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ABSTRACT
In this paper, we introduce and investigate the generalized reverse 3-primes sequences and
we deal with, in detail, three special cases which we call them reverse 3-primes, reverse Lucas
3-primes and reverse modified 3-primes sequences. We present Binet’s formulas, generating
functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give
some identities and matrices related with these sequences.

Keywords: Reverse 3-primes numbers; reverse Lucas 3-primes numbers; 3-primes numbers;
Lucas 3-primes numbers; Tribonacci numbers.

2010 Mathematics Subject Classification: 11B39, 11B83.

1 INTRODUCTION

The sequence of Fibonacci numbers {Fn} and the sequence of Lucas numbers {Ln} are defined by

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1,

and
Ln = Ln−1 + Ln−2, n ≥ 2, L0 = 2, L1 = 1
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respectively. There are several nice and interesting generalizations of Fibonacci and Lucas sequences.

The generalized Tribonacci sequence {Wn(W0,W1,W2; r, s, t)}n≥0 (or shortly {Wn}n≥0) is defined
as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1.1)

where W0,W1,W2 are arbitrary complex (or real) numbers and r, s, t are real numbers.

This sequence has been studied by many authors, see for example [1,2,3,4,5,6,7,8,9,10,11,12,13].

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −s

t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

for n = 1, 2, 3, ... when t ̸= 0. Therefore, recurrence (1.1) holds for all integer n.

As {Wn} is a third order recurrence sequence (difference equation), it’s characteristic equation is

x3 − rx2 − sx− t = 0 (1.2)

whose roots are

α = α(r, s, t) =
r

3
+A+B

β = β(r, s, t) =
r

3
+ ωA+ ω2B

γ = γ(r, s, t) =
r

3
+ ω2A+ ωB

where

A =

(
r3

27
+

rs

6
+

t

2
+

√
∆

)1/3

, B =

(
r3

27
+

rs

6
+

t

2
−

√
∆

)1/3

∆ = ∆(r, s, t) =
r3t

27
− r2s2

108
+

rst

6
− s3

27
+

t2

4
, ω =

−1 + i
√
3

2
= exp(2πi/3)

Note that we have the following identities

α+ β + γ = r,

αβ + αγ + βγ = −s,

αβγ = t.

If ∆(r, s, t) > 0, then the Equ. (1.2) has one real (α) and two non-real solutions with the latter being
conjugate complex. So, in this case, it is well known that generalized Tribonacci numbers can be
expressed, for all integers n, using Binet’s formula

Wn =
b1α

n

(α− β)(α− γ)
+

b2β
n

(β − α)(β − γ)
+

b3γ
n

(γ − α)(γ − β)
(1.3)

where

b1 = W2− (β+γ)W1+βγW0, b2 = W2− (α+γ)W1+αγW0, b3 = W2− (α+β)W1+αβW0. (1.4)

Note that the Binet form of a sequence satisfying (1.2) for non-negative integers is valid for all integers
n, for a proof of this result see [14]. This result of Howard and Saidak [14] is even true in the case of
higher-order recurrence relations.

Next, we give the ordinary generating function
∞∑

n=0

Wnx
n of the sequence Wn.
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Lemma 1.1. Suppose that fWn(x) =
∞∑

n=0

Wnx
n is the ordinary generating function of the generalized

Tribonacci sequence {Wn}n≥0. Then,
∞∑

n=0

Wnx
n is given by

∞∑
n=0

Wnx
n =

W0 + (W1 − rW0)x+ (W2 − rW1 − sW0)x
2

1− rx− sx2 − tx3
. (1.5)

Proof. Using the definition of generalized Tribonacci numbers, and substracting rx
∑∞

n=0 Wnx
n,

sx2∑∞
n=0 Wnx

n and tx3∑∞
n=0 Wnx

n from
∑∞

n=0 Wnx
n we obtain

(1− rx− sx2 − tx3)

∞∑
n=0

Wnx
n =

∞∑
n=0

Wnx
n − rx

∞∑
n=0

Wnx
n − sx2

∞∑
n=0

Wnx
n − tx3

∞∑
n=0

Wnx
n

=

∞∑
n=0

Wnx
n − r

∞∑
n=0

Wnx
n+1 − s

∞∑
n=0

Wnx
n+2 − t

∞∑
n=0

Wnx
n+3

=

∞∑
n=0

Wnx
n − r

∞∑
n=1

Wn−1x
n − s

∞∑
n=2

Wn−2x
n − t

∞∑
n=3

Wn−3x
n

= (W0 +W1x+W2x
2)− r(W0x+W1x

2)− sW0x
2

+

∞∑
n=3

(Wn − rWn−1 − sWn−2 − tWn−3)x
n

= W0 +W1x+W2x
2 − rW0x− rW1x

2 − sW0x
2

= W0 + (W1 − rW0)x+ (W2 − rW1 − sW0)x
2.

Rearranging above equation, we obtain

∞∑
n=0

Wnx
n =

W0 + (W1 − rW0)x+ (W2 − rW1 − sW0)x
2

1− rx− sx2 − tx3
.

We next find Binet formula of generalized Tribonacci numbers {Vn} by the use of generating function
for Vn.

Theorem 1.2. (Binet formula of generalized Tribonacci numbers)

Wn =
d1α

n

(α− β)(α− γ)
+

d2β
n

(β − α)(β − γ)
+

d3γ
n

(γ − α)(γ − β)
(1.6)

where

d1 = W0α
2 + (W1 − rW0)α+ (W2 − rW1 − sW0),

d2 = W0β
2 + (W1 − rW0)β + (W2 − rW1 − sW0),

d3 = W0γ
2 + (W1 − rW0)γ + (W2 − rW1 − sW0).

Proof. Let
h(x) = 1− rx− sx2 − tx3.

Then for some α, β and γ we write

h(x) = (1− αx)(1− βx)(1− γx)

i.e.,
1− rx− sx2 − tx3 = (1− αx)(1− βx)(1− γx) (1.7)
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Hence 1
α
, 1
β

and 1
γ

are the roots of h(x). This gives α, β, and γ as the roots of

h(
1

x
) = 1− r

x
− s

x2
− t

x3
= 0.

This implies x3 − rx2 − sx− t = 0. Now, by (1.5) and (1.7), it follows that
∞∑

n=0

Wnx
n =

W0 + (W1 − rW0)x+ (W2 − rW1 − sW0)x
2

(1− αx)(1− βx)(1− γx)
.

Then we write

W0 + (W1 − rW0)x+ (W2 − rW1 − sW0)x
2

(1− αx)(1− βx)(1− γx)
=

A1

(1− αx)
+

A2

(1− βx)
+

A3

(1− γx)
. (1.8)

So

W0+(W1−rW0)x+(W2−rW1−sW0)x
2 = A1(1−βx)(1−γx)+A2(1−αx)(1−γx)+A3(1−αx)(1−βx).

