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Abstract 

 
New distribution of inverse Pareto using kumaraswamy generalized distribution called Kumaraswamy 

generalized inverse Pareto distribution is introduced in this paper. The proposed model is applicable in the 

study of variety of fields. Several properties of the proposed distribution, including explicit expressions for 

the quantile, moments, moment generating function and are studied. The maximum likelihood estimation is 

used to estimate parameters model and to derive the information matrix of it. Simulation study is carried out 

to evaluate the estimated parameters. The performance of the new model is examined using real data set 

comparing with widely known distributions. 

 

 

Keywords: Kumaraswamy generalized; inverse Pareto distribution; quantile; moment generating function; 

maximum likelihood. 

 

1 Introduction 

 
The Pareto distribution is the most popular model for analyzing heavy tailed phenomena. The Pareto distribution 

was first proposed by Pareto [1] as a model for the distribution of incomes and other financial variables, and 

other phenomena. The Pareto distribution has a wide range of applications in several fields such as life testing, 
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economics, finance, engineering, and etc…[2]. Many generalized distributions of the Pareto distribution can be 

found in the literature. A few examples of these distributions are the beta-Pareto distribution by Akinsete et al. 

[3], the Kumaraswamy- Pareto distribution by Bourguignon et al. [4], the Kumaraswamy-generalized 

exponentiated Pareto distribution by Shams [5], the Kumaraswamy transmuted Pareto distribution by Chhetri et 

al. [6].  

 

Klugman et al. [7] introduced the cumulative distribution function (cdf) of the two-parameter inverse Pareto (IP) 

distribution as follows: 

 

  ,0,,, 
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                                                                                                   (1) 

 

whereα is shape parameter and  is scale parameter. Some authors deal with many families of some well-

known distributions which are more flexible for modeling several types of data. Traditional models do not 

provide adequate fits to the real data with highly skewed. To solve this problem several, introducing several 

methods including additional one shape parameters, two shape parameters to generating new families of 

distributions are available in the statistical literature. Some well-known generators are: the generalized-

exponential by Gupta and Kundo [8], Kumaraswamy generalized distribution by Cordeiro and de Castro [9], 

generalized beta-generated by Alexander et al. [10], weibull-generated by Bourguignon et al. [11],  

Kumaraswamy weibull-generated by Hassan and Elgarhy [12], generalized additive weibull-generated by 

Hassan et al. [13], inverse weibull-generated Hassan and Nassr [14], odd inverse Pareto-generated by Aldahlan 

et al. [15], modified weibull-generated by Abdelall [16] and more.  

   

The goal of this article is to provide a new and more flexible distribution, called Kumaraswamy generalized 

inverse Pareto (KGIP) distribution and introduces expansions expressions for its cumulative and density 

functions. Numerous statistical properties of the KGIP distribution including quantile function, order statistics, 

moments and moment generating function are studied in second section. The third section provides parameter 

estimation using maximum likelihood method. The simulation study is introduced in fourth section. Fifth 

section displays the effectiveness of the proposed distribution by practical application on real data sets. Finally, 

the conclusion is provided. 

 

2 Kumaraswamy Generalized Inverse Pareto Distribution 

 
Cordeiro and de Castro [9] defined the cdf of the Kumaraswamy generalized distribution as follows: 
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                                                                                                 (2) 

 

where a and b are additional shape parameters. Using (1), (2), the cdf of the Kumaraswamy generalized 

inverse Pareto (KGIP) distribution with parameter   ,b,a,  is given by: 
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The corresponding probability density function (pdf), will be 
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where
 

, a and b  are  shape parameters and   is scale parameter. 
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2.1 Special distributions 

 
Sub-models can be deduced from KGIP distribution as follows: 

 If 1b in (4), we get the exponentiated inverse Pareto distribution with parameters ,,a and  . 

 If 1a in (4), we get the exponentiated inverse Pareto distribution with parameters ,,b and  .  

If 1 ab in (4), we get the inverse Pareto distribution with parameters and  .  

 

The survival and hazard rate functions of the KGIP distribution are obtained, respectively as follows: 
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Figs. 1 and 2 display the graphs of pdf and hazard function of the KGIP distribution. 

