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ABSTRACT

In this paper, we introduce and investigate the generalized reverse 3-primes sequences and
we deal with, in detail, three special cases which we call them reverse 3-primes, reverse Lucas
3-primes and reverse modified 3-primes sequences. We present Binet’s formulas, generating
functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give
some identities and matrices related with these sequences.

Keywords: Reverse 3-primes numbers; reverse Lucas 3-primes numbers; 3-primes numbers;
Lucas 3-primes numbers; Tribonacci numbers.
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1 INTRODUCTION

The sequence of Fibonacci numbers {F,, } and the sequence of Lucas numbers {L,, } are defined by
Fn:Fn71+Fn727n227 F0:07F1:17

and
Ln:Ln_1+Ln_2, an, L0:2, L1:1
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respectively. There are several nice and interesting generalizations of Fibonacci and Lucas sequences.

The generalized Tribonacci sequence {W,,(Wo, W1, Wa; 7, s,t) }n>o (or shortly {W,},>0) is defined
as follows:
Wp =1rWho1 + Whoo+tWh_3, Wo=a,Wi=bWa=c, n>3 (1.1)

where Wy, W1, W> are arbitrary complex (or real) numbers and r, s, ¢t are real numbers.
This sequence has been studied by many authors, see for example [1,2,3,4,5,6,7,8,9,10,11,12,13].

The sequence {W,}..>0 can be extended to negative subscripts by defining
s r 1
W_, = 7¥W7(n71) — wa(n72) + ¥W7(n73)

forn =1,2,3, ... when ¢ # 0. Therefore, recurrence (1.1) holds for all integer n.

As {W,} is a third order recurrence sequence (difference equation), it's characteristic equation is

2 —ra? —sx—t=0 (1.2)
whose roots are
a = a(r,s,t):§+A+B
B = Blrst)=g+wA+w’B
v = fy(r,s,t):g+w2A+wB
where
r3 rS t 1/3 r3 rSs t 1/3
A= (42 20 VA B=(_ 4+ VA
<27+6+2+f) : (27+6+2 W)
3t r?s? rst 53 2 -1+ Z\/g
A = A t) = — — T = = 2mi/3
st =5 ~Ts v 1 ¢ 2 exp(2mi/3)

Note that we have the following identities

at+pB+y =
aft+ay+py = -—s
afy = t.

If A(r,s,t) > 0, then the Equ. (1.2) has one real («) and two non-real solutions with the latter being
conjugate complex. So, in this case, it is well known that generalized Tribonacci numbers can be
expressed, for all integers n, using Binet’s formula

b1 Otn bzﬂn bg'y"

[ Py SR/ S B S vy vy

(1.3)

where
by = Wa— (B+7)Wi+ ByWo, by = Wa — (a+7)W1 +ayWo, bs = W — (a+ B)W1 +afWs. (1.4)

Note that the Binet form of a sequence satisfying (1.2) for non-negative integers is valid for all integers
n, for a proof of this result see [14]. This result of Howard and Saidak [14] is even true in the case of
higher-order recurrence relations.

Next, we give the ordinary generating function >~ W,z™ of the sequence W,,.

n=0
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Lemma 1.1. Suppose that fw, (z) = > W,a" is the ordinary generating function of the generalized

n=0

Tribonacci sequence {W, }n>o0. Then, >~ W,z is given by
n=0

- . (1.5)

- n Wo4 (Wi —rWo)z + (Wa — rWy — sWo)a:?
E Wha" = 5 3
oy 1—rx—sz?—tx

Proof. Using the definition of generalized Tribonacci numbers, and substracting rz > o>, Wpa",
sz 3% Wi and tz® 3000  Wiz™ from 0% W,z™ we obtain

o0 [e @) [e @) oo oo
2 3
(1 —rx — sz — ta®) E Wz = E Wya" —ra E Wya" — sz E Wya" —tx E Wya"
n=0 n=0 n=0 n=0 n=0
oo oo oo oo
1 2
= ) Waz" —r> Waa"t = s> Wea" -ty Wt
n=0 n=0 n=0 n=0

= Z Wpa" —r Z Wh_1z" — s Z Wh_oz" —t Z Wh_sz"
n=0 n=1 n=2 n=3
= (Wo + Wiz + Waz®) — r(Wox + Wia?) — sWoa?
Y (Wn = rWoot — sWiz — tW,_5)a"
n=3

= Wo+ Wiz + Waz® — rWox — rWia® — sWoz?
= Wo+ (W1 —rWo)z+ (Wa — Wi — sWo)a®.

Rearranging above equation, we obtain

G n Wo+ (Wi —rWo)z 4+ (We — rWi — sWo)a?
E Wpa'" = 3 3 .
oy 1—rx—sxz?—tx

We next find Binet formula of generalized Tribonacci numbers {V,,} by the use of generating function
for V.

Theorem 1.2. (Binet formula of generalized Tribonacci numbers)

dloc" dgﬁn dg’yn
W, = + + 1.6
@-Ala- " G-aB-7 " G-a6-5 19
where
di = I/V()Oc2 + (W1 —rWo)a + (We — rW1 — sWh),
do = WoB2+ (Wi —rWo)B+ (Wa — rWy — sWo),
ds = Woy>+ (Wi —rWo)y+ (Wa — rWy — sWo).
Proof. Let

h(z) =1 —re — sz’ — ta.