If we consider x = 1
α
, we get W0 + (W1 − rW0)

1
α
+ (W2 − rW1 − sW0)

1
α2 = A1(1− β

α
)(1− γ

α
). This

gives

A1 =
α2(W0 + (W1 − rW0)

1
α
+ (W2 − rW1 − sW0)

1
α2 )

(α− β)(α− γ)
=

W0α
2 + (W1 − rW0)α+ (W2 − rW1 − sW0)

(α− β)(α− γ)
.

Similarly, we obtain

A2 =
W0β

2 + (W1 − rW0)β + (W2 − rW1 − sW0)

(β − α)(β − γ)
, A3 =

W0γ
2 + (W1 − rW0)γ + (W2 − rW1 − sW0)

(γ − α)(γ − β)
.

Thus (1.8) can be written as
∞∑

n=0

Wnx
n = A1(1− αx)−1 +A2(1− βx)−1 +A3(1− γx)−1.

This gives
∞∑

n=0

Wnx
n = A1

∞∑
n=0

αnxn +A2

∞∑
n=0

βnxn +A3

∞∑
n=0

γnxn =

∞∑
n=0

(A1α
n +A2β

n +A3γ
n)xn.

Therefore, comparing coefficients on both sides of the above equality, we obtain

Wn = A1α
n +A2β

n +A3γ
n

where

A1 =
W0α

2 + (W1 − rW0)α+ (W2 − rW1 − sW0)

(α− β)(α− γ)
,

A2 =
W0β

2 + (W1 − rW0)β + (W2 − rW1 − sW0)

(β − α)(β − γ)
,

A3 =
W0γ

2 + (W1 − rW0)γ + (W2 − rW1 − sW0)

(γ − α)(γ − β)
,

and then we get (1.6).

Note that from (1.4) and (1.6) we have

W2 − (β + γ)W1 + βγW0 = W0α
2 + (W1 − rW0)α+ (W2 − rW1 − sW0),

W2 − (α+ γ)W1 + αγW0 = W0β
2 + (W1 − rW0)β + (W2 − rW1 − sW0),

W2 − (α+ β)W1 + αβW0 = W0γ
2 + (W1 − rW0)γ + (W2 − rW1 − sW0).
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In this paper, we investigate the generalized reverse 3-primes sequences and we investigate, in
detail, three special cases which we call them reverse 3-primes, reverse Lucas 3-primes and reverse
modified 3-primes sequences. In this paper we consider the case r = 5, s = 3, t = 2 and in this
case we write Vn = Wn. A generalized reverse 3-primes sequence {Vn}n≥0 = {Vn(V0, V1, V2)}n≥0

is defined by the third-order recurrence relations

Vn = 5Vn−1 + 3Vn−2 + 2Vn−3 (1.9)

with the initial values V0 = c0, V1 = c1, V2 = c2 not all being zero.

The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −3

2
V−(n−1) −

5

2
V−(n−2) +

1

2
V−(n−3)

for n = 1, 2, 3, .... Therefore, recurrence (1.9) holds for all integer n.

(1.3) can be used to obtain Binet formula of generalized reverse 3-primes numbers. Binet formula of
generalized reverse 3-primes numbers can be given as

Vn =
b1α

n

(α− β)(α− γ)
+

b2β
n

(β − α)(β − γ)
+

b3γ
n

(γ − α)(γ − β)

where

b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α+ γ)V1 + αγV0, b3 = V2 − (α+ β)V1 + αβV0. (1.10)

Here, α, β and γ are the roots of the cubic equation x3 − 5x2 − 3x− 2 = 0. Moreover

α =
5

3
+

(
439

54
+

√
1315

108

)1/3

+

(
439

54
−
√

1315

108

)1/3

β =
5

3
+ ω

(
439

54
+

√
1315

108

)1/3

+ ω2

(
439

54
−
√

1315

108

)1/3

γ =
5

3
+ ω2

(
439

54
+

√
1315

108

)1/3

+ ω

(
439

54
−
√

1315

108

)1/3

where

ω =
−1 + i

√
3

2
= exp(2πi/3)

Note that

α+ β + γ = 5,

αβ + αγ + βγ = −3,

αβγ = 2.

The first few generalized reverse 3-primes numbers with positive subscript and negative subscript are
given in the following Table 1.

5
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Table 1. A few generalized reverse 3-primes numbers

n Vn V−n

0 V0 ...
1 V1

1
2
V2 − 5

2
V1 − 3

2
V0

2 V2
17
4
V1 − 1

4
V0 − 3

4
V2

3 2V0 + 3V1 + 5V2
37
8
V0 − 1

8
V1 − 1

8
V2

4 10V0 + 17V1 + 28V2
37
16
V2 − 187

16
V1 − 113

16
V0

5 56V0 + 94V1 + 157V2
639
32

V1 − 35
32
V0 − 113

32
V2

6 314V0 + 527V1 + 879V2
1383
64

V0 − 51
64
V1 − 35

64
V2

7 1758V0 + 2951V1 + 4922V2
1383
128

V2 − 6985
128

V1 − 4251
128

V0

8 9844V0 + 16 524V1 + 27 561V2
24 021
256

V1 − 1217
256

V0 − 4251
256

V2

9 55 122V0 + 92 527V1 + 154 329V2
51 693
512

V0 − 2417
512

V1 − 1217
512

V2

10 308 658V0 + 518 109V1 + 864 172V2
51 693
1024

V2 − 260 899
1024

V1 − 159 913
1024

V0

11 1728 344V0 + 2901 174V1 + 4838 969V2
902 951
2048

V1 − 42 059
2048

V0 − 159 913
2048

V2

12 9677 938V0 + 16 245 251V1 + 27 096 019V2
1932 079

4096
V0 − 109 531

4096
V1 − 42 059

4096
V2

13 54 192 038V0 + 90 965 995V1 + 151 725 346V2
1932 079

8192
V2 − 9744 513

8192
V1 − 6015 299

8192
V0

Now we define three special cases of the sequence {Vn}. reverse 3-primes sequence {Nn}n≥0,
reverse Lucas 3-primes sequence {Sn}n≥0 and reverse modified 3-primes sequence {Un}n≥0 are
defined, respectively, by the third-order recurrence relations

Nn+3 = 5Nn+2 + 3Nn+1 + 2Nn, N0 = 0, N1 = 1, N2 = 5,

Sn+3 = 5Sn+2 + 3Sn+1 + 2Sn, S0 = 3, S1 = 5, S2 = 31, (1.11)
and

Un+3 = 5Un+2 + 3Un+1 + 2Un, U0 = 0, U1 = 1, U2 = 4, (1.12)
For generalized 3-primes sequence (and it’s three special cases, 3-primes, Lucas 3-primes and
modified 3-primes sequences) see [15].