 

2.2 Model expansions 

 
Here, we give explicit expansions for the cdf and pdf of the KGIP model. By using the generalized binomial 

theorem 
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Equation (3) can be rewritten as follows: 
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Where 
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i and   ,x  denotes the Inverse Pareto cdf with parameters  ., ai Now, using the 

power series (5) in the last term of (4), we get 
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where
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  ,x  is the Inverse Pareto density function with parameters   .,1   ia  

Thus, the KGIP density function can be expressed as an infinite linear combination of the Inverse Pareto 

density. Thus, some of its statistical properties can be obtained directly from those properties of the Inverse 

Pareto distribution.   

 

2.3 Quantile function and simulation 

 
The quantile function of the KGIP distribution can be defined as follows: 
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Median of KGIP distribution can be obtained by putting q=0.5, that is 
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For simulating the KGIP random variable, let q  be a uniform variate on the unit interval (0,1). Thus, by means 

of the inverse transformation method, we consider the random variable X given by:  
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which follows (4), i.e, X distributed KGIP   ,b,a, . 
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Fig. 1. The KGIP   ,b,a,  density function 
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Fig. 2. The KGIP   ,b,a,  hazard function 

 

2.4 Skewness and Kurtosis 

 
The Bowley Skewness measure introduced by Kenny and Keeping (1962) based on quantile function as follows: 
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Also, the Moors kurtosis measure introduced by Moors (1988) as follows: 
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where  . Q  is the quantile function. Fig. 3 illustrates plots of the skewness and kurtosis measures of the KGIP 

distribution for different values of the parameter b  as a function of   and fixed values of a and  . These 

plots indicate that these measures decreases as 2,1,8.0,5.0b  (increases) for fixed a and . 
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Fig. 3. KGIP skewness and kurtosis measures 
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2.5 Moments 

 
The r

th
moment for KGIP random variable X is given by: 
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, after simplification, we obtain 
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Using beta function, we get 

 

 





0

' 1,)1()1(
i

i

r

r rriaBkia   

   
 











0

,1)1(,
)1(

1)1(

i

i

r ria
ia

rria
k 






 
 

where
   
 dc

dc
dzzzdcB dc




 



1

0

11 )1(),(  is the beta function, and  .  is the gamma function. If r

is a negative integer, the r
th

 moment is obtained as follows: 
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The r
th

 incomplete moment for KGIP random variable X is then equal to:  
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where 
 

x

dc dzzzdcxB
0

11 )1(),,(  is the incomplete beta function. Also, the moment generating function 

of the proposed distribution is defined as: 



 

 
 

 

Abdelall; Asian J. Prob. Stat., vol. 21, no. 2, pp. 22-34, 2023; Article no.AJPAS.96146 
 

 

 
28 

 

    '

0 !
r

r

r

xt

X
r

t
eEtM 






     

   
.

1)1(

1)1(

0,




 




ir

r

i
ria

rriat
k




 

 

2.6 Order statistic 

 

Taking a simple random sample of size n from KGIP( ) with cdf and pdf 
  

);( xFK G I P  and );( xf KGIP  

given by (3) and (4) respectively. The ordered statistics sample obtained from random sample is 

nnnn XXX ::2:1 ..., . The pdf of the rth order statistic 
nrX :

is:  
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where
 
B(.,.) is the beta function. Since 1);(0  xF  for ,0x we can use the binomial expansion of
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 );(1   given as follows 
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Substituting from (11) into (10), we obtain 
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Based on (6) and (7), we can write 
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Inserting (13) in (12), the pdf of 
nrX :

written as 
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 ,   ,x  denotes the Inverse Pareto 

distribution with parameters   .,1   la  Thus, the pdf of the KGIP order statistics is a linear 

combination of the Inverse Pareto density. Also we can define first order statistics 

 nn XXXX ;...;;min 21:1  , and the last order statistics as  nnn XXXX ;...;;max 21:  . 

 

2.7 Mean deviations 

 
The useful measures of variation for population are mean deviations about mean and median. If the KGIP has 

mean    and median  m , the mean deviations about mean and median are respectively, can be defined as: 
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where (.)1w  is the first incomplete moment of KGIP obtained from (9) for 1s . 

