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Abstract

There are several functional forms for non-linear dynamical filters. Extended Kalman filters are
algorithms that are used to estimate more accurate values of unknown quantities of internal
dynamical systems from a sequence of noisy observation measured over a period of time. This
filtering process becomes computationally expensive when subjected to high dimensional data which
consequently has a negative impact on the filter performance in real time. This is because integration
of the equation of evolution of covariances is extremely costly, especially when the dimension of the
problem is huge which is the case in numerical weather prediction.
This study has developed a new filter, the First order Extended Ensemble Filter (FoEEF), with a
new extended innovation process to improve on the measurement and be able to estimate the state
value of high dimensional data. We propose to estimate the covariances empirically, which lends the
filter amenable to large dimensional models. The new filter is derived from stochastic state-space
models and its performance is tested using Lorenz 63 system of ordinary differential equations and
Matlab software.
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The performance of the newly developed filter is then compared with the performances of three
other filters, that is, Bootstrap particle Filter (BPF), First order Extended Kalman Bucy Filter
(FoEKBF) and Second order Extended Kalman Bucy Filter (SoEKBF).
The performance of the FoEEF improves with the increase in ensemble size. Even with as low
number of ensembles as 40, the FoEEF performs as good as the FoEKBF and SoEKBF. This
shows, that the proposed filter can register a good performance when used in high-dimensional
state-space models.

Keywords: Bayesian technique; filtering; estimation; state space dynamical system; extended ensemble
Kalman filter.

2010 Mathematics Subject Classification: 62F15; 62F40; 62M05.

1 Introduction

Stochastic state space models incorporate random variables, or uncertainty, in their equation.

The dynamics of these models are given by the following stochastic differential equation, as developed
by Kiyosi Itô [1]:

dwt = f(wt, t)dt+ g(wt, t)dβt, t0 ≤ t, (1.1)

where wt is a variable that represents an n by 1 dimensional state vector, f(wt, t) is an n by 1
dimensional drift function that enforces the evolution of the state vector wt in any given change
of time dt, g(wt, t) is an n by m dimensional diffusion function and βt with t > t0 is an m by 1
standard Brownian motion process that incorporates the uncertainties in the process.

1.1 Stochastic integrals

The solution to equation (1.1) can be presented as

wt = wt0 +

∫ t

t0

f(wτ , τ)dτ +

∫ t

t0

g(xτ , τ)dβτ (1.2)

The last integral,
∫ t

t0
g(wτ , τ)dβτ , is a stochastic integral, and can take any of the following

formulations:

1. Itô ∫ b

a

g(wt, t)dβτ = l.i.m.

n∑
k=1

g(wtk , tk)(βtk+1 − βtk) (1.3)

where δt = tk+1 − tk, and,

2. Stratonovich ∫ b

a

g(xt, t)
′dβτ = l.i.m

n∑
k=1

g(
wtk + wtk+1

2
, tk)(βtk+1 − βtk). (1.4)

The relationship between Itô and Stratonovich integrals is given by [2]∫ b

a

g(wt, t)
′dβτ =

∫ b

a

g(wt, t)dβτ +
1

2

∫ b

a

∂w[g(wτ , τ)]g(wτ , τ)dτ (1.5)

With ∂w[g] representing
∂g
∂w

derivative.
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Using equation (1.5), the Itô differential equation dwt = f(wt, t)dt + g(wt, t)dβt leads to the
Stratonovich differential equation

dwt = f(wt, t)−
1

2
g(wt, t)∂w[g(wt, t)]dt+ g(wt, t)

′dβt. (1.6)

1.2 Fokker-Planck equation

Taking the density function as
ψt(w) = ψ(w, t) (1.7)

and the transition probability density function as

ψt|τ (w|Y ) = ψ(w, t|Y, τ) (1.8)

The Fokker-Planck equation describes the evolution of the density function (1.7) and the conditional
density function (1.8) and satisfies the Chapman-Kolmogorov equation [3, 2]

ψt3|t1(w|Y ) =

∫
ψt3|t2(w|Z)ψt2|t1(y|Y )dy

t1 < t2 < t3 (1.9)

The equation for the evolution of transitional probability density function can be derived using
Taylor series expansion [2]