Then for some «, 8 and v we write

h(z) = (1 - az)(1 - Ba)(1 - ya)

Lo = s’ —ta’ = (1= az)(1 = f2)(1 = 72) (1.7)
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Hence E and % are the roots of h(zx). This gives a, 8, and « as the roots of
1 r s t
.
This implies * — rz? — sz — t = 0. Now, by (1.5) and (1.7), it follows that
Z W,z Wo + (Wl — ’I“W())CC + (Wz —rWy — SWo)

(1 —ax)(1 - Bz)(1 - yz)
Then we write
Wo+ (W —rWo)x + (We — rWh — 8W0)m2 Ay Aa As

(I —oax)(1 - Bz)(1 —yz) “U-ar)  (-Bo)  U—ra) (1.8)

So
Wot+ (W1 —rWo)a+(Wa—rWi—sWo)a® = A (1—Bz)(1—yz)+ Az (1—axz) (1—yz)+-A az)(1—px).

s(1—
If we consider z = 1, we get Wy + (W1 — rWo) 2 + (W —rW1 — sWo) & = A1 (1 — £)(1 - 2). This
gives

A CYQ(WO + (W1 — TWO)% + (W2 —rWi — SWO)O[%) I/V()Oé2 + (W1 — ’r‘Wo)Oé + (W2 —rWi — SWO)
1= = )

(@ —pB)(a—7) a (o= B)(a—7)
Similarly, we obtain

WoB?> + (Wi — rWo)B + (W2 — rWi — sWo) A Woy® + (Wi — rWo)y + (Wa — rWy — SWD)
(B—a)(B~) P (v =)= B)

Thus (1.8) can be written as

As =

Z Woz™ = Ai(1 —ax) " + Ao(1 — Bz) ™' + Az(1 —~yz) .

n=0
This gives
S Waz"=A1) "z + Ay B2+ Az Y 42" =) (Ara” + A" + Agy")a".
n=0 n=0 n=0 n=0 n=0

Therefore, comparing coefficients on both sides of the above equality, we obtain

Wn = Ar1a”™ + A28" + A"

where
Woa? + (W — rWo)a + (Wa — rWi — sWo)
A = ’
(o = B) (=)
Ay = WopB* + (W1 —rWo)B + (W —rWy — SW())
(B—a)(B—")
A _ WO’Y2 + (Wl — TWO)’Y + (W2 —rWi — SW())
3 - )
(y—a)(v—58)
and then we get (1.6).
Note that from (1.4) and (1.6) we have
Wa — (B4+Y)W1+ ByWo = Woa? + (Wi — rWo)a + (Wa — rWy — sWo),
Wo — (@ + Wi+ ayWo = WoB* + (Wi —rWo)B + (Wa — rWi — sWh),
Wo — (a4 B)Wi +aBWo = Woy* + (Wi — rWo)y + (W — rW1 — sWo).
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In this paper, we investigate the generalized reverse 3-primes sequences and we investigate, in
detail, three special cases which we call them reverse 3-primes, reverse Lucas 3-primes and reverse
modified 3-primes sequences. In this paper we consider the case r = 5, s = 3,¢ = 2 and in this
case we write V,, = W,. A generalized reverse 3-primes sequence {Vy}n>0 = {Va(Vo, Vi, V2) }n>o
is defined by the third-order recurrence relations

Vn = 5Vn—1 + 3Vn—2 + 2Vn—3 (1 9)

with the initial values Vy = co, Vi = ¢1, Vo = ¢z not all being zero.
The sequence {V, },.>0 can be extended to negative subscripts by defining
3 5 1
Von = —§V7<n71> — §V7(n72) + §V7(n73)
forn =1,2,3, .... Therefore, recurrence (1.9) holds for all integer n.

(1.3) can be used to obtain Binet formula of generalized reverse 3-primes numbers. Binet formula of
generalized reverse 3-primes numbers can be given as

bia™ n ba 8™ i bsy™
(@=B)la=vy) B-a)B-7) GH-a)(-8)

Vo =

where

bi=Vo—(B+NVi+ 67V, ba=Vo— (a+7)Vi+ayVo, bs =V — (a+ B)Vi + afVs.  (1.10)

Here, a, 8 and  are the roots of the cubic equation =3 — 5z% — 3z — 2 = 0. Moreover
1/3 1/3
o = oL (89, /1315 L(439_ /1815
T3 54 108 54 108
1/3 1/3
S /1315 L (439 /1315
3 54 108 54 108

g =
1/3 1/3
_ 5.2 @+ 1315 o 439 [1315
T T3 54 108 54 108
where
w= 71%“/3 = exp(2mi/3)
Note that
at+pf+vy = 5,
aB+ay+By = =3,
afy = 2.

The first few generalized reverse 3-primes numbers with positive subscript and negative subscript are
given in the following Table 1.
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Table 1. A few generalized reverse 3-primes numbers

n Vi V_n

0 Vo

1 Wi $Vo—3Vi -3

2 Va GVi— Vo — Ve

3 2V + 3Vi + 5V2 STy, — Ly — 1

4 10V + 17V4 + 28V3 37y, — By, — M3y,

5 56V0 + 941 + 157V4 S0V — 2V — 12V,

6 314Vp + 527V1 + 879V% LBV -ZVi—- 2V,

7 1758V + 2951V1 + 4922V; %VQ - 82V - 22V

8 9844Vp + 16 524V1 + 27561V, Bt Vi — 2V — Vs

9 55122V + 92527V1 + 154329V, 5;?3’3% - %Vl - 25,
10 308658Vp + 518 109V + 864 172V5 2BV, — 20570V — BBV,
11 1728 344V; + 2901 174V; + 4838 969V5 22y — 42289*589 Vo — 155033V,
12 9677938V4 + 16 245251V; + 27096 019V 1955%%79% — ey — 280V,
13 54192038Vp 4 90965 995V1 + 151725346V, 1522500, — 20083y, — 5052991,

Now we define three special cases of the sequence {V,,}. reverse 3-primes sequence {N,}.>o,
reverse Lucas 3-primes sequence {Sn}.>0 and reverse modified 3-primes sequence {U, },>o are
defined, respectively, by the third-order recurrence relations

Npt3 =bNpt2 +3Npt1 +2N,, No=0,N; =1,N2 =35,
Sn+3 - 5Sn+2 + 3Sn+1 + 2Sn7 SO = 3, S1 = 57 52 = 317 (1 A 1)
and
Un+s =5Un42 +3Upny1 +2U,, Upy=0,U; =1,Us =4, (1 12)

For generalized 3-primes sequence (and it's three special cases, 3-primes, Lucas 3-primes and
modified 3-primes sequences) see [15].

