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Abstract 
This paper transforms combined loads, applied at an arbitrary point of a 
thin-walled open section beam, to the shear centre of the cross-section of the 
beam. Therein, a generalized transformation matrix for loads with respect to 
the shear centre is derived, this accounting for the bimoments that develop 
due to the way the combined loads are applied. This and the authors’ earlier 
paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution 
to the theory of thin-walled, open-section structures bearing combined load-
ing. The earlier work identified arbitrary loading with the section’s area 
properties that are necessary to axial and shear stress calculations within the 
structure’s thin walls. In the previous paper attention is paid to the relevant 
axes of loading and to the transformations of loading required between axes 
for stress calculations arising from tension/compression, bending, torsion and 
shear. The derivation of the general transformation matrix applies to all types 
of loadings including, axial tensile and compression forces, transverse shear, 
longitudinal bending. One application, representing all these load cases, is 
given of a simple channel cantilever with an eccentrically located end load. 
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1. Introduction 

Beams constructed with thin rectangular plates are popular with designers, the 
advantages being that they are easy to produce and assemble, their performance 
under different force systems giving high efficiency in terms of their weight ver-
sus load. 

The essential analysis of thin-walled beams of open sections involves the 
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theory of warping, developed in the 1930’s by Wagner [1], then later by Vlasov 
[2]. However, both considered mainly the elastic deformation problem in re-
viewing the assumptions of thin-walled beams. Both concluded that, the Ber-
noulli’s hypothesis of plane cross sections remaining plane under pure torsion, is 
no longer true. In fact, the cross-section of thin-walled beam may undergo lon-
gitudinal extension, at different rates and signs, because of torsion, which was 
later called warping of a cross section. Consequently, longitudinal normal stresses 
to these warping strains are created [1] and [2].  

Another important phenomenon was found that longitudinal force applied at 
an arbitrary position will cause warping on cross section planes depending on 
the position and the boundary conditions, since this force may not be replaced 
by a statically equivalent longitudinal force. Thus, the beam will be subjected to a 
self-balancing set of longitudinal forces. This is of course different from the ele-
mentary theory of beam bending, which assumes that shear strains and stresses 
are zero [2]. 

Although a general stiffness matrix for an element of open section thin-walled 
beam, was derived in 1965 by Marten [3], and then by Przemieniecki [4], Lives-
ley [5] and many others, it appears that this matrix applies only to the beam for 
pure bending.  

Relatively few papers dealt with the torsion matrix also to be combined with 
the bending matrix. In 1967 Krahula [6], depending on Vlasov’s theory of 
thin-walled structures [2], used the coupling twist mode and the warping mode, 
defined by φ, and φ', respectively. The solution to the homogeneous differential 
equation (for zero moment), was used to define both modes, as well as the cor-
responding torque and bimoment applied to the element. In 1969, Kracinovic, 
also derived a similar stiffness matrix using Galerkin’s method to find the work 
done by external and internal forces [7]. 

Barsoum and Gallagher [8], in 1970 derived the stiffness and geometric ma-
trices using the principle of potential energy which the strain energy expression 
used, depended upon hypotheses made by Bleich [9]. They also assumed a dis-
placement function to derive their matrix. The solution found was approximate, 
but it remains useful for engineering applications under specific loadings. 

Rajasekaran [10] in 1977 employed “element-wise approximations”, by re-
placing the physical beam with an assembly of discrete elements. Stiffness and 
geometric matrices were derived using an assumed shape of mode deflections. 
By considering the second order terms in the strain expression, he was able to 
analyse the structure in the elastic and plastic regions. The most important fea-
ture of Rajasekaran’s method is that he endorsed the assumptions of the thin-walled 
beam theory.  

Baigent and Hancock (1982) [11], presented a matrix method for the analysis 
of thin-walled beams, the non-uniform torsion effect was included in the matrix 
displacement analysis. The study included the eccentricity of the load system 
from the shear centre. 

Both, Rajasekaran [10], and Baigent and Hancock [11], derived separately a 
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transformation matrix for loads applied at arbitrary points on a cross-section of 
a thin-walled beam. However, it appears that neither derivation admitted the 
presence of the bimoments that arise when longitudinal loadings are offset from 
the shear centre.  