∂ψt|τ (w|y)
∂t

= −
∂(ψt|τ (w|y)f(w, t))

∂w
+

1

2

∂2(ψt|τ (w|z)g2(w, t))
∂w2

(1.10)

This equation is called theFokker-Planck equation or the Kolmogorov forward equation.
Carrying out the expected value of the Kolmogorov forward equation yields the equation of evolution
of probability density function

∂ψt(w)

∂t
= −∂(ψt(w)f(w, t))

∂w
+

1

2

∂2(ψt(wt)g
2(w, t))

∂w2

given that

Eτ [ψt|τ (w|z)] =
∫
ψt|τ (w|z)ψτ (z)dz = ψt(w). (1.11)

1.3 Weak form of Fokker-Planck equation (equation of evolution
of moments)

The weak form of Fokker-Planck equation is obtained by multiplying the Fokker-Planck equation(1.11)
with an infinitely differentiable function ϕ(w) and then integrating; that is,∫

∂ψw

∂t
ϕ(w)dw = −

∫
∂(ψt(w)f(w, t)

∂w
ϕ(w)dw +

1

2

∫
∂2(ψt(w)g

2(x, t))

∂w2
ϕ(w)dw (1.12)

Then integrating by parts and getting the expected value E(.)[3] yields

dψt[ϕ] = ψt[ℓ
∗ϕ]dt where ℓ∗ = f

∂

∂w
+

1

2
g2

∂2

∂w2
. (1.13)

The idea of filtering being the incorporation of measurements into the model, it now remains to
introduce the measurements equation, which is as follows:

dzt = h(wt, t)dt+R
1
2 dηt (1.14)

whose dimensions and significations correspond to those of (1.1). We only need mention that ηt is
white noise of appropriate dimension.
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1.4 Kushner-Stratonovich equation

The Kushner-Stratonovich equation is a perturbation of Fokker-Planck equation (1.12), which is
addition of knowledge from measurement using Bayesian approach. The equation estimates ŵt at
time t by combining noisy dynamics with noisy measurement, and is as follows: [4]

ψt(w/zt) = ψt0(w) +

∫ t

t0

ℓ(ψt(w/zt))dτ +

∫ t

t0

ψτ (w/zτ )(h− ĥτ )
TR−1(τ)(dzτ − ĥτdτ) (1.15)

which can be written in its differential form as

dψt(w/zt) = ℓ(ψt(w/zt))dτ + ψτ (w/zτ )(h− ĥτ )
TR−1(τ)(dzτ − ĥτdτ) (1.16)

where ℓ = f ∂
∂w

+ 1
2
g2 ∂2

∂w2 and ĥt =
∫
h(w, t)ψt(w/zt)dw.

The proof can be found in [3], but we here only give a sketch. The weak form of Kushner-
Stratonovich equation is

dψt[ϕ] = ψt[ℓϕ]dt+ (πt[ϕ(w)h]− ϕ̂ĥt)
TR−1(t)(dzt − ĥtdt)] (1.17)

Deriving the innovation process

[dψt]measurement = [πt(w/zt + δzt)− ψt(w/zt)] (1.18)

from
δzt = h(wt)δt+R

1
2 (t)δηt

and taking
E[δztδz

T
t ] = R(t)δt+ .....

we apply Bayesian equation

ψt(w/zt + δzt) =
ψt(δz/wt)ψt(w/zt)∫
ψt(δz/wt)ψt(w/zt)dw

where
ψt(δz/wt) ∼ N(h(wt)δt, R(t)δt)

let

q(δt, δzt) =
ψt(w/zt + δt)

ψt(w/zt)

using Taylor expansion about (0,0) and taking the expectation

q(δt, δyt) = 1 + (h− ĥ)TR−1(δzt − ĥtδt) + ....

hence applying equation
q(δt, δzt)ψt(w/zt) = ψt(w/zt + δzt)

we get
ψt(w/zt + δzt) = ψt(w/zt) + (h− ĥT

t R
−1(δzt − ĥtδt)ψt(w/zt) + ....