The sequences { Ny }n>0, {Sn}n>0 and {Ux, }»>0 can be extended to negative subscripts by defining

3 5 1
N_n = —EN,(n,l) - §N7<n72) + §N7(n73)7 (1.13)

3 5 1
S_n= —557@71) - 557@72) + 557@73) (1.14)

and 5 5 )
U-n = _§U*(n*1) - §U7(n72) + §U7(n73) (1.15)

forn = 1,2, 3, ... respectively. Therefore, recurrences (1.13), (1.14) and (1.15) hold for all integer n.

Note that the sequences N,, S, and U, are not indexed in [16] yet. Next, we present the first few
values of the reverse 3-primes, reverse Lucas 3-primes and reverse modified 3-primes numbers with
positive and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative

subscripts

n 0 1 2 3 4 5 6 7 8 9 10 11
Np, 0 1 5 28 157 879 4922 27561 154329 864172 4838969 27096019
N 0 1 _3 _1 37 _ 113 _ 35 1383 _ 4251 _ 1217 51693

-n 2 4 8 16 32 64 128 256 512 1024
Sn 3 5 31 176 983 5505 30826 172611 966543 5412200 30305851 169698941
S _3 _ 11 75 _ 127 _ 413 2809 __ 4805 _ 15327 105267 _ 181751 _ 568725

-n 2 4 8 16 32 64 128 256 512 1024 2048
Up 0 1 4 23 129 722 4043 22639 126768 709843 3974797 22257050
U _1 5 _5 _ 39 187 _ 191 _ 1453 7017 _ 7285 _ 54127 263299

-n 2 4 8 16 2 64 128 256 512 1024 2048
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For all integers n, reverse 3-primes, reverse Lucas 3-primes and reverse modified 3-primes numbers
(using initial conditions in (1.10)) can be expressed using Binet’s formulas as

an+1 /Bn+1 ,Yn+1
N = G Be—y T GaB=7 T o= B)
Su = a"+B" 4",
g, — _te-ba” (oD (19"

(a=B)a=y) B-a)B-7) @-a)y—-58)

respectively.

2 GENERATING FUNCTIONS AND OBTAINING BINET FORMULA
FROM GENERATING FUNCTION

Next, we give the ordinary generating function 3 V,,z" of the sequence V..

n=0
Lemma 2.1. Suppose that fv, () = > V,a™ is the ordinary generating function of the generalized
n=0

reverse 3-primes sequence {Vy, }»>0. Then, > V,z" is given by
n=0

i Vg = Vot (Vi = 5V0)a + (Vo — 5V4 — 3Vo)a?
n=0

1— 5z — 3x2 — 223
Proof. Take r =5, s = 3,t = 2in Lemma 1.1.
The previous Lemma gives the following results as particular examples.

Corollary 2.2. Generated functions of reverse 3-primes, reverse Lucas 3-primes and reverse modified
3-primes numbers are

oo

xT
Nnn = )
; v 1— bz — 322 — 247
iSm" _ 3 — 10z — 322
71— 5r - 302 - 22

oo 2
_— T—x
;U"z T 15z —32%2— 2%

respectively.

We next find Binet formula of generalized reverse 3-primes numbers {V,,} by the use of generating
function for V,.

Theorem 2.3. (Binet formula of generalized reverse 3-primes numbers)
dl Oén d2 ﬂ n d3’y "

" B T BB - T =a) =) @D
where
di = Vool + (Vi —5V)a+ (Vo — 5Vi — 3Vp),
dy = VoB®+ (Vi—5V0)B+ (Va—5Vi — 3V0),
ds = Vo’ + (Vi —5Vo)y + (Vo — 5V — 3V%).
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Proof. Take r = 5, s = 3,¢t = 2 in Theorem 1.2.

Note that from (1.10) and (2.1) we have
Vo= (B+y)Vi+ByVo = Vool + (Vi —5Vo)a+ (Vo — 5V4 — 3Vh),
Vo—(a+NWVit+arVo = VoB°+ (Vi —5V)B + (Va — 5V1 — 3Vh),
Vo—(a+B8)Vi+aBVe = Vo’ + (Vi —5Vo)y+ (Va — 5V — 3Vh).

Next, using the last Theorem, we present the Binet formulas of reverse 3-primes, reverse Lucas
3-primes and reverse modified 3-primes sequences.

Corollary 2.4. Binet formulas of reverse 3-primes, reverse Lucas 3-primes and reverse modified
3-primes sequences are

an+1 5n+1 ,yn+1
N = @ he ) TG T e p)
Sn = an +6n +'Yn7
g - la=Da" L (B-1F" . (r-1p"

(a=P)a=7) B-a)B-7) (G-a)y=8)
respectively.

We can find Binet formulas by using matrix method with a similar technique which is given in [17].
Take k = ¢ = 3 in Corollary 3.1 in [17]. Let

a2 a1 Q™! 1
A = g B 1|, A= Bt 11,
v oy 1 oy 1
0471
—1
5—1

a2 n 1 a2 a O(n71
Ay = ﬁj " 1 |,A3= Bz Jii 6"*1 .
voo" 1 Yooy A"

Then the Binet formula for reverse 3-primes numbers is

™ R

1 1

N, = det(A);N4,jdet(Aj)_det(A)(Ngdet(Al)+N2det(A2)+N1det(A3))
a7 a1 a2 a1 a2 a o™ ! a2 a1
= |28 B"‘i B8 1|+5 Bi 6"‘1 1]+ ﬂj B B”‘I / Bz g 1
Yoy 1 A (A Yooy A" vy 1

Similarly, we obtain the Binet formula for reverse Lucas 3-primes and reverse modified 3-primes
numbers as

1

Sp = det(A) (176 det(A1) 4+ 31 det(A2) + 5det(As)),
1

U, = det(A) (23 det(A1) + 4det(A2) + det(As)),

respectively.

3 SIMSON FORMULAS

There is a well-known Simson Identity (formula) for Fibonacci sequence {F,, }, namely,

Fpi1Fooy — Fp = (-1)"
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which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well.