The sequences {Nn}n≥0, {Sn}n≥0 and {Un}n≥0 can be extended to negative subscripts by defining

N−n = −3

2
N−(n−1) −

5

2
N−(n−2) +

1

2
N−(n−3), (1.13)

S−n = −3

2
S−(n−1) −

5

2
S−(n−2) +

1

2
S−(n−3) (1.14)

and
U−n = −3

2
U−(n−1) −

5

2
U−(n−2) +

1

2
U−(n−3) (1.15)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.13), (1.14) and (1.15) hold for all integer n.

Note that the sequences Nn, Sn and Un are not indexed in [16] yet. Next, we present the first few
values of the reverse 3-primes, reverse Lucas 3-primes and reverse modified 3-primes numbers with
positive and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative
subscripts

n 0 1 2 3 4 5 6 7 8 9 10 11

Nn 0 1 5 28 157 879 4922 27561 154329 864172 4838969 27096019

N−n 0 1
2

− 3
4

− 1
8

37
16

− 113
32

− 35
64

1383
128

− 4251
256

− 1217
512

51693
1024

Sn 3 5 31 176 983 5505 30826 172611 966543 5412200 30305851 169698941

S−n − 3
2

− 11
4

75
8

− 127
16

− 413
32

2809
64

− 4805
128

− 15327
256

105267
512

− 181751
1024

− 568725
2048

Un 0 1 4 23 129 722 4043 22639 126768 709843 3974797 22257050

U−n − 1
2

5
4

− 5
8

− 39
16

187
32

− 191
64

− 1453
128

7017
256

− 7285
512

− 54 127
1024

263299
2048

6
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For all integers n, reverse 3-primes, reverse Lucas 3-primes and reverse modified 3-primes numbers
(using initial conditions in (1.10)) can be expressed using Binet’s formulas as

Nn =
αn+1

(α− β)(α− γ)
+

βn+1

(β − α)(β − γ)
+

γn+1

(γ − α)(γ − β)
,

Sn = αn + βn + γn,

Un =
(α− 1)αn

(α− β)(α− γ)
+

(β − 1)βn

(β − α)(β − γ)
+

(γ − 1)γn

(γ − α)(γ − β)
,

respectively.

2 GENERATING FUNCTIONS AND OBTAINING BINET FORMULA
FROM GENERATING FUNCTION

Next, we give the ordinary generating function
∞∑

n=0

Vnx
n of the sequence Vn.

Lemma 2.1. Suppose that fVn(x) =
∞∑

n=0

Vnx
n is the ordinary generating function of the generalized

reverse 3-primes sequence {Vn}n≥0. Then,
∞∑

n=0

Vnx
n is given by

∞∑
n=0

Vnx
n =

V0 + (V1 − 5V0)x+ (V2 − 5V1 − 3V0)x
2

1− 5x− 3x2 − 2x3
.

Proof. Take r = 5, s = 3, t = 2 in Lemma 1.1.
The previous Lemma gives the following results as particular examples.

Corollary 2.2. Generated functions of reverse 3-primes, reverse Lucas 3-primes and reverse modified
3-primes numbers are

∞∑
n=0

Nnx
n =

x

1− 5x− 3x2 − 2x3
,

∞∑
n=0

Snx
n =

3− 10x− 3x2

1− 5x− 3x2 − 2x3
,

∞∑
n=0

Unx
n =

x− x2

1− 5x− 3x2 − 2x3
,

respectively.

We next find Binet formula of generalized reverse 3-primes numbers {Vn} by the use of generating
function for Vn.

Theorem 2.3. (Binet formula of generalized reverse 3-primes numbers)

Vn =
d1α

n

(α− β)(α− γ)
+

d2β
n

(β − α)(β − γ)
+

d3γ
n

(γ − α)(γ − β)
(2.1)

where

d1 = V0α
2 + (V1 − 5V0)α+ (V2 − 5V1 − 3V0),

d2 = V0β
2 + (V1 − 5V0)β + (V2 − 5V1 − 3V0),

d3 = V0γ
2 + (V1 − 5V0)γ + (V2 − 5V1 − 3V0).

7
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Proof. Take r = 5, s = 3, t = 2 in Theorem 1.2.
Note that from (1.10) and (2.1) we have

V2 − (β + γ)V1 + βγV0 = V0α
2 + (V1 − 5V0)α+ (V2 − 5V1 − 3V0),

V2 − (α+ γ)V1 + αγV0 = V0β
2 + (V1 − 5V0)β + (V2 − 5V1 − 3V0),

V2 − (α+ β)V1 + αβV0 = V0γ
2 + (V1 − 5V0)γ + (V2 − 5V1 − 3V0).

Next, using the last Theorem, we present the Binet formulas of reverse 3-primes, reverse Lucas
3-primes and reverse modified 3-primes sequences.

Corollary 2.4. Binet formulas of reverse 3-primes, reverse Lucas 3-primes and reverse modified
3-primes sequences are

Nn =
αn+1

(α− β)(α− γ)
+

βn+1

(β − α)(β − γ)
+

γn+1

(γ − α)(γ − β)
,

Sn = αn + βn + γn,

Un =
(α− 1)αn

(α− β)(α− γ)
+

(β − 1)βn

(β − α)(β − γ)
+

(γ − 1)γn

(γ − α)(γ − β)
,

respectively.

We can find Binet formulas by using matrix method with a similar technique which is given in [17].
Take k = i = 3 in Corollary 3.1 in [17]. Let

Λ =

 α2 α 1
β2 β 1
γ2 γ 1

 ,Λ1 =

 αn−1 α 1
βn−1 β 1
γn−1 γ 1

 ,

Λ2 =

 α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

 ,Λ3 =

 α2 α αn−1

β2 β βn−1

γ2 γ γn−1

 .

Then the Binet formula for reverse 3-primes numbers is

Nn =
1

det(Λ)

3∑
j=1

N4−j det(Λj) =
1

det(Λ)
(N3 det(Λ1) +N2 det(Λ2) +N1 det(Λ3))

=

28

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+ 5

∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
α2 α αn−1

β2 β βn−1

γ2 γ γn−1

∣∣∣∣∣∣
 /

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣ .
Similarly, we obtain the Binet formula for reverse Lucas 3-primes and reverse modified 3-primes
numbers as

Sn =
1

det(Λ)
(176 det(Λ1) + 31 det(Λ2) + 5 det(Λ3)),

Un =
1

det(Λ)
(23 det(Λ1) + 4 det(Λ2) + det(Λ3)),

respectively.

3 SIMSON FORMULAS

There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn}, namely,

Fn+1Fn−1 − F 2
n = (−1)n

8
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which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well.
This can be written in the form ∣∣∣∣ Fn+1 Fn

Fn Fn−1

∣∣∣∣ = (−1)n.

The following theorem gives generalization of this result to the generalized reverse 3-primes sequence
{Vn}n≥0.

Theorem 3.1 (Simson Formula of Generalized Reverse 3-primes Numbers). For all integers n, we
have ∣∣∣∣∣∣

Vn+2 Vn+1 Vn

Vn+1 Vn Vn−1

Vn Vn−1 Vn−2

∣∣∣∣∣∣ = 2n

∣∣∣∣∣∣
V2 V1 V0

V1 V0 V−1

V0 V−1 V−2

∣∣∣∣∣∣ . (3.1)

Proof. (3.1) is given in Soykan [18].
The previous theorem gives the following results as particular examples.