This gives equation the innovation process as δt→ 0

1.5 Evolution of the mean and co-variance

The mean is the first moment and the variance is the second moment [3]. For a function of w given
by ϕ(w) and conditional density ψt(w/zt)
The first moment is

ψt[ϕ(w)] =

∫
ϕ(w)πt(w/zt)dw (1.19)
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Using the weak form of Kushner-Stratonovich equation (1.17) and taking ψt[ϕ(w)] = ϕ̂t(w) we get

dϕ̂t(w) = ψt[f
∂ϕ

∂w
]dt+

1

2
ψt[g

2 ∂
2w

∂w2
]dt+ (ψt[ϕh]− ϕ̂tĥt)(R)

−1(t)(dzt − ĥtdt) (1.20)

When we substitute ϕ(w) with w, our equation becomes

dŵt = f̂tdt+ (ψt[wh]− ŵtŵt)R
−1(t)(dzt − ĥtdt). (1.21)

The conditional variance is derived from (see [2] for finer details)

pt = E[(w − ŵt)
2|zt]

= ψt[w
2]− ŵ2

t

⇒ dpt = dψt[w
2]− dŵ2

t . (1.22)

Substituting ϕ(w) for w2 we get

dψt[w
2] = 2ψt[wf ]dt+ ψt[g

2]dt+ (ψt[w
2h]− ψt[w

2]ĥt)R
−1(t)(dzt − ĥtdt). (1.23)

Applying Itô formula [2] of measurements

dh = ∂t[h]dt+∇[h]T dwt +
1

2
tr[g(wt, t)g

T (wt, t)]∆[h]dt,

the equation becomes
dŵ2

t = 2ŵtdŵt + (ψt[wh]− ŵtĥt)
2R−1(t)dt. (1.24)

Substituting from (1.21), we get

dŵ2
t = 2ŵtf̂dt+ (2ŵtπt[wh]− 2ŵ2ĥt)R

−1(t)(dyt − ĥtdt) + (πt[wh]− ŵtĥt)
2R−1(t)dt. (1.25)

The evolution of co-variance is developed from (1.5), (1.24) and (1.25) to obtain

dpt = (2ψt[wf ]− 2ŵtf̂t)dt+ ψt[g
2dt− (ψt[xh]− ŵtĥt)

2R−1(t)dt+

(ψt[w
2h]− 2ŵt[wh]− ψt[w

2]ĥt + 2ŵ2
t ĥt)R

−1(t)(dyt − ĥtdt). (1.26)

2 Literature Review

Equations (1.25) and (1.5), are exact solutions to the filtering problem. However, they are infinite
dimensional, especially when expected values of nonlinear functions are involved. For the linear case,
the equations naturally yield the Kalman Bucy filter [5], which is optimal. In the nonlinear setting,
the Kalman Bucy filter is not optimal. Extensions of the Kalman Bucy filter are, however, made
by way of approximating the expected values of nonlinear functions using Taylor series expansion
about the mean of the state variable. These filter approximations are derived in the sequel. But
first particle filters.

A Particle filter [6] or sequential Monte Carlo method applies numerical methods in approximating
the state based on importance sampling [7]. The idea is to draw, say, M samples, {wi

t0:tN , w
∗i
tN }Mi=1,

where w∗ represents corresponding weights, from a posterior density

πt0:tN (wt0:tN | δzt1:tN ) ,

where wt0:tN = (wT
t0 , w

T
t1 , ... w

T
tN )T and δzt0:tN = (δzTt0 , δz

T
t1 , ... δz

T
tN )T. In this case, t0 : tN is the

partition of time. However, as in most cases, drawing from the full posterior can be cumbersome.
in stead, we may choose a simpler density which resembles the posterior, from which we can draw
samples. Suppose such a proposal be the same as the transition density. Then the weights can be
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represented by the likelihood. This leads to the so-called Bootstrap particle filter (BPF). Resampling
is done–in a bid to curb particle degeneracy–when the effective sample size (ESS) is below a certain
threshold, α.

ESStn =
1∑M

i=1(w̃
∗i
tn
)2
, (2.1)

where {w∗i
tn}

M
i=1 are normalized weights.

Algorithm 2.1 Bootstrap particle filter

Input: δt, α, M , N , πt0 , πtn and wt0 .
Output: {wi

tn}
N,M
n,i=1.