This can be written in the form
Fn+1 Fn

Fn anl - (71) '
The following theorem gives generalization of this result to the generalized reverse 3-primes sequence
{‘/n}nzo-

Theorem 3.1 (Simson Formula of Generalized Reverse 3-primes Numbers). For all integers n, we
have

Vn+2 Vn+1 Vn V2 Vl %
Vn+1 Vn anl - 2n Vl ‘/0 Vfl . (31)
Vn Vn -1 Vn—2 VO V— 1 V— 2

Proof. (3.1) is given in Soykan [18].
The previous theorem gives the following results as particular examples.

Corollary 3.2. For all integers n, Simson formula of reverse 3-primes, reverse Lucas 3-primes and
reverse modified 3-primes numbers are given as

Nn+2 Nn+1 Nn

Nn+1 Nn anl = —2’“71,
Nn Nn—l Nn—2
Sn+2 Sn+1 Sn
Sn+1 Sn Sn—l = —1315 x 2n—27

Spn Sn—1 Sn-2
Un+2 Un+1 Un
Un+1 Un Unfl = -9 x 2”727

Un Un— 1 Un—2

respectively.

4 SOME IDENTITIES

In this section, we obtain some identities of reverse 3-primes, reverse Lucas 3-primes and reverse
modified 3-primes numbers. First, we can give a few basic relations between { N, } and {S,}.

Lemma 4.1. The following equalities are true:

2630N,, = 81Sn44 — 5415,43 + 503542, (4.1)
1315N, = —68Sn4+3 + 373Sp+2 + 81 X Spy1,
1315N,, = 33Sp42 —123S,41 — 1365,
13156N, = 42Sp41 — 375, +66S5n_1,
1315N, = 1735, +1925,_1 + 84S, 2,
and
8S, = T5Npta —397Npy3 — 127N, 4o,
4S8, = —11Nny3+49N,io+ 75N, 11,
28, = —3Nni2+21N,11 —11 X Ny,
Sn = 3Nny1— 10N, —3N,_1,
Sn = BN, +6N,_1+6N,_o.
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Proof. Note that all the identities hold for all integers n. We prove (4.1). To show (4.1), writing
N, :aXSn+4+bXSn+3+CX Sn+2

and solving the system of equations

No = axSi+bxS3+cxSs
N1 = axS5+bxSs+cxSs3
No = ax8Se+bxSs5+cxS8y
we find that a = 3515, b = — 2iL ¢ = 203 The other equalities can be proved similarly.

Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between {N,,} and {U,}.

Lemma 4.2. The following equalities are true:

18N, = —TUnss+ 37Unts+ 13Un 12,
IN, = Upts—4Unt2 — TUp41,
IN, = Upt2—4Uns1 + 2U,,
IN, = Upt1+5Un+2XUs-1,
9N, = 10U, 4+ 5Un—1 +2U,—2,
and
8U, = —5Npta+35Nnt3 —39N,42,
AU, = B5Npis—2TNpio — 5Nni1,
2U, = —Nny2+5Nni1+5N,,
U, = Np,—Np_1.

We give a few basic relations between {5} and {U, }.

Lemma 4.3. The following equalities are true:

365, = 113Un4a — 551Un4s — 449U, 40,
185, TUnss — 55Un42 + 113Un 41,

95, = -—-10x Unt2 +67Un41 + TU,,

95, = 17Up41 — 23U, —20U,—1,

95, = 62U, +31U,-1 + 34U, —2,

and

5260U,, = —341Sn4+4+ 127185543 + 3597542,
2630U,, = —217S,43+ 1287S,4+2 —3415,41,
1315U,, = 101842 —496S,4+1 — 217S,,
1315U, = 9S,4+1 + 865, + 2025,,-1,
1315U,, = 1315, +229S,_1 + 185, _2.

We now present a few special identities for the reverse modified 3-primes sequence {U, }.

10
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Theorem 4.4. (Catalan’s identity) For all integers n and m, the following identity holds

Un+7nUn—m - U;f = (Nn+m - n+m—1)(Nn—m - n—m—l) - (Nn - Nn—1)2

= (Nn(N'nL — Nm+1) + No—1 (=N + Ni—2) + Np—2(— Ny + Npp—1))
(Np (N = N1i—m) + Np—1(=N—yo + N_yo—2) + Npy—o (= Ny + N_sri—1))
—(Np = No—1)?

Proof. We use the identity
Un = Nn - Nn—l

and the identity (6.6).
Note that for m = 1 in Catalan’s identity, we get the Cassini identity for the reverse modified 3-primes
sequnce

Corollary 4.5. (Cassini’s identity) For all integers numbers n. and m, the following identity holds
Un+1Un—1 - Uﬁ = (Nn+1 - Nn)(Nn—l - Nn—2) - (Nn - Nn—l)Q-

The d’Ocagne’s, Gelin-Cesaro’s and Melham’ identities can also be obtained by using U, = N,, —
N,—1.The next theorem presents d’'Ocagne’s, Gelin-Cesaro’s and Melham’ identities of reverse modified
3-primes sequence {U,}.

Theorem 4.6. Letn andm be any integers. Then the following identities are true:
(a) (d’Ocagne’s identity)

Un+1Un — UnUnt1 = (Nm41 — Ni) (N — Np—1) — (N — Ni—1) (Nng1 — Ny).
(b) (Gelin-Cesaro’s identity)
Unt2Unt1Un—1Up—2 = Up = N4z = Nug 1) (Nng1 = No)(Np—1 = Np—2)(Np—2 = Npg) = (N — Npo1)™
(c) (Melham’s identity)
Uns1Unt2Unt6 — Up i3 = (Nns1 — Nuo)(Nnt2 — Nng1)(Nnte — Nots) — (Nngs — Nog2)®.

Proof. Use the identity U,, = N,, — Np,—1.

5 SUM FORMULAS

5.1 Sums of Terms with Positive Subscripts

The following proposition presents some formulas of generalized reverse 3-primes numbers with
positive subscripts.

