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Abstract 
 
In this paper, a mathematical model for the transmission of HIV/AIDS with early treatment is developed and 
analyzed to gain insight into early treatment of HIV/AIDS and other epidemiological features that cause the 
progression from HIV to full blown AIDS. We established the basic reproduction number which is the 
average number of new secondary infection generated by a single infected individual during infectious 
period. The analysis shows that the disease free equilibrium is locally and globally asymptotically stable 
whenever the threshold quantity   is less than unity i.e. Numerical analysis shows that the early treatment of 
latently infected individuals reduces the dynamical progression to full blown AIDS. The result also showed 
that immunity boosted substances increase the red blood cells, sensitivity analysis of basic reproduction 
number with respect to parameters showed that effective contact rate must not exceed 0.3 to avoid endemic 
stage. 
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1 Introduction  
 
The human immunodeficiency virus (HIV) is a virus that affects the body’s immune system and leads to 
Acquired immunodeficiency Syndrome (AIDS). It is an infectious disease which has led to the death of millions 
of people in both developing and developed countries, 38.0 million [31.6 million–44.5 million] people globally 
were living with HIV in 2019 while 26 million [25.1 million–26.2 million] people were accessing antiretroviral 
therapy as of the end of June 2020 [1].  The symptoms include but not limited to: fever, chills, fatigue, swollen 
lymph nodes, sore throat, and night sweats [2]. 
 
One of the major problems caused by the HIV to the body is the destruction of CD4+T cells which play an 
important role in the regulation of the body immune system. HIV causes a reduction in the number of functional 
CD4+T cells thereby making the body unable to fight and prevent cell infections. A lot of mathematical models 
have been formulated to study the interactions between CD4+T cells and HIV [3-6]. 
 
Early treatment of HIV/AIDS in infected persons can reduce the rate of sexual transmission in humans [7,8]. 
Recent control trials have found that treating HIV-positive individuals with antiretroviral drugs reduces the risk 
of them transmitting the disease to their heterosexual partners by more than 90% [7]. These antiretroviral drugs 
help in building the immune system of the infected individual against more cell infections. The antiretroviral 
drugs are categorized into two groups which are reverse transcriptase inhibitors (RTIs) and protease inhibitors 
(PIs). RTIs disrupt the conversion of RNA of the virus to DNA so that new HIV infection of cells is prevented. 
On the other hand, PIs hinder the production of the virus particles by the actively infected CD4+T cells [3]. 
 
Since early treatment have been proven to reduce the rate of transmission, it is important to identify infected 
persons and put them on treatment. Individuals should also be encouraged to go for voluntary testing that will 
increase case detection, thereby reducing the number of secondary infections. 
 
A lot of mathematical models have been developed extensively in the study of HIV/AIDS transmission 
dynamics [9-12]. Also, models incorporating treatment have also been developed by some mathematicians. 
 
HUO et al [8], developed a simple epidemic model of HIV/AIDS with treatment compartment. They introduced 
a treatment compartment T where infected individuals received different kinds of treatments. It is noted that 
these treatment do not completely eliminate HIV from the body and the effects of treatment on the HIV/AIDS 
transmission dynamics was studied.  
 
In [13], HIV- infection transmission in a male homosexual population was studied. The model considered two 
types of infected individuals. Those who are infected but do not know their status and are not under any clinical 
treatment and those who are under treatment. The analytical results show that there exists a unique endemic 
equilibrium which is globally asymptotically stable under a range of parameter values whenever a detection 
/treatment rate and an indirect measure of the level of infection risk are sufficiently large. 
 
Adewale et.al, [14], Presented and analyzed five (5) non-linear differential compartmental models, to have 
better understanding on the parameters that influence the dynamical spread of HIV in the society. Numerical 
simulations of the model were analyzed to determine the effects of parameters on the dynamical spread of the 
disease. The effective contact rate and the fast progressor are the major key parameters that enhanced the 
dynamical spread of HIV in the society. 
 
In [4], a mathematical model for an effective management of HIV was presented. The model presents two 
control variables where the uninfected CD4+T cells follow the logistic growth function and the incidence term is 
saturated with free virus. 
 