Corollary 3.2. For all integers n, Simson formula of reverse 3-primes, reverse Lucas 3-primes and
reverse modified 3-primes numbers are given as∣∣∣∣∣∣

Nn+2 Nn+1 Nn

Nn+1 Nn Nn−1

Nn Nn−1 Nn−2

∣∣∣∣∣∣ = −2n−1,

∣∣∣∣∣∣
Sn+2 Sn+1 Sn

Sn+1 Sn Sn−1

Sn Sn−1 Sn−2

∣∣∣∣∣∣ = −1315× 2n−2,

∣∣∣∣∣∣
Un+2 Un+1 Un

Un+1 Un Un−1

Un Un−1 Un−2

∣∣∣∣∣∣ = −9× 2n−2,

respectively.

4 SOME IDENTITIES

In this section, we obtain some identities of reverse 3-primes, reverse Lucas 3-primes and reverse
modified 3-primes numbers. First, we can give a few basic relations between {Nn} and {Sn}.

Lemma 4.1. The following equalities are true:

2630Nn = 81Sn+4 − 541Sn+3 + 503Sn+2, (4.1)

1315Nn = −68Sn+3 + 373Sn+2 + 81× Sn+1,

1315Nn = 33Sn+2 − 123Sn+1 − 136Sn,

1315Nn = 42Sn+1 − 37Sn + 66Sn−1,

1315Nn = 173Sn + 192Sn−1 + 84Sn−2,

and

8Sn = 75Nn+4 − 397Nn+3 − 127Nn+2,

4Sn = −11Nn+3 + 49Nn+2 + 75Nn+1,

2Sn = −3Nn+2 + 21Nn+1 − 11×Nn,

Sn = 3Nn+1 − 10Nn − 3Nn−1,

Sn = 5Nn + 6Nn−1 + 6Nn−2.

9



Soykan; JSRR, 26(6): 1-20, 2020; Article no.JSRR.58728

Proof. Note that all the identities hold for all integers n. We prove (4.1). To show (4.1), writing

Nn = a× Sn+4 + b× Sn+3 + c× Sn+2

and solving the system of equations

N0 = a× S4 + b× S3 + c× S2

N1 = a× S5 + b× S4 + c× S3

N2 = a× S6 + b× S5 + c× S4

we find that a = 81
2630

, b = − 541
2630

, c = 503
2630

. The other equalities can be proved similarly.
Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between {Nn} and {Un}.

Lemma 4.2. The following equalities are true:

18Nn = −7Un+4 + 37Un+3 + 13Un+2,

9Nn = Un+3 − 4Un+2 − 7Un+1,

9Nn = Un+2 − 4Un+1 + 2Un,

9Nn = Un+1 + 5Un + 2× Un−1,

9Nn = 10Un + 5Un−1 + 2Un−2,

and

8Un = −5Nn+4 + 35Nn+3 − 39Nn+2,

4Un = 5Nn+3 − 27Nn+2 − 5Nn+1,

2Un = −Nn+2 + 5Nn+1 + 5Nn,

Un = Nn −Nn−1.

We give a few basic relations between {Sn} and {Un}.

Lemma 4.3. The following equalities are true:

36Sn = 113Un+4 − 551Un+3 − 449Un+2,

18Sn = 7Un+3 − 55Un+2 + 113Un+1,

9Sn = −10× Un+2 + 67Un+1 + 7Un,

9Sn = 17Un+1 − 23Un − 20Un−1,

9Sn = 62Un + 31Un−1 + 34Un−2,

and

5260Un = −341Sn+4 + 1271Sn+3 + 3597Sn+2,

2630Un = −217Sn+3 + 1287Sn+2 − 341Sn+1,

1315Un = 101Sn+2 − 496Sn+1 − 217Sn,

1315Un = 9Sn+1 + 86Sn + 202Sn−1,

1315Un = 131Sn + 229Sn−1 + 18Sn−2.

We now present a few special identities for the reverse modified 3-primes sequence {Un}.

10
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Theorem 4.4. (Catalan’s identity) For all integers n and m, the following identity holds

Un+mUn−m − U2
n = (Nn+m −Nn+m−1)(Nn−m −Nn−m−1)− (Nn −Nn−1)

2

= (Nn(Nm −Nm+1) +Nn−1(−Nm +Nm−2) +Nn−2(−Nm +Nm−1))

(Nn(N−m −N1−m) +Nn−1(−N−m +N−m−2) +Nn−2(−N−m +N−m−1))

−(Nn −Nn−1)
2

Proof. We use the identity
Un = Nn −Nn−1

and the identity (6.6).
Note that for m = 1 in Catalan’s identity, we get the Cassini identity for the reverse modified 3-primes
sequnce

Corollary 4.5. (Cassini’s identity) For all integers numbers n and m, the following identity holds

Un+1Un−1 − U2
n = (Nn+1 −Nn)(Nn−1 −Nn−2)− (Nn −Nn−1)

2.

The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained by using Un = Nn −
Nn−1.The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of reverse modified
3-primes sequence {Un}.

Theorem 4.6. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

Um+1Un − UmUn+1 = (Nm+1 −Nm)(Nn −Nn−1)− (Nm −Nm−1)(Nn+1 −Nn).

(b) (Gelin-Cesàro’s identity)

Un+2Un+1Un−1Un−2 − U
4
n = (Nn+2 − Nn+1)(Nn+1 − Nn)(Nn−1 − Nn−2)(Nn−2 − Nn−3) − (Nn − Nn−1)

4
.

(c) (Melham’s identity)

Un+1Un+2Un+6 − U3
n+3 = (Nn+1 −Nn)(Nn+2 −Nn+1)(Nn+6 −Nn+5)− (Nn+3 −Nn+2)

3.

Proof. Use the identity Un = Nn −Nn−1.

5 SUM FORMULAS

5.1 Sums of Terms with Positive Subscripts
The following proposition presents some formulas of generalized reverse 3-primes numbers with
positive subscripts.

Proposition 5.1. If r = 5, s = 3, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Vk = 1
9
(Vn+3 − 4Vn+2 − 7Vn+1 − V2 + 4V1 + 7V0).

(b)
∑n

k=0 V2k = 1
45
(−2V2n+2 + 17V2n+1 + 14V2n + 2V2 − 17V1 + 31V0).

(c)
∑n

k=0 V2k+1 = 1
45
(7V2n+2 + 8V2n+1 − 4V2n − 7V2 + 37V1 + 4V0).

Proof. Take r = 5, s = 3, t = 2 in Theorem 2.1 in [19] (or take x = 1, r = 5, s = 3, t = 2 in Theorem
2.1 in [20]).

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take Vn = Nn with N0 = 0, N1 = 1, N2 = 5).