Proposition 5.1. Ifr =5,s = 3,t = 2 then forn > 0 we have the following formulas:

@ >r Ve = %(Vn-&-B —AVto — TVpy1 — Vo +4V1 + 7V0).
(b) >i_o Var = 45 (—2Vonio + 17Vant1 + 14V, 4 2Vo — 17V1 + 31V5).
() >oroVortr = 41*5(7‘/2n+2 + 8Vany1 — 4Vap — Vo 4 37V1 + 4Vh).

Proof. Take r = 5,s = 3,t = 2in Theorem 2.1 in [19] (ortake z = 1,» = 5,s = 3,¢ = 2 in Theorem
2.1in [20]).

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take V,, = N,, with Ny = 0, N; = 1, Ny = 5).

11
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Corollary 5.1. Forn > 0 we have the following formulas:
(a) ZZ:O Ni = é(N’VLJr?) — 4Nn+2 — 7Nn+1 — 1).

(b) ZZ:O Noj, = %(*2N2n+2 —+ 17N2n+1 + 14N>, — 7)
(©) >r_o Nakt1 = 35 (TNans2 + 8Nani1 — 4N2p + 2).

Taking V;, = S, with S = 3,51 = 5,52 = 31 in the last proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.2. Forn > 0 we have the following formulas:

(a) ZZ:O Sk = é(sn+3 — 4Sn+2 — 7Sn+1 + 10),

(b) ZZ:() Sop = i(*252n+2 + 17S2n+1 + 1452, + 70).

(©) > i o Sokt1 = ﬁ(752n+2 + 8S2n41 — 452, — 20).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take V,, = U,, with Uy = 0,U; = 1,Us = 4).

Corollary 5.3. Forn > 0 we have the following formulas:

@) Yo Ur = §(Un+s — 4Upi2 — TUny1).

(b) Y7 Usk = 3= (—2Uzn12 + 17Uspnq1 + 14Uz — 9).

() >roUsky1 = Z%5(7U2n+2 + 8Uzn+1 — 4U2n +9).

The following proposition presents some formulas of generalized reverse 3-primes numbers with
positive subscripts.

Proposition 5.2. Ifr =5,s = 3,t = 2 then forn > 0 we have the following formulas:
@) i o(—1)"Vi = 2((=1)" (Vass — 6Viya + 3Vig1) + Vo — 6V + 3V0).

(b) S0 (—1)F Vo = L ((—=1)" (4Vanso — 1TVang1 — 6Von) — 4Vo + 17V4 + 3115).
(©) S o(=1)"Vari1 = 55 ((—1)" (3Vanya + 6Vans1 + 8Van) — 3Va + 19V4 — 8Vp).
Proof. Take x = —1,r = 5,s = 3,t = 2 in Theorem 2.1 in [20].

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take V,, = N,, with Ny = 0, N; = 1, Ny = 5).

Corollary 5.4. Forn > 0, reverse 3-primes numbers have the following properties.
@ Yi_o(=1)*Ni = $((=1)" (Nn+3 — 6Npy2 + 3Nns1) — 1).

(b) >p_o(=1)*Nak = 5 ((=1)" (4N2p42 — 17Nant1 — 6Nz,) — 3).

(©) >r_o(=1)"Napt1 = 5= ((=1)" (38N2nt2 + 6Nany1 + 8N2p) + 4).

Taking V,, = S,, with So = 3,51 = 5,52 = 31 in the last proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.5. Forn > 0, reverse Lucas 3-primes numbers have the following properties.
@ X _o(=1)"Sk = £((=1)" (Sn+3 — 6Sn+2 + 3Sn41) + 10).

(b) > p_o(—1)*Sak = ((—=1)" (4S2n4+2 — 1782041 — 652n) + 54).

(€) Sho(=1)"Saks1 = 55 ((—1)" (3Szn+2 + 652041 + 8520) — 22).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take V,, = U,, with Uy = 0,U; = 1,Us = 4).

Corollary 5.6. Forn > 0, reverse modified 3-primes numbers have the following properties.
@ o~ Ux = L((~1)" (Unys — 6Unta + 3Uns1) — 2).

(b) >p_o(=1)*U2i = 55 ((=1)" (4Uzn+2 — 17U2n41 — 6Uz2,) + 1).

(€) Sio(=1)*Uait1 = 55 ((=1)" (8Uzn+2 + 6Uzn11 + 8U20) + 7).

12
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5.2 Sums of Terms with Negative Subscripts

The following proposition presents some formulas of generalized reverse 3-primes numbers with
negative subscripts.

Proposition 5.3. Ifr =5,s = 3,t = 2 then forn > 1 we have the following formulas:
@ >p Vo =2(=10Vop_1 =5V o =2V 5+ Vo — 4V1 — TVp).

(b) > p Voo = é(_7v—2n+1 +3TV_on +4V_9,—1 — 2Va + 17V} — 31Vh).

(€) >op_i Veorg1r = 5= (2Vions1 — 17Voop — 14V_gn 1 + TV2 — 37V4 — 41)).

Proof. Take r = 5,s = 3,t = 2in Theorem 3.1 in[19] or (ortake x = 1,r = 5,s = 3,¢t = 2in Theorem
3.1 in [20]).

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take V. = N,, with No =0, N1 = 1, N, = 5).

Corollary 5.7. Forn > 1, reverse 3-primes numbers have the following properties.
(@ >p_ Nk =3(-10N_pn 1 —5N_pn_2—2N_p 3+ 1).

(b) > N_ox= i(_7N72n+l +37TN_2p +4N_29n—1+ 7).

(C) ZZ:I N72k+1 = %(2N72n+1 —17N_9, — 14N _o,_1 — 2).

Taking V;, = S, with S = 3,51 = 5,52 = 31 in the last proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.8. Forn > 1, reverse Lucas 3-primes numbers have the following properties.
(@ >, S—k=5(-10S_n_1—55 n_2—2S 35— 10).

(b) 7, S—ok = & (=TS—2nt1 + 37S_2n +4S_2,_1 — 70).

(€) X7, S—oii1 = (25 2nt1 — 17S_2, — 14S_3,,_1 + 20).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take V,, = U,, with Uy = 0,U; = 1,Us = 4).