1: Draw wi
t0 ∼ πt0

(
wi
t0 | wt0

)
2: Compute initial weights w∗i

t0 =
1

M
3: for n = 1 to N , δt > 0 do

4: Draw wi
tn ∼ πtn

(
wi
tn | wi

tn−1

)
5: Compute weights w∗i

tn ∼ πtn
(
δztn | wi

tn

)
w∗i
tn−1

6: Normalise the weights

7: Compute ESStn =
1∑M

i=1(w̃
∗i
tn)

2

8: if ESStn ≤ α then
9: Resample the particles

10: Set the weights to w∗i
tn =

1

M
11: end if
12: end for

The need for resampling disallows the use of parallel computers, especially when the dimensions are
high. Furthermore, the sample size required to achieve accuracy of particle filters scales according
to the exponent of the dimension of the filter, a phenomenon dubbed the curse of dimensionality
[8]. All these challenges work against the particle filters.

Kushner-Stratonovic equation gives solution to filtering problems by propagating the conditional
density in time. The equation of conditional density is known to be infinite[2] hence it suffers from
the curse of dimensionality [3]. Non-linear filtering problems have high order moments in solving
equations of the mean which, that is, as the dimension of the state increases, the space becomes
large and the data becomes sparse. This problem leads to the needs of large amount of data.
Alternatively, approximation of the equations for both the mean and the covariance are done of the
first order and the second order by using Taylor expansion in order to find a numerical solution to
the filtering problem.

3 Extended Filters

Consider the following Itô expression of continuous state space models:

Signal: dwt = f(wt, θ)dt+G(wt)Q
1/2(t)dβt (3.1)

wt0 = w(0), t0 ≤ t
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Measurement: dzt = h(wt)dt+R1/2(t)dηt (3.2)

t0 ≤ t

where wt is state vector with dimensions n by 1, f(wt, θ) is the drift term with dimensions n by 1,
θ is the vector of parameters with dimension d by 1, G(wt) is a matrix function with dimensions
n by m Q(t) is a time function matrix with dimensions m by m, βt, t > t0 is the Brownian motion
with dimensions m by 1, zt is an output vector with dimensions r by 1, h(xt) is the measurement
function with dimensions n by 1, R(t) is a time function matrix with dimensions r by r, ηt, t > t0
is the Brownian motion process with dimensions r by 1,

An estimate of the state wt can be obtained from the historical measurements zt, t > t0 by using
conditional density function.

For equation (3.1) and (3.2), the mean, ŵt, and co-variance pt satisfies, respectively,

dŵt = f̂dt+ (ŵthT − ŵtĥ
T )R−1(t)(dyt − ĥdt) where wt0 = w(0), (3.3)

and

(dp)ij = (ŵifj − ˆ
wif̂j)dt+ (f̂iwj)dt+ (ĜQGT )IJdt− (ŵih− ŵiĥ)

TR−1(ĥwj − ĥŵj)dt

+(ŵiwjh− ŵiwj ĥ)− (ŵiŵjh− ŵjŵjh+ 2ŵiŵj ĥ)
TR−1(t)(dyt − ĥdt) (3.4)

where pt0 = p(0).

For a scalar case, equation (3.1) becomes

Signal: dwt = f(wt, θ)dt+ g(wt)q
1/2(t)dβt where wt0 = w(0), t0 ≤ t (3.5)

and equation (3.2) becomes

Measurement: dzt = h(wt)dt+ r1/2(t)dηt, t0 ≤ t. (3.6)

The corresponding equations for evolution of the mean and covariance in the scalar case are:

dŵt = f̂dt+ (ŵthT − ŵtĥ
T )r−1(t)(dyt − ĥdt), (3.7)

wt0 = w(0)

and

(dpt) = 2(ŵf)dt+ (qg2)dt− (ŵh− ŵĥ)2r−1 + (ŵ2h− ŵ2ĥ− 2ŵŵh+2ŵ2ĥ)r−1(t)(dzt − ĥdt) (3.8)

pt0 = p(0)

where f̂ =
∫
f(w)p(w/zt)dw. Solutions for equations (3.7) and (3.8) give exact filter except it

involves calculation of conditional expectation, an integration over non-linear functions which is
not feasible. In this case we calculate an approximation of expected values by negating terms of
the second and higher order terms in the Taylor series expansion of nonlinearities about the mean
of the state, ŵt.