In this paper, we modified the work done by Huo et.al. by incorporating latently infected compartment with 
early treatment and treated compartment with fractions of those that failed treatment that moved to aids class, 
therefore, five (5) compartmental epidemiological model is developed and analyzed for the transmission of 
HIV/AIDS with early treatment to study the effect of early treatment on the progression from HIV to full blown 
AIDS. 
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The rest of the paper is organized as follows: In section 2, we developed a mathematical model where the 
population size N(t) is divided into five compartments; Susceptible S(t), Latently infected L(t), Infected I(t), 
Treated T(t), Aids A(t). In section 3, we presented the positivity of solution, disease free equilibrium point, 
Basic reproduction ratio, Local Stability of Disease Free Equilibrium Point, Global stability of the Disease Free 
Equilibrium, Endemic Equilibrium and Sensitivity Analysis. The numerical simulation was discussed in section 
4 
 

2 Model Formulation 
 
The population size  tN  of human is sub–divided into sub–classes of individuals who are Susceptible  tS , 

Latently infected L (t), Infected  tI , Treated  tT and Aids  tA , So that; 

 

           tAtTtItLtStN                                                                                        )1(  

 
The susceptible population is increased by the recruitment of individuals into the population (either by birth or 

immigration at the rate ). The population decreases by the newly infected individuals that move to latently 
infected class. The population also decreases by natural death (at the rate  ). Thus; 

 

SSI
dt

dS
                                                                                              (3) 

 
The population of the latently infected class consist newly infected individuals following a contact with the 

infected human/object (at the rate  ). The population decreases due to progression to infectious class (at the 

rate ), natural and disease induced death (at the rate  and ) respectively, also decreases due to early 

treatment at the rate 1 .The population later increased by the help of immunity boosted from treated 

compartment when the CD4 counts rise above 50%. Thus; 
 

  TLSI
dt

dL
  1                                                                                      )4(  

 
The population of infected individual increases by progression from latently infected individual due to lack of 

treatment or treatment failure (at the rate ). The population decreases due to treatment (at the rate 2 ), natural 

death (at the rate  ) and disease induced death (at the rate  ).  Thus; 

 

 IL
dt

dI
  2                                                                                          )5(  

 
The population of the treated individuals increases by the treatments of those that are latently and fully infected 

by HIV (at the rate 21  and ). The population decreases due to natural death (at the rate ), death due to the 

disease (at the rate ), treatment failure due to drug resistance or inadequate dosing at the rate  and the 

immunity boosted after treatment and CD4 count rises above 50% (at the rate ).  Then, 
 

 TIL
dt

dT
  21                                                                                      )6(  

 
Full blown AIDS compartment increases by treated individuals that failed treatment due to one medical reason 
or the other at the rate  The acquire immuno-deficiency syndrome individuals  suffer natural death and death 

due to the disease (at the rate  and ) respectively. Hence; 
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AT
dt

dA
)(                                                                                            )7(  

 
In summary, we have the following system of differential equations. 
 

SSI
dt

dS
    

  TLSI
dt

dL
  1   

 

 IL
dt

dI
  2                                                                                             (8) 

 TIL
dt

dT
  21      

AT
dt

dA
)(  

 
 

 
 

Chart 1.  Flow chat 
 

3 Positivity of Solution 

Lemma 1: The closed set }:),,,,{( 5




  NRATILSD  is positively invariant and attracting to model 

equation (8). 
 
 Proof: Consider the biologically-feasible region D defined above. The rate of change of the total population 
obtained by adding all the equations of the model is given by 
 

)( ATILN
dt

dN
                                                                                              (9) 
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It follows that 0
dt

dN
whenever 




N ,  

 

Further, since N
dt

dN
 , it is clear that 




)(tN

 
 

If 



)0(N . Therefore  all solution of the model with initial condition in D remains in D for all t>0. Thus D 

is positively-invariant and attracting in the region D, the model can be considered as being epidemiologically 
and mathematically well posed. 
 

3.1 Disease free equilibrium point 
 
At steady state,  
 

,0
dt

dA

dt

dT

dt

dI

dt

dL

dt

dS
 

 

Since there is no infection;  
 

,0 ATIL  
 

Therefore,  0 S  
 

Hence; 



S

 
 

  






 
 0,0,0,0,**,*,*,*,


ATILSEo                                                                               (10) 

 

3.2 Basic reproduction number 
 

The basic reproduction number is the number of secondary cases of infection generated from a single infection 
[14]. We obtained this using next generation matrix method [15]. The matrices F(new infection terms) and V 
(other transferring terms) are given as; 
 



















 



0000

0000

0000

000




F                                                                                            (11) 

 

And  
 





























4

321

2

1

00

0

00

00

K

K

K

K

V









                                                                                            (12) 
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The basic reproduction number denoted by oR  is given by  1 FVRo 
 

 

 












321122

3

KKKK

K
Ro




 

 
Where; 

















4

3

22

11

K

K

K

K

 

 

The threshold quantity oR  is the basic reproduction number of the model equation above, which is the average 

number of new case of an infection caused by one typical infected HIV/AIDS in a population of susceptible.  