Corollary 5.9. Forn > 1, reverse modified 3-primes numbers have the following properties.
@ >r Uk =3(-10U_pn1 —5U_pn_2—2U_pn_3).

(b) Y U—ok = = (=TU_2n41 +3TU_2n + 4U_2,-1 +9).

(€ > i U ok = %5(2U72n+1 —17U_2, — 14U_2,—1 — 9).

The following proposition presents some formulas of generalized reverse 3-primes numbers with
negative subscripts.

Proposition 5.4. Ifr =5,s = 3,t = 2 then forn > 1 we have the following formulas:

@ S0 (—DFVo = H(—1)" (Vo + Voo + 2Vog) — Vo + 6V — 310).

(b) S (—1)*Vigr = £ ((—1)" (—3V_znt1 + 19V_on — 8Von_1) +4V2 — 17V1 — 31Vp).
(€ S0 (—1)*Voorsr = £ ((—1)" (4Vzns1 — 17TVoon — 6Vo0,—1) + 3Ve — 19V3 + 8Vp).
Proof. Take x = —1,r = 5,s = 3,¢t = 2 in Theorem 3.1 in [20].

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take V,, = N,, with Ny = 0, N; = 1, Ny = 5).

13
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Corollary 5.10. Forn > 1, reverse 3-primes numbers have the following properties.
(a) E’]Z:l(_l)kak = %((_1)”’ (4N77L71 + N77L72 + 2N77L73) + 1)

(b) >p_ (—1)*N ok = = ((=1)" (=3N_2n11 + 19N_2, — 8N _3,1) + 3).

(©) Yh i (—1)*N_gkp1 = 55 ((—1)" (4N—2p41 — 17TN_2, — 6N_2, 1) — 4).

Taking V,, = S, with So = 3,51 = 5,52 = 31 in the last proposition, we have the following corollary
which gives sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.11. Forn > 1, reverse Lucas 3-primes numbers have the following properties:
@ Yr_ (—1)FS_p = ((=1)" (45-n—1 + S—n—2+2S_n_3) — 10).

(b) p_ (—1)"S—2k = 35 ((—=1)" (=35-20+1 + 195_2, — 8S_2,—1) — 54).

(©) Sr  (—1)"S_sky1 = o= ((—1)" (4S—2n41 — 17S_2n — 65_2n_1) + 22).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take V,, = U,, with Uy = 0,U; = 1,Uz = 4).

Corollary 5.12. Forn > 1 we have the following formulas:

@ X (-1 Uk = 5((-1)" (AU-n-1 + U-n—2 +2U—n—3) +2).

(b) S (—D) Uk = o= ((—1)" (—3U—2n41 + 19U_2, — 8U_25—1) — 1).
(€ Xr (1) U_spg1 = 5= ((—1)" (4U—2n4+1 — 1TU_2p — 6U_2,_1) — 7).

5.3 Sums of Squares of Terms with Positive Subscripts

The following proposition presents some formulas of generalized reverse 3-primes numbers with
positive subscripts.

Proposition 5.5. Ifr =5,s = 3,t = 2 then forn > 0 we have the following formulas:

(@) Sp_ o Vi = 5= (—8Vilis — 263V,7 0 — 257V,2 1 + 91VogsVigo + 22VigsVigr — 52VigaVigr +
8V + 263V + 257VE — 91VaVy — 22VaVp + 52ViV%).

(b) Sr o Vit1Vie = 155 (11V, 2154+ 221V;2 o +44V,2 1 —9TVo g 3Vigo + 26V 3Vig1 —266Vig2 Vg1 —
11VE — 221VE — 44VF + 97Va Vi — 26Va Vo + 26611 Vh).

(©) >op_o V2V = 555 (29V,21 5 — 31V, 21 o +116V,7 1 — 133Vi43Vi2 — 136 Vi3 Vi1 + 76 Vo2 Vg1 —
29V5 + 31V — 116V + 133Ve Vi 4 136VaVy — T6V1 V).

Proof. Take x = 1,7 = 5,5 = 3,¢t = 2 in Theorem 4.1 in [21], see also [22].

From the last proposition, we have the following Corollary which gives sum formulas of reverse 3-
primes numbers (take V,, = N,, with No = 0, N7y = 1, N3 = 5).

Corollary 5.13. Forn > 0, reverse 3-primes numbers have the following properties:

(@ >S5 o Ni = 535 (=8N, 3—263N; 15 —25TN; 1 + 91Ny 3Nny2+22Nn13Npy1 —52Nn 1o Npy1 +

8).

(b) >r_o Net1Ne = 15 (11N 3+221N7 0 +44N7 1 —97 Ny 13 Nn 12426 Ny 3 Np 1 —266 Ny, 2 Ny 1 —
11).

(©) Sr_o NegaNi = 125(29N7 4 3—3LN; 1o+ 116N; 1 —133Ny 4 3Nn 42— 136 N3 Np 41476 N2 N1 —
29).

14
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Taking V;, = S,, with S = 3,51 = 5, S2 = 31 in the last Proposition, we have the following Corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.14. Forn > 0, reverse Lucas 3-primes numbers have the following properties:

(@) Yr oSk = 2=(—85713—26355 5—257S7 1 +91Sn435n 4242250 435m4+1—525125n+1+1205).

(b) > r o Sk+15k = 155 (1157 1 5+22187 o +4455 1 —97Sn43Sn12+26Sn435n 41 — 2665 125n 41+
115).

(€) > p_ Skr2Sk = 125(2957 13 —3157 15 +11657 11 — 13350 43Sn+2— 13650 435n 41+ 765n4+25n 41+
3985).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take V;, = U, with Uy = 0,U;1 = 1,Uz = 4).

Corollary 5.15. Forn > 0, reverse modified 3-primes numbers have the following properties:

(@) Yr_o Ui = 5= (—8Un43—263U7 15 —257U; 11 +91Un 3Un +2+22Un 4 3Un 41— 52Un 2Un +1+27).