11
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Corollary 5.1. For n ≥ 0 we have the following formulas:
(a)

∑n
k=0 Nk = 1

9
(Nn+3 − 4Nn+2 − 7Nn+1 − 1).

(b)
∑n

k=0 N2k = 1
45
(−2N2n+2 + 17N2n+1 + 14N2n − 7).

(c)
∑n

k=0 N2k+1 = 1
45
(7N2n+2 + 8N2n+1 − 4N2n + 2).

Taking Vn = Sn with S0 = 3, S1 = 5, S2 = 31 in the last proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.2. For n ≥ 0 we have the following formulas:
(a)

∑n
k=0 Sk = 1

9
(Sn+3 − 4Sn+2 − 7Sn+1 + 10).

(b)
∑n

k=0 S2k = 1
45
(−2S2n+2 + 17S2n+1 + 14S2n + 70).

(c)
∑n

k=0 S2k+1 = 1
45
(7S2n+2 + 8S2n+1 − 4S2n − 20).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take Vn = Un with U0 = 0, U1 = 1, U2 = 4).

Corollary 5.3. For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Uk = 1
9
(Un+3 − 4Un+2 − 7Un+1).

(b)
∑n

k=0 U2k = 1
45
(−2U2n+2 + 17U2n+1 + 14U2n − 9).

(c)
∑n

k=0 U2k+1 = 1
45
(7U2n+2 + 8U2n+1 − 4U2n + 9).

The following proposition presents some formulas of generalized reverse 3-primes numbers with
positive subscripts.

Proposition 5.2. If r = 5, s = 3, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kVk = 1
5
((−1)n (Vn+3 − 6Vn+2 + 3Vn+1) + V2 − 6V1 + 3V0).

(b)
∑n

k=0(−1)kV2k = 1
25
((−1)n (4V2n+2 − 17V2n+1 − 6V2n)− 4V2 + 17V1 + 31V0).

(c)
∑n

k=0(−1)kV2k+1 = 1
25
((−1)n (3V2n+2 + 6V2n+1 + 8V2n)− 3V2 + 19V1 − 8V0).

Proof. Take x = −1, r = 5, s = 3, t = 2 in Theorem 2.1 in [20].

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take Vn = Nn with N0 = 0, N1 = 1, N2 = 5).

Corollary 5.4. For n ≥ 0, reverse 3-primes numbers have the following properties.
(a)

∑n
k=0(−1)kNk = 1

5
((−1)n (Nn+3 − 6Nn+2 + 3Nn+1)− 1).

(b)
∑n

k=0(−1)kN2k = 1
25
((−1)n (4N2n+2 − 17N2n+1 − 6N2n)− 3).

(c)
∑n

k=0(−1)kN2k+1 = 1
25
((−1)n (3N2n+2 + 6N2n+1 + 8N2n) + 4).

Taking Vn = Sn with S0 = 3, S1 = 5, S2 = 31 in the last proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.5. For n ≥ 0, reverse Lucas 3-primes numbers have the following properties.

(a)
∑n

k=0(−1)kSk = 1
5
((−1)n (Sn+3 − 6Sn+2 + 3Sn+1) + 10).

(b)
∑n

k=0(−1)kS2k = 1
25
((−1)n (4S2n+2 − 17S2n+1 − 6S2n) + 54).

(c)
∑n

k=0(−1)kS2k+1 = 1
25
((−1)n (3S2n+2 + 6S2n+1 + 8S2n)− 22).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take Vn = Un with U0 = 0, U1 = 1, U2 = 4).

Corollary 5.6. For n ≥ 0, reverse modified 3-primes numbers have the following properties.

(a)
∑n

k=0(−1)kUk = 1
5
((−1)n (Un+3 − 6Un+2 + 3Un+1)− 2).

(b)
∑n

k=0(−1)kU2k = 1
25
((−1)n (4U2n+2 − 17U2n+1 − 6U2n) + 1).

(c)
∑n

k=0(−1)kU2k+1 = 1
25
((−1)n (3U2n+2 + 6U2n+1 + 8U2n) + 7).

12
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5.2 Sums of Terms with Negative Subscripts
The following proposition presents some formulas of generalized reverse 3-primes numbers with
negative subscripts.

Proposition 5.3. If r = 5, s = 3, t = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 V−k = 1
9
(−10V−n−1 − 5V−n−2 − 2V−n−3 + V2 − 4V1 − 7V0).

(b)
∑n

k=1 V−2k = 1
45
(−7V−2n+1 + 37V−2n + 4V−2n−1 − 2V2 + 17V1 − 31V0).

(c)
∑n

k=1 V−2k+1 = 1
45
(2V−2n+1 − 17V−2n − 14V−2n−1 + 7V2 − 37V1 − 4V0).

Proof. Take r = 5, s = 3, t = 2 in Theorem 3.1 in [19] or (or take x = 1, r = 5, s = 3, t = 2 in Theorem
3.1 in [20]).

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take Vn = Nn with N0 = 0, N1 = 1, N2 = 5).

Corollary 5.7. For n ≥ 1, reverse 3-primes numbers have the following properties.

(a)
∑n

k=1 N−k = 1
9
(−10N−n−1 − 5N−n−2 − 2N−n−3 + 1).

(b)
∑n

k=1 N−2k = 1
45
(−7N−2n+1 + 37N−2n + 4N−2n−1 + 7).

(c)
∑n

k=1 N−2k+1 = 1
45
(2N−2n+1 − 17N−2n − 14N−2n−1 − 2).

Taking Vn = Sn with S0 = 3, S1 = 5, S2 = 31 in the last proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.8. For n ≥ 1, reverse Lucas 3-primes numbers have the following properties.

(a)
∑n

k=1 S−k = 1
9
(−10S−n−1 − 5S−n−2 − 2S−n−3 − 10).

(b)
∑n

k=1 S−2k = 1
45
(−7S−2n+1 + 37S−2n + 4S−2n−1 − 70).

(c)
∑n

k=1 S−2k+1 = 1
45
(2S−2n+1 − 17S−2n − 14S−2n−1 + 20).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take Vn = Un with U0 = 0, U1 = 1, U2 = 4).

Corollary 5.9. For n ≥ 1, reverse modified 3-primes numbers have the following properties.

(a)
∑n

k=1 U−k = 1
9
(−10U−n−1 − 5U−n−2 − 2U−n−3).

(b)
∑n

k=1 U−2k = 1
45
(−7U−2n+1 + 37U−2n + 4U−2n−1 + 9).

(c)
∑n

k=1 U−2k+1 = 1
45
(2U−2n+1 − 17U−2n − 14U−2n−1 − 9).

The following proposition presents some formulas of generalized reverse 3-primes numbers with
negative subscripts.

Proposition 5.4. If r = 5, s = 3, t = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1(−1)kV−k = 1
5
((−1)n (4V−n−1 + V−n−2 + 2V−n−3)− V2 + 6V1 − 3V0).