Alsheikh [12], in 1985, studied the thin-walled theory stated by Vlasov [2], 
and by using a pure mathematical derivation introduced a new form to the 
theory, which enabled him to present the following: 

1) Normal and tangential stress formulae were derived. 
2) Proof that the centre of rotation of an open cross section thin-walled beam, 

and the principal sectorial poles (shear centres) do coincide. 
3) A general differential equation for a thin-walled beam was derived and 

solved. Consequently, an overall stiffness matrix accounting for the action of a 
set of combined loads, was derived. 

4) A load transformation matrix was derived to account for the forces applied 
apart from the shear centre. 

In 1988 Chen and Hu [13], reviewed a torsional stiffness matrix and a trans-
formation matrix for a thin-walled beam application under combined loading. 
Given that their study was an application of earlier work, it served to clarify the 
state of knowledge upon the subject at that time. 

Eduardo N. Dvorkin, et al. [14], have presented in 1989, analysis of a thin-walled 
open section beam, using the same differential equation of Vlasov. This study 
also seems to rely upon older works. They applied these equations to a curved 
beam, but the numerical results were not compared with any of other results. 

A study appeared in 1999 by Musat and Epureanu [15] on thin-walled beams 
with open cross-section under complex load using the concept of a strip-plate as 
a macro-element. In addition to adopting the hypotheses of Vlasov’s theory, they 
claimed an approach which delivered better results than the classical theory 
could provide. 

A general solution was developed by, R. Emre Erkmen, in 2006 [16], based on 
a non-orthogonal coordinate system, this yielded nodal values in shearing 
stresses, and included the shear deformation effects due to torsional warping, 
useful for design purposes. 

Wang, et al. [17], in 2011 investigated restrained torsion of open thin-walled 
beam to include the effects of shear deformation. By using a first-order torsion 
theory based on Vlasov’s theory [2], they studied the relationship between over-
all rotation and free warping. This, they claimed provided more accurate results 
compared with older methods.  

Mohammad Ferradi and Xavier Cespedes in 2014, [18], used an iterative equi-
librium scheme to determine the transformation modes by decomposing the 
cross section of a thin-walled structure into a 1 D element. It was claimed that 
their simplification had provided an exact solution to the differential equation 
derived in the section that follows. Most analyses mentioned above assume, rea-
sonably, that open cross-sections do not vary with beam length and that they are 
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uniformly thin. A higher order analysis [19], required to account for such varia-
tions, are not considered here.  

It is seen from the literature that there are a multitude of aspects to the analy-
sis if thin-walled structures. Crucial among these is the nature of the applied 
loading and the way loading should be transformed to the appropriate longitu-
dinal axis. In the case of a cantilever beam three axes apply which are located ar-
bitrarily or placed to coincide with the shear centre or the centroid of the beam 
section area. Transformation as it appears in this paper refers a loading along 
any arbitrary axis to either of the other two axes mentioned as is necessary for a 
stress conversion. 

2. Theoretical Development 

The displacements and internal forces developed due to the theory of thin-walled 
structures, are related to the principal sectorial pole, see [2] [12], and Alsheikh 
and Rees [20], also Alsheikh and Sharman [21]. In other words, in a complete 
stiffness matrix, which includes bending, shear and twisting modes, the terms 
from the bending modes are relative to transverse forces through the shear cen-
tre, and those due to axial modes are relative to forces through the centroid. In 
the simpler theory of beam bending an axial force applied away from the cen-
troid, will in fact produce bending moments on the structure. The load trans-
formation from an arbitrary point on the structure, must consider therefore the 
two modes, transverse, and axial loading, separately. This requires first to study 
the effect of each load on the bending moments and the bimoments. 

2.1. Transformation of Transverse Forces  

According to the hypothesis which considers the beam section as rigid, then, the 
stresses within that section will not change when an external transverse load is 
replaced by another set of forces statically equivalent to the first. Thus, in gener-
al, a transverse force applied apart from the shear centres (SC), T = Pe, may 
cause a combined of torsional and flexural moments to the beam (see Figure 1). 

2.2. Transformation of Longitudinal Force 

When a longitudinal force, applied at an arbitrary point, is transferred to the 
shear centre, it will produce an additional bimoment B proportional to the value 
of the sectorial coordinate at this point as follows: 

DB Pω=                             (1)  

where in Figure 2: 
P is a longitudinal force applied at point D. 

Dω  is the sectorial coordinate of point D with respect to the shear centre 
(principal sectorial pole). 