(b) >r_o Unt1Ux = 15 (11U; 15422107 4 5 +44U7 41 —97Un 4 3Un +2426Un 4 3Un 41 —266Un 4 2Up 1 —
9).

(©) Yr o UrsaUx = 155(29U7 1 3—31U7 2 +116U; 11 —133Un43Un+2—136Un438Un 41+ 76Un42Un 41+
99).

The following proposition presents some formulas of generalized reverse 3-primes numbers with
positive subscripts.

Proposition 5.6. Ifr =5,s = 3,t = 2 then forn > 0 we have the following formulas:
(@ >p_,(—1)F Vk =1t (( D (— V2 s —TIV,2 o +154V,2 421V, 3V 20 —22V 4 3Vi i 1 56 Vi 2 Vi1 ) —
Vs — TV + 154V + 561 Vo — 22V Vo + 21V V4).

(b) >k o (=) Visa Vi = 555 ((— )n (V2 5+ 119V,;2 5, —44V2 ) =81V, 43 Vi 2 — 58V 3 Vi1 +284
Vat2Vat1) + 11V3 + 119V2 — 44Vg — 81V Vi — 58Va Vg + 284V1 V).

(€) Sr_o(=1)"Visa Vi = 100(( D™ (Vi3 — 39V,2 5 — 36V,21 1 — 39ViisVnio — 2Viys Vi1 — 104
V2 Via1) + 9VE — 39V — 36VE — 39VaVh — 2VaV, — 1044 V0).

Proof. Take x = —1,r = 5,s = 3,¢t = 2 in Theorem 4.29 in [21]

From the above proposition, we have the following corollary which gives sum formulas of reverse

3-primes numbers (take V,, = N,, with Ny =0, N1 = 1, N3 = 5).

Corollary 5.16. Forn > 0, reverse 3-primes numbers have the following properties:

@ Sr_ (1) NE = 5((=1)" (=N245 — T9N 15 + 154N2 1 + 21N, 43 Nns2 — 22Nny3Nny1 +
56N, aNn 1) + 1).

(b) >i (=1 *Nip1 Ni = 555 ((—1)" (11N 5+ 119N 5 —44N7 11 —81N, 13N y2—58Nn i3 Nny1 +
984N, 12 Nps1) — 11).

(©) 3 o(=1)*NiyaNp = 75 ((=1)" (ON243—39N; 12 —36N; 1 —39N 13 Npt2—2Np 3 Np 1 —104
Nn+2Nn+1) - 9)

Taking N,, = S, with Sp = 3,51 = 5,52 = 31 in the above proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.17. Forn > 0, reverse Lucas 3-primes numbers have the following properties:

15



Soykan; JSRR, 26(6): 1-20, 2020; Article no.JSRR.58728

(@) Sp_o(-1DFS2 = Lo (=)™ (=525 — 7952 5 + 15452 | + 215, 43Sn 42 — 225,435n11 + 565, 425,41) + 499).

(b) Zk:o(_ ) Sk+1Sk = ﬁ(( )" (1152+3+1195n+2 4452+1—815n+35n+2—585n+38n+1+284
Spi2Sni1) — 539).

(©) Yho(—1)*SkyaSk = 155 ((—1)" (95745 — 3957 15 — 3657 11 — 39S0135n 42 — 29435041 — 104

100
Sn+25n+1) — 441).

From the above proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take S,, = U,, with Uy = 0,U; = 1, Uz = 4).

Corollary 5.18. Forn > 0, reverse modified 3-primes numbers have the following properties:

@ X7 (DR = (=) (=Uks — T9U7 45 + 154U2 11 + 21Uns3Unt2 — 22Un43Uns1 +

150

56Un12Uns1) — 11).

(b) S (=D Urs1Us = 555((—1)" (11U 154+ 119U 5 — 44U, 1 — 81Un13Un12 — 58Un13Un11 +
284U, 12Unt1) — 29).

(©) i o(=1) Ukt2Ui = 125 ((=1)" (U745 — 39U 15 — 36U 11 — 39Un+3Un+2 — 2Un13Upns1 — 104
Un+2Un+1) — 51),

6 MATRICES RELATED WITH GENERALIZED REVERSE
3-PRIMES NUMBERS
¢ n W2
0 ) ( 1% ) . (6.1)
0 Wo

Matrix formulation of W,, can be given as
Wn+2 T
Wn+1 = 1
W 0
For matrix formulation (6.1), see [23]. In fact, Kalman gave the formula in the following form
W 01 0\"/ W
Wn+1 == 0 O 1 W1 .
W2 r s t Wa

We define the square matrix A of order 3 as:

= O ®

such that
5 3 2
detA=|1 0 0 |=2
0 1 0

From (1.9) we have
n+2 5 3 2 Vn+1
Vn+1 1 0 0 | (6.2)
0 1 0 Va-1
and from (6.1) (or using (6.2) and induction) we have
5
1
0

Vg2 3 2\"/ W
n+1 0 0 1% .
1 0 Vo

16
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If we take V' = N in (6.2) we have

N2 5 3 2 Nni1
Nogi |=[ 1 0 0 N. |. (6.3)
N 010 Nn_1

Nn+1 3Nn + 2Nn—1 2Nn
Bn = Nn 3Nn71 + 2Nn72 2Nn71

We also define

N’nfl 3Nn72 + 2Nn73 2N’n72

and
Varr  3Va+2Vh_4 2V

Cn = ‘/n 3‘/'”71 + 2‘/'”72 2‘/7L71
Vn—l 3Vn—2 + 2Vn—3 2Vn_2

Theorem 6.1. For all integer m,n > 0, we have
(@ B,=A"

(b) C1A" = A"C4

(¢) Crnym = CpnBm = BnCy.

Proof.

(a) By expanding the vectors on the both sides of (6.3) to 3-colums and multiplying the obtained on
the right-hand side by A, we get

B, = AB,_1.
By induction argument, from the last equation, we obtain
B, = A""'B.

But B; = A. It follows that B,, = A™.
(b) Using (a) and definition of C, (b) follows.