(b)
∑n

k=1(−1)kV−2k = 1
25
((−1)n (−3V−2n+1 + 19V−2n − 8V−2n−1) + 4V2 − 17V1 − 31V0).

(c)
∑n

k=1(−1)kV−2k+1 = 1
25
((−1)n (4V−2n+1 − 17V−2n − 6V−2n−1) + 3V2 − 19V1 + 8V0).

Proof. Take x = −1, r = 5, s = 3, t = 2 in Theorem 3.1 in [20].

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take Vn = Nn with N0 = 0, N1 = 1, N2 = 5).

13
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Corollary 5.10. For n ≥ 1, reverse 3-primes numbers have the following properties.

(a)
∑n

k=1(−1)kN−k = 1
5
((−1)n (4N−n−1 +N−n−2 + 2N−n−3) + 1).

(b)
∑n

k=1(−1)kN−2k = 1
25
((−1)n (−3N−2n+1 + 19N−2n − 8N−2n−1) + 3).

(c)
∑n

k=1(−1)kN−2k+1 = 1
25
((−1)n (4N−2n+1 − 17N−2n − 6N−2n−1)− 4).

Taking Vn = Sn with S0 = 3, S1 = 5, S2 = 31 in the last proposition, we have the following corollary
which gives sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.11. For n ≥ 1, reverse Lucas 3-primes numbers have the following properties:

(a)
∑n

k=1(−1)kS−k = 1
5
((−1)n (4S−n−1 + S−n−2 + 2S−n−3)− 10).

(b)
∑n

k=1(−1)kS−2k = 1
25
((−1)n (−3S−2n+1 + 19S−2n − 8S−2n−1)− 54).

(c)
∑n

k=1(−1)kS−2k+1 = 1
25
((−1)n (4S−2n+1 − 17S−2n − 6S−2n−1) + 22).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take Vn = Un with U0 = 0, U1 = 1, U2 = 4).

Corollary 5.12. For n ≥ 1 we have the following formulas:

(a)
∑n

k=1(−1)kU−k = 1
5
((−1)n (4U−n−1 + U−n−2 + 2U−n−3) + 2).

(b)
∑n

k=1(−1)kU−2k = 1
25
((−1)n (−3U−2n+1 + 19U−2n − 8U−2n−1)− 1).

(c)
∑n

k=1(−1)kU−2k+1 = 1
25
((−1)n (4U−2n+1 − 17U−2n − 6U−2n−1)− 7).

5.3 Sums of Squares of Terms with Positive Subscripts
The following proposition presents some formulas of generalized reverse 3-primes numbers with
positive subscripts.

Proposition 5.5. If r = 5, s = 3, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 V
2
k = 1

225
(−8V 2

n+3 − 263V 2
n+2 − 257V 2

n+1 + 91Vn+3Vn+2 + 22Vn+3Vn+1 − 52Vn+2Vn+1 +
8V 2

2 + 263V 2
1 + 257V 2

0 − 91V2V1 − 22V2V0 + 52V1V0).

(b)
∑n

k=0 Vk+1Vk = 1
450

(11V 2
n+3+221V 2

n+2+44V 2
n+1−97Vn+3Vn+2+26Vn+3Vn+1−266Vn+2Vn+1−

11V 2
2 − 221V 2

1 − 44V 2
0 + 97V2V1 − 26V2V0 + 266V1V0).

(c)
∑n

k=0 Vk+2Vk = 1
450

(29V 2
n+3−31V 2

n+2+116V 2
n+1−133Vn+3Vn+2−136Vn+3Vn+1+76Vn+2Vn+1−

29V 2
2 + 31V 2

1 − 116V 2
0 + 133V2V1 + 136V2V0 − 76V1V0).

Proof. Take x = 1, r = 5, s = 3, t = 2 in Theorem 4.1 in [21], see also [22].

From the last proposition, we have the following Corollary which gives sum formulas of reverse 3-
primes numbers (take Vn = Nn with N0 = 0, N1 = 1, N2 = 5).

Corollary 5.13. For n ≥ 0, reverse 3-primes numbers have the following properties:

(a)
∑n

k=0 N
2
k = 1

225
(−8N2

n+3−263N2
n+2−257N2

n+1+91Nn+3Nn+2+22Nn+3Nn+1−52Nn+2Nn+1+
8).

(b)
∑n

k=0 Nk+1Nk = 1
450

(11N2
n+3+221N2

n+2+44N2
n+1−97Nn+3Nn+2+26Nn+3Nn+1−266Nn+2Nn+1−

11).

(c)
∑n

k=0 Nk+2Nk = 1
450

(29N2
n+3−31N2

n+2+116N2
n+1−133Nn+3Nn+2−136Nn+3Nn+1+76Nn+2Nn+1−

29).
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Taking Vn = Sn with S0 = 3, S1 = 5, S2 = 31 in the last Proposition, we have the following Corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.14. For n ≥ 0, reverse Lucas 3-primes numbers have the following properties:

(a)
∑n

k=0 S
2
k = 1

225
(−8S2

n+3−263S2
n+2−257S2

n+1+91Sn+3Sn+2+22Sn+3Sn+1−52Sn+2Sn+1+1205).

(b)
∑n

k=0 Sk+1Sk = 1
450

(11S2
n+3+221S2

n+2+44S2
n+1−97Sn+3Sn+2+26Sn+3Sn+1−266Sn+2Sn+1+

115).

(c)
∑n

k=0 Sk+2Sk = 1
450

(29S2
n+3−31S2

n+2+116S2
n+1−133Sn+3Sn+2−136Sn+3Sn+1+76Sn+2Sn+1+

3985).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take Vn = Un with U0 = 0, U1 = 1, U2 = 4).

Corollary 5.15. For n ≥ 0, reverse modified 3-primes numbers have the following properties:

(a)
∑n

k=0 U
2
k = 1

225
(−8U2

n+3−263U2
n+2−257U2

n+1+91Un+3Un+2+22Un+3Un+1−52Un+2Un+1+27).

(b)
∑n

k=0 Uk+1Uk = 1
450

(11U2
n+3+221U2

n+2+44U2
n+1−97Un+3Un+2+26Un+3Un+1−266Un+2Un+1−

9).

(c)
∑n

k=0 Uk+2Uk = 1
450

(29U2
n+3−31U2

n+2+116U2
n+1−133Un+3Un+2−136Un+3Un+1+76Un+2Un+1+

99).

The following proposition presents some formulas of generalized reverse 3-primes numbers with
positive subscripts.

Proposition 5.6. If r = 5, s = 3, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kV 2
k = 1

150
((−1)n (−V 2

n+3−79V 2
n+2+154V 2

n+1+21Vn+3Vn+2−22Vn+3Vn+1+56Vn+2Vn+1)−
V 2
2 − 79V 2

1 + 154V 2
0 + 56V1V0 − 22V2V0 + 21V2V1).