3.1 First order approximate filter

Proposition 3.1. Suppose f(w) and h(w) are continuous functions whose first order derivatives
fw and hw exist, then the first approximation equation for the exact filter equations (3.7) and (3.8)
and omitting second and higher order moments are

dŵt = f(ŵ)dt+ phw(ŵ)r
−1(t)(dyt − h(ŵ)dt) (3.9)

dpt = 2pfw(ŵ)dt+ (q(t)g2(ŵ) + pq(t)g2w(ŵ)dt− (pth(ŵ))
2r−1 (3.10)
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Proof. Proof by Taylor expansion about ŵ and taking the expectations of the series E(•) upto the

first order with p = (ŵ − ŵ)2 = w(ŵ − ŵ) and (ŵ − ŵ) = 0

f(w) ≈ f(ŵ) + (w − ŵ)fw(ŵ) +
1

2
(w − ŵ)2fw(ŵ) + .... (3.11)

f̂ ≈ f(ŵ) +
1

2
pfww(ŵ)

f̂ ≈ fŵ

h(w) ≈ h(ŵ) + (x− ŵ)hw(ŵ) +
1

2
(w − ŵ)2hww(ŵ) + ... (3.12)

ĥ ≈ h(̂w) +
1

2
phww(w)

ĥ ≈ h(̂w)

q(t)(g2(w) ≈ q(t)(g(ŵ) + (w − ŵ)gw(ŵ) +
1

2
(w − ŵ)2gww(ŵ))

2 + .....

≈ q(t)(g(ŵ) +
1

2
pgww(ŵ))

2

q(t)(g(ŵ)2 + 2(
1

2
pgww(ŵ)g(ŵ) + (

1

2
pgww(ŵ))

2

≈ q(t)g(tŵ)2 + pq(t)gww(ŵ)g(ŵ) +
1

4
q(t)p2(gww(ŵ))

2

q(t)g2 ≈ q(t)g2(ŵ) + pq(t)g2x(ŵ)

q̂(t)g2 ≈ q(t)g2ŵ + pq(t)g2w(ŵ) (3.13)

wf(w) ≈ wf(ŵ) + w(w − ŵ)fw(ŵ) +
1

2
w(w − ŵ)2fww(ŵ) + .....

ŵf − ŵf̂ ≈ ŵf(ŵ) + pfw(ŵ) +
1

2
ŵpfww(ŵ)− ŵf(ŵ)− 1

2
pfww(ŵ)

= pfw(ŵ) (3.14)

We now seek the approximation of the term

ŵ2h− ŵ2ĥ− 2ŵŵh+ 2ŵ2ĥ.

By Taylor series expansion,

ŵ2 ≈ ŵ2 + (w − ŵ)2ŵ + (w − ŵ)2. (3.15)

Using equations (3.12) and (3.15) we get

ŵ2h ≈ E[(ŵ2 + (w − ŵ)2ŵ + (w − ŵ)2) ∗ (hŵ) + (w − ŵ)hw(ŵ) +
1

2
(w − ŵ)2hww(ŵ)]

= ŵ2h(ŵ) + (ŵ) + 2ŵphw(ŵ) + ph(ŵ) (3.16)

similarly

ŵ2ĥ ≈ E[(ŵ2 + (w − ŵ)2ŵ + (w − ŵ)2)] ∗ E[(h(ŵ) + (w − ŵ)hw(ŵ) +
1

2
(w − ŵ)2hww(ŵ))]

= (ŵ2 + p)(h(ŵ) + (w − ŵ) +
1

2
(w − ŵ)2hww(ŵ))
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= ŵ2h(ŵ) +
1

2
ŵ2phww(ŵ) + ph(ŵ) +

1

2
p2hww(ŵ)

ŵ2h = ŵ2h(ŵ) + ph(ŵ). (3.17)

The remaining term
−2ŵŵh+ 2ŵ2ĥ

becomes
− 2ŵŵh+ 2ŵ2ĥ = −2ŵ(ŵh− ŵĥ) = 2ŵphw(ŵ) (3.18)

The approximate filter for exact filter (3.7) and (3.8) can be obtained by writing the expected values
of the terms with their approximations from above. Equations (3.9) and (3.10) jointly form the
first order extended Kalman Bucy filter (FoEKBF).