(c) We have
2 Vn 3Vn71 + 2Vn72 2Vn71
AC,-1 = 0 Va1 3Va—24+2Vh_3 2V,_o

0 Vn72 3Vn73 + 2‘/71,74 2Vn73
Vn+1 3Vn + 2Vn—1 2Vn
i.e. C,, = AC,_1. From the last equation, using induction we obtain C,, = A" ~'C;. Now
Crgm = A" 10 = A" A™CL = AVCLA™ = C B,

O = Ut
= o W

Vn 3Vn71 + 2Vn72 2Vn71 = Cn.
Vn—l 3Vn—2 + 2Vn—3 2Vn—2

and similarly
On+m = Ban

Some properties of matrix A™ can be given as
An — 5An—l +3An—2 + 2An—3

and
An+m — AnAm — AmAn

and
det(A™) = 2"

for all integer m and n.

17
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Theorem 6.2. Form,n > 0 we have

VnNm+l + anl(?)Nm + 2]mel) + 2Vn72Nm
VnNm+l + (3anl + 2Vn72) Nm + 2‘/77,71]\/Y'm71

(6.4)
(6.5)

Vn+m

Proof. From the equation C,+., = C\, B, = B, C,, we see that an element of C,,+., is the product
of row C,, and a column B,,.

Vn+m+1 3‘/;L+m + 2Vn+m,—l 2Vn+m
Vn+m 3Vn+m71 + 2Vn+m72 2Vn+m71
Vn+mfl 3Vn+m72 + 2Vn+m73 2Vn+m72
VnJrl 3Vn +2V,1 2V, Nm+1 3N, +2Np—1 2N
= ‘/n 3‘/n—1 + 2‘/”72 2Vn71 Nm 3Nm71 + 2Nm72 2N7n71
Vn—l 3Vn—2 + 2Vn—3 2Vn—2 Nm—l 3Nm—2 + 2Nm—3 2Nm—2
2ViuNm—1 + Nmt+1Vit1 + Ni (3V, 4+ 2Vi—1) Dy Dy
= VnNm+1 + Nm (3Vn—1 + 2Vn—2) + 2Nm—1vn—1 D2 D5
Ny (3Vi—2 +2Vh—3) + Ny1Va—1 + 2Npm—1Viua D3 Dg
where
Dl = Vn+1 (3Nm + 2]\frn—l) + 2Vn (3Nm—2 + 2Nm—3) + (3Nm—1 + 2Nm—2) (3Vn + 2Vn—1) y
Dy = Vo(BNm +2Nm-1) 4+ 2Vp—1 (B3Nm—2 4+ 2Nm—3) + (3Nm—1 4+ 2Nm—2) (3Va1 + 2Vh—2),
DS = Vn—l (3Nm + 2]\/vm—l) + 2Vn—2 (SNm—Q + 2Nm—3) + (3Nm—1 + 2Nm—2) (3Vn—2 + 2Vn—3) 3
D4 = 2van+1 + 4‘/'7LNTVL72 + 2Nm71 (3Vn + 2‘/nfl) 3
DS = 2NmVn + 4Nm72Vn71 + 2Nmfl (3Vn71 + 2Vn72) 5
DG - 2NmVn71 + 4Nm72Vn72 + 2Nm71 (3Vn72 + QVn73) .

From the last equation we say that an element of C,,.,, is the product of a row C,, and column B,,.
We just compare the linear combination of the 2nd row and 1st column entries of the matrices Cy,+m
and C, B.,. This completes the proof.

Remark 6.1. By induction, it can be proved that for all integers m,n < 0, (6.4) holds. So for all
integers m, n, (6.4) is true.

Corollary 6.3. For all integers m,n, we have

Nn+m NnNm+1 +Nn71(3Nm +2Nm71)+2Nn72NTna (66)
Sn+m = SnNm+1 + Sn71(3Nm + 2Nm71) + 2Sn72Nm7 (67)
Un+m = UnNm+1 + Un—1(3Nm + 2]\/v'm—l) + 2Un—2Nm- (68)

7 CONCLUSIONS

these second order sequences in science and
nature, one can see the citations in [24].

Sequences of integer number such as Fibonacci,
Lucas, Pell, Jacobsthal are the most well-
known second order recurrence sequences. The
Fibonacci numbers are perhaps most famous
for appearing in the rabbit breeding problem,
introduced by Leonardo de Pisa in 1202 in his

book called Liber Abaci. The Fibonacci and
Lucas sequences are sources of many nice and

interesting identities. For rich applications of
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As a third order sequence, we introduce the
generalized reverse 3-primes sequence (it's
three special cases, namely, reverse 3-primes,
reverse Lucas 3-primes and reverse modified
3-primes sequences) and we present Binet's
formulas, generating functions, Simson formulas,
the summation formulas, some identities and
matrices for these sequences.
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Third order sequences have many applications.
We now present one of them. The ratio of
two consecutive Padovan numbers converges
to the plastic ratio, ap (which is given in (7)
below), which have many applications to such
as architecture, see [25]. Padovan numbers is
defined by the third-order recurrence relations

Pny3=Ppy1+Pn, Po=1,P=1Py=1.

The characteristic equation associated with Padovan sequence is z° —
x — 1 = 0 withroots a p, 8p and v p in which

/3
23 ~ 1.324717957

1/3
ar=(3+VE) +(3-VE
24(7.1)is called plastic number (or plastic ratio or
plastic constant or silver number) and

P,
lim —™ — op.
n— o0 n
The plastic number is used in art and

architecture. Richard Padovan studied on plastic
number in Architecture and Mathematics in [26,
27].

We now present some other applications of third
order sequences.

e For the applications of Padovan numbers
and Tribonacci numbers to coding theory

see [28] and [29], respectively.
For the application of Padovan numbers to
Gaussian numbers, see [30].

For the application of Pell-Padovan
numbers to quaternions and groups see
[31] and [32], respectively.

For the applications of third order
Jacobsthal numbers and Tribonacci
numbers to quaternions see [33] and [34],
respectively.

For the application of Tribonacci numbers
to special matrices, see [13].
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