(b)
∑n

k=0(−1)kVk+1Vk = 1
300

((−1)n (11V 2
n+3+119V 2

n+2−44V 2
n+1−81Vn+3Vn+2−58Vn+3Vn+1+284

Vn+2Vn+1) + 11V 2
2 + 119V 2

1 − 44V 2
0 − 81V2V1 − 58V2V0 + 284V1V0).

(c)
∑n

k=0(−1)kVk+2Vk = 1
100

((−1)n (9V 2
n+3 − 39V 2

n+2 − 36V 2
n+1 − 39Vn+3Vn+2 − 2Vn+3Vn+1 − 104

Vn+2Vn+1) + 9V 2
2 − 39V 2

1 − 36V 2
0 − 39V2V1 − 2V2V0 − 104V1V0).

Proof. Take x = −1, r = 5, s = 3, t = 2 in Theorem 4.29 in [21]

From the above proposition, we have the following corollary which gives sum formulas of reverse
3-primes numbers (take Vn = Nn with N0 = 0, N1 = 1, N2 = 5).

Corollary 5.16. For n ≥ 0, reverse 3-primes numbers have the following properties:

(a)
∑n

k=0(−1)kN2
k = 1

150
((−1)n (−N2

n+3 − 79N2
n+2 + 154N2

n+1 + 21Nn+3Nn+2 − 22Nn+3Nn+1 +
56Nn+2Nn+1) + 1).

(b)
∑n

k=0(−1)kNk+1Nk = 1
300

((−1)n (11N2
n+3+119N2

n+2−44N2
n+1−81Nn+3Nn+2−58Nn+3Nn+1+

284Nn+2Nn+1)− 11).

(c)
∑n

k=0(−1)kNk+2Nk = 1
100

((−1)n (9N2
n+3−39N2

n+2−36N2
n+1−39Nn+3Nn+2−2Nn+3Nn+1−104

Nn+2Nn+1)− 9).

Taking Nn = Sn with S0 = 3, S1 = 5, S2 = 31 in the above proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 5.17. For n ≥ 0, reverse Lucas 3-primes numbers have the following properties:
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(a) ∑n
k=0(−1)kS2

k = 1
150

((−1)n (−S2
n+3 − 79S2

n+2 + 154S2
n+1 + 21Sn+3Sn+2 − 22Sn+3Sn+1 + 56Sn+2Sn+1) + 499).

(b)
∑n

k=0(−1)kSk+1Sk = 1
300

((−1)n (11S2
n+3+119S2

n+2−44S2
n+1−81Sn+3Sn+2−58Sn+3Sn+1+284

Sn+2Sn+1)− 539).

(c)
∑n

k=0(−1)kSk+2Sk = 1
100

((−1)n (9S2
n+3 − 39S2

n+2 − 36S2
n+1 − 39Sn+3Sn+2 − 2Sn+3Sn+1 − 104

Sn+2Sn+1)− 441).

From the above proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take Sn = Un with U0 = 0, U1 = 1, U2 = 4).

Corollary 5.18. For n ≥ 0, reverse modified 3-primes numbers have the following properties:

(a)
∑n

k=0(−1)kU2
k = 1

150
((−1)n (−U2

n+3 − 79U2
n+2 + 154U2

n+1 + 21Un+3Un+2 − 22Un+3Un+1 +
56Un+2Un+1)− 11).

(b)
∑n

k=0(−1)kUk+1Uk = 1
300

((−1)n (11U2
n+3 +119U2

n+2 − 44U2
n+1 − 81Un+3Un+2 − 58Un+3Un+1 +

284Un+2Un+1)− 29).

(c)
∑n

k=0(−1)kUk+2Uk = 1
100

((−1)n (9U2
n+3−39U2

n+2−36U2
n+1−39Un+3Un+2−2Un+3Un+1−104

Un+2Un+1)− 51).

6 MATRICES RELATED WITH GENERALIZED REVERSE
3-PRIMES NUMBERS

Matrix formulation of Wn can be given as Wn+2

Wn+1

Wn

 =

 r s t
1 0 0
0 1 0

n W2

W1

W0

 . (6.1)

For matrix formulation (6.1), see [23]. In fact, Kalman gave the formula in the following form Wn

Wn+1

Wn+2

 =

 0 1 0
0 0 1
r s t

n W0

W1

W2

 .

We define the square matrix A of order 3 as:

A =

 5 3 2
1 0 0
0 1 0


such that

detA =

∣∣∣∣∣∣
5 3 2
1 0 0
0 1 0

∣∣∣∣∣∣ = 2.

From (1.9) we have  Vn+2

Vn+1

Vn

 =

 5 3 2
1 0 0
0 1 0

 Vn+1

Vn

Vn−1

 (6.2)

and from (6.1) (or using (6.2) and induction) we have Vn+2

Vn+1

Vn

 =

 5 3 2
1 0 0
0 1 0

n V2

V1

V0

 .
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If we take V = N in (6.2) we have Nn+2

Nn+1

Nn

 =

 5 3 2
1 0 0
0 1 0

 Nn+1

Nn

Nn−1

 . (6.3)

We also define

Bn =

 Nn+1 3Nn + 2Nn−1 2Nn

Nn 3Nn−1 + 2Nn−2 2Nn−1

Nn−1 3Nn−2 + 2Nn−3 2Nn−2


and

Cn =

 Vn+1 3Vn + 2Vn−1 2Vn

Vn 3Vn−1 + 2Vn−2 2Vn−1

Vn−1 3Vn−2 + 2Vn−3 2Vn−2


Theorem 6.1. For all integer m,n ≥ 0, we have

(a) Bn = An

(b) C1A
n = AnC1

(c) Cn+m = CnBm = BmCn.

Proof.

(a) By expanding the vectors on the both sides of (6.3) to 3-colums and multiplying the obtained on
the right-hand side by A, we get

Bn = ABn−1.

By induction argument, from the last equation, we obtain

Bn = An−1B1.

But B1 = A. It follows that Bn = An.

(b) Using (a) and definition of C1, (b) follows.
(c) We have

ACn−1 =

 5 3 2
1 0 0
0 1 0

 Vn 3Vn−1 + 2Vn−2 2Vn−1

Vn−1 3Vn−2 + 2Vn−3 2Vn−2

Vn−2 3Vn−3 + 2Vn−4 2Vn−3


=

 Vn+1 3Vn + 2Vn−1 2Vn

Vn 3Vn−1 + 2Vn−2 2Vn−1

Vn−1 3Vn−2 + 2Vn−3 2Vn−2

 = Cn.

i.e. Cn = ACn−1. From the last equation, using induction we obtain Cn = An−1C1. Now

Cn+m = An+m−1C1 = An−1AmC1 = An−1C1A
m = CnBm

and similarly
Cn+m = BmCn.

Some properties of matrix An can be given as

An = 5An−1 + 3An−2 + 2An−3

and
An+m = AnAm = AmAn

and
det(An) = 2n

for all integer m and n.