 

3 Parameter Estimation of KGIP Distribution 

 
Using the maximum likelihood estimation, we derived the estimated parameters of the KGIP distribution. Let 

nXXX ,...,, 21
 be a random sample from KGIP    where  β,α,b,a  be the vector of the parameters, 

the log-likelihood function,   , is given by: 
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given by differentiating (14). By setting   1
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And 
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The maximum likelihood estimates (MLEs) of the unknown parameters are obtained by setting system of non-

linear (15) - (18) equations to zero and solve them simultaneously. From equation (16), The MLE of b can be 

rewritten in the closed form as follows 
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When estimates  α̂,â  known. Substituting from (19) into (15), (17), and (18), we get the MLEs  β̂,α̂,â . 

These equations cannot be solved analytically and statistical software can be used to solve them simultaneously. 

For interval estimation of the parameters, we require the 4×4 observed information matrix    ,,tsUJ 
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where  β,α,b,a, ts  given in Appendix A. To construct the approximate confidence intervals for the 

parameters ,,, ba and   of the KGIP distribution, the multivariate normal   




 1

4
ˆ,0 JN distribution can 

be used. Here,  ̂J is the total observed information matrix evaluated at ̂ . The asymptotic  1100 % 

confidence intervals for parameters ,,, ba and  are respectively given by: 
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4 Simulation Study 

 
Simulation study has been performed for average MLEs, Mean Square Error (MSE), and Bias. The KGIP 

random number generation was performed of size 200)50(50n  for 1000N  replications. The parameter 

values used in the data generation processes are followed in Table 1. Bias and MSE are calculated by: 
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where   ,,,ba . Simulation results were obtained for several combinations of parameters. Table 1 lists 

the means of the MLEs of the four parameters KGIP with respective MSEs, and Biases. It can be illustrated 

from table that, the MSEs and Biases decreases for all parameter combinations when sample size increase. 

 

5 Data Analysis 

  
The importance and flexibility of the KGIP distribution can be examined by application to real data set. We 

compare the fit of KGIP with some competitive distributions namely: the Kumaraswamy-Pareto (KP), 

Exponentiated Pareto (EP), Beta Pareto (BP), and Pareto distributions [4]. The data set correspond to the 

exceedances of flood peaks of the Wheaton River near Careross in Yukon Territory, Canada. The data consist of 

72 excessdances for the years 1958-1984, rounded to one decimal place. They were analyzed by Choulakian and 

Stephens [17] and are listed in Table 2.  

 

In order to compare the distributions, we calculated the MLEs of the parameters, -2 log-likelihood )2( 
 
and 

the goodness of fit statistics measures namely: Akaike Information Criteria (AIC), and Bayesian Information 

Criteria(BIC), Consistent Akaike Information Criteria (CAIC), and Kolmogorov-Smirnov statistic (K-S) for all 

distributions and listed in Table 3. The KGIP distribution has the lowest AIC, CAIC, BIC and K-S among all the 

fitted other distributions. All required computations are performed using Mathcad package. From the results, the 

proposed distribution is the best model under these data than other competitive distributions. 
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Table 1. Mean estimates, corresponding MSE and Bias of the MLE of   ,,,ba  

 

MSE Bias Mean n Actual Values 

)ˆ(  )α̂(  )b̂(  )â(  )ˆ(  )α̂(  )b̂(  )â(  )ˆ(  )α̂(  )b̂(  )â(  

0.00014 0.437 2.122 0.055 0.093 0.668 1.455 0.234 0.509 2.158 1.955 0.734 50 a 0.5 

b 0.5 

 1.5 

 0.5 

0.00013
 

0.436 1.924 0.047 0.017 0.650 1.387 0.216 0.511 2.160 1.887 0.716 100 

0.00012 0.410 1.853 0.046 0.011 0.640 1.361 0.213 0.510 2.140 1.861 0.714 150 

0.00012 0.395 1.818 0.043 0.010 0.631 1.348 0.207 0.509 2.130 1.848 0.707 200 

0.00015 0.562 0.212 0.561 0.093 0.750 0.455 0.749 0.509 1.250 1.955 1.249 50 a 0.5 

b 1.5 

 0.5 

 0.5 

0.00014 0.543 0.150 0.542 0.018 0.737 0.387 0.736 0.511 1.237 1.885 1.236 100 

0.00013 0.537 0.131 0.536 0.015 0.733 0.361 0.732 0.511 1.233 1.860 1.232 150 

0.00012 0.532 0.121 0.531 0.012 0.729 0.348 0.728 0.510 1.229 1.848 1.229 200 

0.00015 0.561 2.122 0.562 0.009 0.749 1.455 0.749 0.509 1.249 1.955 1.249 50 a 0.5 

