
 

2 2

3 3

2 2
/ ex p .

n n
a R a i

n n
       

        (21) 

 
The solution of equation (1) in this case is given by 
 

     
2

1,0

3

2
, ex p ,

n
U z t J t i k z

n
   

       (22) 

 
by means of the constraint relation (20). This solution modifies the structure of the waveguide and is 
obtained for very low dispersions of order 4. This would also mean that it is more suitable in non-
flattened single mode fiber. The equation that governs the propagation dynamics in this case is given 
by 
 

 2 2
2

2

2 32
0 .

n A
i kA n n A A

k t

 
  



        (23) 

 

 For 2 ,n    

 
The range coefficients equation (9) becomes 
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 

   

2 4

1 2 2 2 ,0

22 4 4

2 4 4 ,0 4 3 6 ,0

4 6 4

6 5 6 2 4 0 .

n ka a n n a J

n a n a J a n n a J

 

  

  

    

                (24) 

 
Equation (24) is verified if and only if for 0a  , we have 

 
 2 4

1 2 2
4 6 4 0 ,n ka a n n a             (25) 

 
 2

2 4
3 2 8 0 ,n n             (26) 

 
and 
 

 24

4 3
24 0 .n n a  

          (27) 

 
We obtain from equation (27) 
 

2 24 4

3 4

3 3

2 4 2 4
, 0 / ex p .

n n
a n n R a i

n n
   

 
    

         (28) 

 
The solution of equation (1) in this case is given by 
 
 

     
2 4

2 ,0

3

2 4
, ex p ,

n
U z t J t i k z

n
  


 

                       (29) 

 
by means of the constraint relations 2

2 4
2 8 / 3n n   and 

 
2

1
112 1792 / 3n k 

. 

 
We note that only the solution (29) is effectively that of the nonlinear partial differential equation which 
governs the dynamics of propagation in the flattened optical fiber. It is precisely the one that will be at 
the center of the study of modulational instability because solution (22) works in the non-flattened 
single-mode optical fiber. 
 

3. CONDITION OF MODULATIONAL INSTABILITY 
 
Let   be a very small quantity and  ,z t  a very small function to serve as a perturber for the 

solution  0
,U z t

corresponding to the solution (29). We are looking for the relation that  ,z t  

satisfies when we look for the solution of equation (1) in the form 
 

     0
, , , .U x t U x t x t 

         (30) 

 
Thus, introducing equation (30) into (1), leads to 
 

2 4
2 2 *

1 2 3 0 3 0 42 4
2 0 .in n n U n U n

z t t

  
 

  
    
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       (31) 
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Neglecting the high spatial frequency term in  0
,U z t

 equation (31) reduces to 

 
2 4

2

1 2 3 0 42 4
2 0 .in n n U n

z t t

  


  
   

  

          (32) 

 
By choosing the perturbation  ,z t  in the form  

 

     
2

, , , , 1,z t A z t iB z t i    
        (33) 

 
 where  ,A z t

 and  ,B z t
 are real functions, equation (32) leads to the system of coupled 

differential equations 
 

2 4
2

1 2 3 0 42 4
2 0 ,

B A A
n n n U A n

z t t

  
    

  

                   (34) 

 
and 
 

2 4
2

1 2 3 0 42 4
2 0 .

A B B
n n n U B n

z t t

  
   

  

        (35) 

 
We then seek the solutions of equations (34) and (35) in the forms 
 

 1,0
,A aJ i k z t


   

          (36) 

 
and 
 

 0 ,1
,A ibJ i k z t    
          (37) 

 
where k   is the spatial frequency of disturbance ,   the angular frequency of disturbance, a and b  

are reals. The taking into account of the solutions in the forms above, imposes the evaluation of 
certain terms of the equations (34) and (35). So we have 
 

 

2

2

1 ,02
,

A
a J i k z t

t
 




    



         (38) 

 

 

2

2

0 ,12
,

B
i b J i k z t

t
 


   



         (39) 

 

 

4

4
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,

A
a J i k z t

t
 




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

                    (40) 

 
and 
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4

4

0 ,14
.

B
i b J i k z t

t
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
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The introduction of terms (38) to (41) in equations (34) and (35) leads to the system of linear 
equations 
 

 
22 4

2 3 0 4 1
2 0 ,n n U n a n k b     

                   (42) 

 
and 
 

 
22 4

1 2 3 0 4
2 0 .n k a n n U n b     

       (43) 

 
The system of equations (42) and (43) admits non-trivial solutions if and only if we have the following 
equation 
 

22 4

2 3 0 4 1

22 4

1 2 3 0 4

2
0 .

2

n n U n n k

n k n n U n

 

 

  


   

                (44) 

 
The expansion of equation (44) leads to 
 

2 2

22 32 1 2

0

4 4 4 4

2
.

2 2

nn n k n
U

n n n n


   
       

   

       (45) 

 
The dispersion relation (45) can still be written 
 

2

22 32 2 2

0

4 4 4 4

2

2 2

nn n k n
U

n n n n


 
      

 

       (46) 

 

The validity condition of equation (46) imposes the double condition 
 

2

2
4 1 2

0

3 4 4

,
2 2

n n k n
U

n n n

  
    
   

         (47) 

 

and 

2
4 1

0

3 4

.
2

n n k
U

n n




          (48) 

 

The inequalities (47) and (48) allow to write 
 

2

2
4 1 4 1 2

0

3 4 3 4 4

.
2 2 2

n n k n n k n
U

n n n n n

   
     
   

                   (49) 

 
The intensity of the solitary wave must satisfy the criterion above so that there is modulational stability 
and in the opposite case there is modulational instability. 
 

4. CONCLUSION 
 
We have succeeded in establishing in this article, 
the criterion of the modulational instability of a 

solitary wave of the second order pulse type in 
the flattened optical fiber. What should be noted 
is that this instability is closely linked to the 
intensity of the propagating wave, but above all 
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to the characteristic properties of the fiber. We 
can cite the coefficients of nonlinearity, 
dispersion of order two and of order four. The 
importance of this study lies in the fact that it can 
serve as a base for the experimental work that 
we want to undertake on the flattened optical 
fiber. 
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