If a thin-walled beam of open section is subjected to a longitudinal force N, 
bending moments My and MZ and a bimoment BD act at an arbitrary point D on 
the structure (Figure 2). 

https://doi.org/10.4236/wjm.2022.126006


A. M. S. Alsheikh, D. W. A. Rees 
 

 

DOI: 10.4236/wjm.2022.126006 69 World Journal of Mechanics 
 

 
Figure 1. Transformation of a transverse force. 

 

 
Figure 2. A load system applied at D in centroid co-ordinates x, y, z. 

 
The axial stress at an arbitrary point on the open profile will be according to 

the following equation, Alsheikh [12], p28 

( )0 DE u v y w zσ ϕ ω′ ′′ ′′ ′′= − − −                      (2) 

where primed u, v and w are displacement derivatives and Dω  is the sectorial 
coordinate with respect to the sectorial pole D. The generalized forces on the 
structure at point, D will be: 

   d
A

N Aσ=∫                             (3) 

  dy A
M z Aσ=−∫                           (4) 

  dz A
M y Aσ=∫                           (5) 

and the bimoment as references [2] and [12], and [20] show, is:  

  dD DA
B Aσω=∫                           (6) 

Substituting Equation (2) into Equations (3)-(6) and re-writing we have:  

0 WDu N A EE S Aϕ′ ′′= +                       (7) 

( ) ( ) ( )2
yz y yD y zD yz y zz yy zEv I I E S I S IM I I IM ω ω

 ′′ = − + − −+      (8) 

( ) ( ) ( )2
z yz zD z yD yzz y z yzyEw I I E S I S I I I IM M ω ω

 ′′ = − − − +        (9) 
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0 D yD zD DD u S Ev S Ew S EB E ω ω ω φ′ ′′ ′′− − − Γ ′′=            (10) 

where, 
d

A
A A=∫  total area of the cross section. 
d zA

y A S=∫  first moment of area of the cross-section about axis-z.  
d yA

z A S=∫  first moment of-area of the cross-section about axis-y.  
2d zA

y A I=∫  second moment of area of the cross-section about axis-z.  
2d yA

z A I=∫  second moment of area of the cross-section about axis-y.  
d yzA

yz A I=∫  product moment of area of the cross-section. 
In addition to these expressions, which are well known from the strength of 

materials, there are new expressions to be considered, which are related to the 
law of sectorial area referred to point D. These are:  

d
A

A Sωω =∫  first moment of sectorial area. 
d zA

z A Sωω =∫  product moment of sectorial area about y-axis. 
d yA

y A Sωω =∫  product moment of sectorial area about z-axis. 
2d

A
Aω = Γ∫  second moment of sectorial area. 

Substituting Equations (7), (8) and (9) into Equation (10) we have: 

2 2

2

2 2 

z y y yz y z z yz
D yD zD

y z yz y z yz

yD y zD yz zD z yD yz D
D yD zD

y z yz y z

D

yz

I I I IN S S S
A I I I I I I

S I S I S I S I S
S S E

AI

M M M

I

B

I

M

I I I

ω ω ω

ω ω ω ω ω
ω ω φ

+ +

− −

−

= + −

 
− Γ − −  
 

−
′′−

− −

  (11) 

Recalling Equations (32)-(34) from Alsheikh and Rees [20] 

 2
zD z yD yz

y y
y z yz

S I S I
a d

I I I
ω ω−

− = −
−

                     (12) 

2
yD y zD yz

z z
y z yz

S I S I
a d

I I I
ω ω−

− =
−

                      (13) 

 ( ) ( )
2

D
D y y zD z z yD

S
a d S a d S

A
ω

ω ω= + − −Γ Γ − −               (14) 

where az and ay are the co-ordinates of the shear centre relative to the centroid. 
Substituting Equations (12), (13), and (14) into (11) we have, 

 ( ) ( )D y y y z z zDB a d M a d EN S
A

Mω ϕ′′= + − + − − Γ             (15) 

Also, from Equation (47) Alsheikh and Rees [20]:  

B E ϕ′′= − Γ                             (16) 

By substituting (16), into (15) we get,  

( ) ( )D y y y z zD zB B aN aS d
A

M d Mω= − − − − −             (17) 

In Equation (17) both the bending moments yM  and zM  represent the total 
generalized bending moment on the structure at point D, and these are represented 
by the applied bending moments My and Mz and the bending moment due to the 
generalized longitudinal force N, positioned at point D, as Figure 3. 
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Figure 3. Transformation of a load system from point D to centroidal axes. 