b 0.5 

 0.5 

 0.5 

0.00014 0.543 1.924 0.542 0.016 0.737 1.387 0.736 0.510 1.237 1.887 1.236 100 

0.00012 0.536 1.853 0.537 0.014 0.733 1.361 0.732 0.510 1.233 1.861 1.232 150 

0.00011 0.532 1.818 0.531 0.011 0.729 1.348 0.729 0.509 1.229 1.848 1.229 200 

0.00015 0.441 0.212 0.049 0.093 0.663 0.455 0.221 0.509 2.163 1.955 0.721 50 a 0.5 

b 1.5 

 1.5 

 0.5 

0.00014 0.412 0.150 0.046 0.018 0.642 0.387 0.214 0.511 2.142 1.887 0.714 100 

0.00013 0.403 0.131 0.045 0.011 0.635 0.361 0.212 0.510 2.135 1.861 0.712 150 

0.00012 0.395 0.121 0.044 0.014 0.629 0.348 0.210 0.510 2.129 1.848 0.710 200 

0.00063 0.262 1.023 0.041 -0.023 0.511 1.007 0.203 0.777 2.011 2.507 0.703 50 a 0.5 

b 1.5 

 1.5 

 0.8 

0.00059 0.259 0.856 0.037 -0.024 0.508 0.924 0.193 0.776 2.002 2.424 0.693 100 

0.00052 0.257 0.801 0.035 -0.024 0.505 0.895 0.187 0.776 2.008 2.395 0.687 150 

0.00051 0.255 0.778 0.034 -0.025 0.502 0.882 0.185 0.776 2.005 2.382 0.685 200 

0.018 0.149 6.211 0.013 -0.124 0.386 2.684 0.114 1.873 1.874 3.991 0.608 50 a 0.5 

b 1.5 

 1.5 

 2 

0.017 0.147 6.010 0.012 -0.127 0.384 2.491 0.108 1.876 1.882 4.184 0.614 100 

0.016 0.146 5.912 0.011 -0.131 0.383 2.431 0.103 1.870 1.883 3.931 0.603 150 

0.014 0.144 5.800 0.010 -0.133 0.374 2.408 0.101 1.870 1.886 3.908 0.601 200 
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Table 2. Exceedances of Wheaton River flood data 

 

9.3 12.0 13.0 1.9 0.7 5.3 20.6 0.4 1.1 14.4 2.2 1.7 

37.6 1.7 14.4 2.5 1.1 22.1 14.1 11.6 25.5 8.5 18.7 1.4 

0.6 1.1 0.1 1.7 22.9 7.3 11.0 15.0 0.3 39.0 2.2 0.6 

3.6 30.0 10.7 10.4 9.9 14.1 2.8 0.4 20.1 7.0 1.7 9.0 

64.0 2.7 36.4 27.6 21.5 11.9 3.4 25.5 4.2 13.3 30.8 5.6 

27.0 2.5 27.5 9.7 5.3 16.8 20.2 27.1 1.0 27.4 2.5 1.5 

 

Table 3. MLEs,-2log-likelihood, AIC, CAIC, and K-S 

 

Model a b     2  AIC BIC CAIC K-S 

Pareto 1 1 0.2438 0.1 606.2 608.2 610.4 608.2 0.332 

EP 2.8797 1 0.4241 0.1 574.6 578.6 583.2 578.8 0.198 

BP 3.1473 85.7508 0.0088 0.1 567.4 573.4 580.3 573.8 0.174 

KP 2.8553 85.8468 0.0528 0.1 542.4 548.4 555.3 548.8 0.170 

KGIP 1.112 2.712 0.865 2.191 507.7 515.8 524.9 516.4 0.168 

 

6 Conclusion 

 
In this article, we introduce a new generalization of the inverse Pareto distribution, termed as KGIP distribution, 

which can be quite flexible in analyzing real data in different fields. Study several statistical properties of the 

proposed distribution. Maximum likelihood estimation has been used to estimate the model parameters. The 

simulation study is used to assess the performance of the estimated parameters. The applicability of the 

proposed distribution is examined by applying to a real data set. The KGIP distribution provides better fit than 

other compared distributions. 
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Appendix A 
 

Elements of the information matrix    ,,tsUJ  where  β,α,b,a, ts are given by: 
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