The second order extended Kalman Bucy filter (SoEKBF) involves retaining of second order terms
in the Taylor series expansion of the expected values of nonlinear terms in the exact filter [3]. The
SoEKBF is given by (in vector form):

dŵt = f(ŵt)dt+
1

2
△ [f ](ŵt) : Ptdt

+ Pt[h]
T(ŵt)R

−1(t)(dzt − (h(ŵt) +
1

2
△ [h](ŵt) : Pt)dt),

(3.19a)

dPt = Pt[f ]
T(ŵt)dt+ [f ](ŵt)Ptdt

+ g(t)gT(t)dt+−Pt[h]
T(ŵt)R

−1[h](ŵt)Ptdt

+
1

2
Pt : △[h]T(ŵt)R

−1(t)

(
dzt − (h(ŵt) +

1

2
△ [h](ŵt) : Pt)dt

)
Pt.

(3.19b)

Now the first order–and second order–approximate filter suffers from one demerit; namely, the cost
of integrating the equation of evolution of covariances. This is a major problem, especially where
high dimensional models are involved. Moreover, the computation of Jacobian can be expensive
when nonlinearities abound. These challenges led to the invention of ensemble filters, in which the
covariances are empirically estimated [9].

3.2 First order extended ensemble Kalman filter

In the proposed filter, an M hypothesis of state, denoted as Xt = wM
i at given time t, the particles

are propagated according to the first order approximate equation, (3.9); that is,

dwi
t = f(wi

t, θ)dt+ g(wi
t)q

1
2 (t)dβi

t + phw(w
i
t)r

−1(t)(dzt − 0.5(h(wi
t) + h(ŵt))dt) (3.20)

The mean wt and co-variance pt are estimated empirically as follows:

ŵt =
1

M

M∑
i=1

wi
t (3.21)

t0 ≥ t

and

pt =
1

M − 1

M∑
i=1

(wi
t − ŵt)

2 (3.22)

t0 ≥ t

This is the first order extended ensemble filter (FoEEF).
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4 Filter Validation Using Multi-Dimensional Model

In this section, we test the performance of FoEEF using Lorenz63 equations and we develop the
algorithm in Matlab software. The same experiment is done for BPF, FoEKBF and SoEKBF.

The new FoEEF filter is validated by comparing its graphical output with the output from three
other filters, that is ,Bootstrap Particle Filter(BPF), First order Extended Kalman-Bucy Filter
(FoEKBF) and Second order Extended Kalman-Bucy Filter(SoEKBF) by using lorenz63 systems of
ordinary differential equations simulated on Matlab software. We plot the trajectories for the three
variables x1, x2 and x3, for the different filters, together with the root mean square errors (RMSEs).

But first we briefly introduce the Lorenz63 model.

4.1 Stochastic Lorenz63 equation

Lorenz63 equations is a system of coupled non-linear ordinary differential equations that best
describes chaotic dynamics. The equations are known to simulate regular oscillations or highly
non-linear fluctuations[10]. Lorenz63 equations oscillates around fixed point p = (0, 0, 0) and a
slight change in initial conditions leads to a significant change in oscillations. The coupled equations
describe the rate of change of three quantities x, y, z with respect to time t.

Lorenz63 model is defined in three time dependant variables.

dx

dt
= a(x2 − x1)

dy

dt
= x1(b− x3)− x2

dz

dt
= x1x2 − cx3 (4.1)

Where a, b, c are the parameters generally with values a = 10, b = 28 and c = 8
3

Stochastic Lorenz63 contains an additive noise part in Lorenz63 model. The noise is assumed to
be Gaussian in nature. Lorenz determined that a slight perturbation in the initial stage changes
the outcome of a dynamical system drastically. This sensitivity to initial value condition has led to
application of Lorenz63 equations to data assimilation and filtering problems. Stochastic Lorenz 63
equations is used in finding chaotic solutions for parameters with given initial conditions.

5 Results

Fig. 1 shows a plot of RMSE against the reciprocal of ensemble size M for different filters. The
trend indicates that the FoEEF improves in performance with the increase in ensemble size. The
FoEEF performs in about the same way as the FoEKBF and SoEKBF.