 

 y y zM M d N= −                          (18) 

 z z yM M d N= +                          (19) 

Substituting Equations (18) and (19) into (17) we have: 

( )( ) ( )( )D y y yD z z z z yB B a d M d N a d M
A

NS dN
ω= − − − − − − +      (20) 

It is obvious, in Equation (20) that the first term is a result of multiplication of 
the longitudinal force N by the sectorial coordinate of the point D with respect 
to the shear centre A, as we can see from the following.  

Recall from [20] the following equations: 

( )( ) ( )( )A o z o o y oz a y y y a z zω = − − − − −                (21) 

( ) ( )y y o z z o
D a d z d y

A
a

Sω − − −=                   (22)  

Solving the above two equations shows, 

( )A y z
wD

z yD a d a d
S
A

ω = − −                     (23)  

Now substituting Equation (23) into (20) reveals final equation of force trans-
formation  

( ) ( ) ( )y y y z z z DB N D a d M a d M Bω= − − − − +            (24) 

Equation (24) does not only give the effect of a longitudinal load applied at an 
arbitrary point D, to thebimoment on the structure, but also gives the effect of 
the bending moment on the bimoment, in terms of the values of the coordinates 
of the point D and the coordinates of the shear centre, multiplied by the value of 
the bending moment. This is as proved in the earlier work by AI-Sheikh [12]. 

2.3. Transformation of Bending Moments 

The bimoment due to an applied bending moment is given by Me, where M is 
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the bending moment applied at an arbitrary point D, and e is the distance be-
tween the plane of the moment and the shear centre (see Figure 4). The bimoment 
produced by a bending moment offset from the shear centre is a self-balancing 
longitudinal load, whether the bending moment consists of a transverse or lon-
gitudinal couple with a distance (Δs→0). 

The distribution of the bimoment along the x axis is always similar to that of a 
longitudinal force. This is also possible if a bending moment is not applied to the 
cross-section directly but to an arbitrary point connected to the section by a ri-
gid bracket. 

2.4. Transformation of the Stiffness Matrix 

The transformation for the stiffness matrix of a thin-walled beam of open section, 
comprises the coordinate transformation of local systems of each node to the 
global system. This includes the transformation of node actions acting at an arbi-
trary point D on the cross-section to the centroid O and shear centre A, as appli-
cable. The former (centroid) can be found in many texts, see Beaufait et al. [22], 
ZIENKIEWICZ, O. C [23], and WEAVER, W. and GERE, J.M. the latter (shear 
centre) will be defined as in Figure 5 and by means of Equation (24) as follows: 
 

 
Figure 4. Transformation of loading to shear centre. 

 

 
Figure 5. Transformation of a load system applied at D to the centroid 0 and to the shear centre A. 
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( ) ( )

( ) ( ) ( )

xc xD

yA yD

zA zD

xA yD z z zD y y xD

yC xD z yD

zC xD y zD

A xD A y y yD z z zD D

P P
P P

P P

M P d a P a d M

M P d M

M P d M

B P D a d M a d M Bω

=

=

=

= − + − +

= − ⋅ +

= ⋅ +

= − − − − +

         (25) 

Writing Equations (25) in matrix form we have: 

( ) ( )

( ) ( ) ( )

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 1

xc xd

ya yd

za zd

z z y y xd

ydz

y

a dy y

xa

yc

zc

z

z

z

d

P P
P P
P P

a d a d

d
d

B BD a d a d

M M
M M
M M

ω

                    − − − = ×       −             − − − −    

(26) 

In Equations (26) we see that the second and third terms of fourth row are the 
contribution factors froma transverse force applied at point D to the twisting 
moment xaM . The first term, in the fifth row, is the contribution factor of the 
longitudinal force to the bending moment ycM  about the y-axis. The first term 
of the sixth row is the contribution factor of the longitudinal force to the bend-
ing moment zcM  about the z-axis. In row seven, the first term is the contribu-
tion factor of the axial force Px applied at point D to the total bimoment. The 
fifth and sixth terms in the seventh row are the contribution factors of the two 
bending moments ydM  and zdM , at point D, to the total bimoment BA.  