17



Soykan; JSRR, 26(6): 1-20, 2020; Article no.JSRR.58728

Theorem 6.2. For m,n ≥ 0 we have

Vn+m = VnNm+1 + Vn−1(3Nm + 2Nm−1) + 2Vn−2Nm (6.4)

= VnNm+1 + (3Vn−1 + 2Vn−2)Nm + 2Vn−1Nm−1 (6.5)

Proof. From the equation Cn+m = CnBm = BmCn we see that an element of Cn+m is the product
of row Cn and a column Bm.

 Vn+m+1 3Vn+m + 2Vn+m−1 2Vn+m

Vn+m 3Vn+m−1 + 2Vn+m−2 2Vn+m−1

Vn+m−1 3Vn+m−2 + 2Vn+m−3 2Vn+m−2


=

 Vn+1 3Vn + 2Vn−1 2Vn

Vn 3Vn−1 + 2Vn−2 2Vn−1

Vn−1 3Vn−2 + 2Vn−3 2Vn−2

 Nm+1 3Nm + 2Nm−1 2Nm

Nm 3Nm−1 + 2Nm−2 2Nm−1

Nm−1 3Nm−2 + 2Nm−3 2Nm−2


=

 2VnNm−1 +Nm+1Vn+1 +Nm (3Vn + 2Vn−1) D1 D4

VnNm+1 +Nm (3Vn−1 + 2Vn−2) + 2Nm−1Vn−1 D2 D5

Nm (3Vn−2 + 2Vn−3) +Nm+1Vn−1 + 2Nm−1Vn−2 D3 D6


where

D1 = Vn+1 (3Nm + 2Nm−1) + 2Vn (3Nm−2 + 2Nm−3) + (3Nm−1 + 2Nm−2) (3Vn + 2Vn−1) ,

D2 = Vn (3Nm + 2Nm−1) + 2Vn−1 (3Nm−2 + 2Nm−3) + (3Nm−1 + 2Nm−2) (3Vn−1 + 2Vn−2) ,

D3 = Vn−1 (3Nm + 2Nm−1) + 2Vn−2 (3Nm−2 + 2Nm−3) + (3Nm−1 + 2Nm−2) (3Vn−2 + 2Vn−3) ,

D4 = 2NmVn+1 + 4VnNm−2 + 2Nm−1 (3Vn + 2Vn−1) ,

D5 = 2NmVn + 4Nm−2Vn−1 + 2Nm−1 (3Vn−1 + 2Vn−2) ,

D6 = 2NmVn−1 + 4Nm−2Vn−2 + 2Nm−1 (3Vn−2 + 2Vn−3) .

From the last equation we say that an element of Cn+m is the product of a row Cn and column Bm.
We just compare the linear combination of the 2nd row and 1st column entries of the matrices Cn+m

and CnBm. This completes the proof.

Remark 6.1. By induction, it can be proved that for all integers m,n ≤ 0, (6.4) holds. So for all
integers m,n, (6.4) is true.

Corollary 6.3. For all integers m,n, we have

Nn+m = NnNm+1 +Nn−1(3Nm + 2Nm−1) + 2Nn−2Nm, (6.6)

Sn+m = SnNm+1 + Sn−1(3Nm + 2Nm−1) + 2Sn−2Nm, (6.7)

Un+m = UnNm+1 + Un−1(3Nm + 2Nm−1) + 2Un−2Nm. (6.8)

7 CONCLUSIONS

Sequences of integer number such as Fibonacci,
Lucas, Pell, Jacobsthal are the most well-
known second order recurrence sequences. The
Fibonacci numbers are perhaps most famous
for appearing in the rabbit breeding problem,
introduced by Leonardo de Pisa in 1202 in his
book called Liber Abaci. The Fibonacci and
Lucas sequences are sources of many nice and
interesting identities. For rich applications of

these second order sequences in science and
nature, one can see the citations in [24].

As a third order sequence, we introduce the
generalized reverse 3-primes sequence (it’s
three special cases, namely, reverse 3-primes,
reverse Lucas 3-primes and reverse modified
3-primes sequences) and we present Binet’s
formulas, generating functions, Simson formulas,
the summation formulas, some identities and
matrices for these sequences.
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Third order sequences have many applications.
We now present one of them. The ratio of
two consecutive Padovan numbers converges
to the plastic ratio, αP (which is given in (7)
below), which have many applications to such
as architecture, see [25]. Padovan numbers is
defined by the third-order recurrence relations

Pn+3 = Pn+1 + Pn, P0 = 1, P1 = 1, P2 = 1.

The characteristic equation associated with Padovan sequence is x3 −
x − 1 = 0 with roots αP , βP and γP in which

αP =

(
1
2

+
√

23
108

)1/3
+

(
1
2

−
√

23
108

)1/3
≃ 1. 324717957

24(7.1)is called plastic number (or plastic ratio or
plastic constant or silver number) and

lim
n→∞

Pn+1

Pn
= αP .

The plastic number is used in art and
architecture. Richard Padovan studied on plastic
number in Architecture and Mathematics in [26,
27].

We now present some other applications of third
order sequences.

• For the applications of Padovan numbers
and Tribonacci numbers to coding theory
see [28] and [29], respectively.

• For the application of Padovan numbers to
Gaussian numbers, see [30].

• For the application of Pell-Padovan
numbers to quaternions and groups see
[31] and [32], respectively.

• For the applications of third order
Jacobsthal numbers and Tribonacci
numbers to quaternions see [33] and [34],
respectively.

• For the application of Tribonacci numbers
to special matrices, see [13].
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[17] Kiliç E, Stanica P. A Matrix approach for
general higher order linear recurrences.
Bulletin of the Malaysian Mathematical
Sciences Society. 2011;34(1):51-67.

19



Soykan; JSRR, 26(6): 1-20, 2020; Article no.JSRR.58728

[18] Soykan Y. Simson identity of generalized
m-step fibonacci numbers. Int. J. Adv. Appl.
Math. and Mech. 2019;7(2):45-56.

[19] Soykan Y. Summing formulas for
generalized tribonacci numbers. Universal
Journal of Mathematics and Applications.
2020;3(1):1-11.
DOI: https://doi.org/10.32323/ujma.637876

[20] Soykan Y. Generalized tribonacci numbers:
Summing formulas. Int. J. Adv. Appl. Math.
and Mech. 2020;7(3):57-76. (ISSN: 2347-
2529)

[21] Soykan Y. On the sums of squares of
generalized tribonacci numbers: Closed
formulas of

∑n
k=0 x

kW 2
k . Archives

of Current Research International.
2020;20(4):22-47.
DOI: 10.9734/ACRI/2020/v20i430187

[22] Soykan Y. A closed formula for the sums
of squares of generalized tribonacci
numbers. Journal of Progressive Research
in Mathematics. 2020;16(2):2932-2941.

[23] Kalman D. Generalized fibonacci numbers
by matrix methods. Fibonacci Quarterly.
1982;20(1):73-76.

[24] Koshy T. Fibonacci and lucas numbers with
applications. Wiley-Interscience. New York;
2001.
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