From Fig. 1, output measurement of Root Mean Square Error against the number of the ensemble,
it is observed that there is no significant deviation in performance from the new FoEEF away from
the other three filters, BPF, FoEKBF and SoEKBF, especially at large ensemble sizes.

Fig. 2 has two graphs. The first graph compares the trajectories of evolution of new FoEEF
(dark green) with the trajectories of SoEKBF (purple), FoEKBF (yellow), BPF (brown) and the
trajectory of true state(blue) generated from Lorenz63 model.
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The trajectories are conducted on filter estimates using nine ensemble number that are measured
between times T = 0 and T = 30, with a time step of 0.001.

The sefcond graph is a measure of filter error against times T = 0 and T = 30 for FoEEnKF
model(purple), SoEKBF model(yellow), FoEKBF model(orange), BPF model(blue) in the first
variable.
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Fig. 1. Root Mean Square Error for the reciprocal of Ensemble. The sizes of the
ensemble used are 10, 15, 22, 26, 29, 34, 41, 46, 49. Other settings are as follows:

dt = 0.001, R = 0.17, and g = 0.2
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Fig. 2. Filter estimate and filter error for x1 in lorenz63 model
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The observations from filter estimate in Fig. 3 shows that there is no deviations in trajectory of
evolution between FoEEF (green) and the trajectory of the true state generated from Lorenz63
model (blue). It can also be seen that the three other models, that is SoEKBF (purple), FoEKBF
(orange) and BPF (red), also shows similar trajectories of evolution with both the true state
trajectory and FoEKBF model trajectory.

From Fig. 3, it can be observed that there is no significant deviation that occurs between the
output of FoEEF model and the output from other three models. The output of new FoEKBF
model closely resembles the output from SoEKBF model, FoEKBF model and BPF model.

Fig. 4 has two graphical outputs with the first output comparing the trajectories of evolution of new
FoEEnKF (dark green), SoEKBF (purple), FoEKBFn(yellow), BPF (brown) and the trajectory of
true state(blue) for the third variable in Lorenz63 model. The trajectories are conducted for Filter
Estimates using nine ensemble number which are measured between times T = 0 and T = 30.

The second graph measures the output from filter error against times T = [0, 30] for FoEEnKF
(purple), SoEKBF (yellow), FoEKBF (orange), BPF (blue).
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Fig. 3. Filter estimate and filter error for x2 in Lorenz 63 model

Like in the previous figures above, it is observed that the trajectories of FoEEF (dark green),
SoEKBF (purple), FoEKBF (yellow), BPF (brown) and true state (blue) that has been generated
from Lorenz63 have similar trends by having no observable deviation between the five models.

The measurement on the filter error against time from the same Fig. 4 indicates no significant
difference between the outputs from the four filter models( FoEEF, SoEKBF, FoEKBF, and BPF).

As with the other trajectories, it is observed that all the trajectories closely follow same pattern.
There is no significant deviation of the FoEEF trajectories from those of BPF, FoEKBF and SoKBF.
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Fig. 4. Filter Estimate and Filter Error for x3 in Lorenz63 model

6 Conclusion

The observation from the experiment of FoEEF, FoEKBF and SoEKBF conducted on a three
dimensional Stochastic Lorenz63 has shown that the performance FoEEF, as also shown in RMSE
plot, does not deviate in any significant way from the performances of FoEKBF and SoEKBF. The
graphical trajectories of FoEEF in the same three dimensional Lorenz63 also indicates similarity
with trajectories of FoEKBF and SoEKBF for the three variables, x1, x2 and x3. It is well known
that as the dimensions increases, solutions to filtering problems become computationally expensive
since it requires integration of the equation of evolution of covariances. This cost is drastically
reduced in the case of FoEEF, which registers a remarkable performance even at low ensemble sizes
(refer to Fig. 1).

In FoEEF, the covariance matrix is estimated empirically which makes it computationally cheap as
compared to FoKBF and SoKBF, where integration of an equation of evolution of covariances is
involved. Further more, FoEEF does not involve re-sampling, which is common in particle filter as
a way of circumventing the so called particle degeneracy. It is well known that re-sampling prohibit
parallel computing. This makes FoEEF amenable to parallel computing hence it is more suitable
for high dimensional data.
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