Equations (26) may be written in a symbolic matrix form for the actions upon 
a single nodal point i:  

[ ] [ ][ ]i i DiP T P=  

where: 

[ ] T
i xc yA zA xa yc z ic aP P P P M M M B =                   (27) 

[ ] ( ) ( )

( ) ( ) ( )

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 1

z z y y

z

y

y y z

i

z

a d a d

d
d

D d

T

a d aω

 
 
 
 
 

− − − 
 
− 

 
 
 − − − − 

=



  (28) 

[ ] T
D xd yd zd xd yd z id dP P P P M M M B =                   (29) 

The equation for transforming the stiffness matrix from local to global co-ordinates 
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involves [Ti] as follows: 

[ ] T
i ij ij ijK T K T     =                             (30)  

where Kii is the 12 × 12 element stiffness matrix which is the combination, of 
bending modes as given in many texts, see Zienkiewicz [23], Weaver and Gere 
[24], and the St Venant torsional mode, given in reference [20] Table 1. That 
combination has been assembled in the 14 × 14 matrix given by Alsheikh and 
Rees [20] Table 3. The 7 × 7 transformation matrix [Tij] in Equation (27), when 
applied between adjacent nodes i and j, appears with the element stiffness matrix 
[Kij] in Equation (30) as follows: 

[ ] 0

0
i

j
ij T

T
T 

 
   

 =


                        (31) 

where, 

[ ]j iT T  =                             (32) 

and  
T

T

T

0

0

i
ij

j

T
T

T

    
   

 


=                       (33) 

2.5. Rotation of Principal Directions 

Equations (26) may be applied only for translations of node actions, i.e., when 
the principal axes coincide with the global axis. When failing to secure this con-
dition, a matrix for rotation of the principal directions is needed.  

The rotation matrix r may be derived from Figure 6 as follows: 

cos sin
sin cos

1 0 0
0
0

r β β
β β

 
 = − 
  

                    (34) 

This rotation matrix applies to actions associated with the translated displace-
ments u, v and w. It is also applicable to the actions associated with twist rota-
tions φx, φy and φz. Specifically, the action associated with the rate of twist, i.e., 
the bimoment, remains the same after rotation. Here it can be seen from Figure 
6 and Figure 7 that if a symmetric I-beam of web depth d is subjected to a bi-
moment B, this bimoment may be represented by two equal and opposite bend-
ing moments in the y direction as shown:  

yB M b=                             (35) 

cosyB M d β=                           (36)  

where:  
cosb d β=                            (37)  

The projections of My on the principal axes ym and zm are,  
cosym YM M β=                         (38) 
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Figure 6. Local and global coordinates of an I-Beam. 

 

 
Figure 7. Transformation of bending moment from global to local coordinates. 

 

sinzm YM M β=                         (39) 

It is also seen from the Figure 7 that the bimoment due to Mz vanishes because 
its plane (xm, ym) passes through the shear centre, while the bimoment due to 
Mym is  

m ymB M d=  

Note that Mym acts in the plane of the flange. 
Thus 

cosm yB M d β=                       (40)  
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Identical Equations (36) and (40) means that, the term in the rotation matrix, 
associated with the bimoment becomes unity, R33 = 1. Thus, a rotation matrix 
for actions at node i will be,  

[ ]
[ ]

[ ]
0 0

0 0
0 0 1

i

r
R r

 
 =  
  

                      (41) 

Hence the rotation for beam element, will be,  

 
[ ] 0

0
i

j
ij R

R
R 

 
   

 =


                      (42) 

where: 

 [ ]i jR R =                             (43) 

Combining Equations (30), (41) and (42) provides a comprehensive transforma-
tion for the beam element stiffness matrix: 

T T
ij ij iij i j ijR jK KR T T R          =                           (44) 

3. Conclusions 

This beam element transformation amends earlier forms [6] [8] [13] [15] in al-
lowing for bimoment terms within T

ijT   . As a sequel to the authors’ previous 
paper [20], the combined work provided a complete solution to the response of a 
thin-walled beam structure under any combination of applied loading including 
axial and transverse forces, flexural bending, and axial torsion. The physical 
form of the structure may appear as a beam or as a long torsional section having 
ends that are free or position fixed. 

Stress calculations arising from specific combined loadings are to appear in 
future papers. Thus, in consideration of structural safety, the probability of fail-
ure is to be assessed from plastic collapse and/or local buckling, which will be 
dealt with in future work. 
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