 

3.3 Local stability of disease free equilibrium point  
 

Theorem 1: The disease free equilibrium is locally asymptotically stable (LAS) if 0R < 1 and unstable if 0R > 

1. 
 

Proof: The Jacobian matrix of the system model (8) at disease free equilibrium point 0E  (0, 0, 0, 0, 0, 0) is 

obtained as follows 
 


































































4

321

2

1

01

000

00

000

00

000

)(

K

K

K

K

EJ

                                                 

(13) 

 
The first and fifth column of the equation (13) have only the diagonal terms that form the first two negative 

eigen values i.e,   and 4K , Hence, we have; 

 

00)(

321

2

1

02 










































K

K

K

EJ

                                                                           

(14) 

 

We obtained the eigen values of the matrix )( 02 EJ from the characteristics equation below; 
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0AAAA 01
2

2
3

3                                                                                                           (15) 

Where  
 

3A = 1 

 

1232 KKKA 
 

 



 
 3231211

1

KKKKKK
A                                                                     (16)

                                                                   



 3321212
0

KKKKK
A


   

 
According to Routh Hurwitz criterion, which states that all the roots of the polynomial will have negative real 

parts if and only if all the coefficients iA (i=0, 1, 2, 3 ) are all positive and that the matrices iT (i=1, 2, 3 ) are all 

positive. Clearly from (16) 0Aand0A,0A,0A 0123   if 10 R . Also, the Hurwitz matrix iT  is 

all positive which are given as below; 
 

 0

A00

AAA

0AA

T,0
AA

AA
T,0AT

0

210

32

3

10

32

221 

 
 
Therefore, all the eigen-values of the polynomial (15) are negative which shows that the disease free equilibrium 
is locally asymptotically stable. 
 

3.4 Global stability of the disease free equilibrium 
 
Theorem 2: The disease free equilibrium of model (8) is globally asymptotically stable if Ro<1. 
 
Proof: We will use comparison theorem [16] to prove the global stability. The rate of change of variables 
representing the infected components of equation (8) can be re-written as; 
 

 



















































































A

T

I

L

F

A

T

I

L

VF

dt

dA
dt

dT
dt

dI
dt

dL

i

                                                                                                       

(17) 

 
Where;
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  



























































































A

T

I

L

F

S

VF

dt

dA
dt

dT
dt

dI
dt

dL

i









21

2

1

                                                           

(18) 

 
Then, 
 

 







































































21

2

1S

VF

dt

dA
dt

dT
dt

dI
dt

dL

                                                                                   

(19) 

 
All the eigen values of the matrix F – V have negative real parts. It follows that the linearized differential 

inequality system above is stable whenever 1oR .Consequently, by comparison theorem [15] we have that 

 0,0,0,0,0,0  Rhhh IJIE  as t . Substituting 0 Rhhh IJIE  into (8) we 

have that )0()( StS   as t .  Hence, we have a positive invariant region. It follows that disease free 

equilibrium is globally asymptotically stable whenever 10 R . 

 

3.5 Endemic equilibrium 
 

Let ),,,,( ************
1 ATILS represents any arbitrary endemic equilibrium of the model equation (8). 

Solving equations in the system simultaneously yield; 
 

3

321122**

K

KKKK
S



 
                                                                                               (20) 

 





)(

)(

321122

23321122**

KKKK

KKKKKK
L






                                                        

 (21) 

  

)(

)(

321122

3321122**

KKKK

KKKKK
I









                                                               (22)  

 

3321122

1223321122**

)(

))((

KKKKK

KKKKKK
T










                                     

(23) 
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43321122

1223321122**

)(

))((

KKKKKK

KKKKKK
A








                                  (24) 

 

The endemic equilibrium point of the HIV/AIDS model equation (8) exists whenever the threshold quantity 

1Ro   
 

3.6   Sensitivity analysis 
 

Sensitivity analysis investigates the relations between parameters of a model and its threshold quantity basic 
reproduction number Ro which determines the spread/eradication of a disease in a community at a particular 
time. [17] Sensitivity Analysis has been used for different parameterization tasks of models of biological 
systems, such as finding necessary parameters for research prioritization [18], identifying less influenced 
parameters or parameters clustering [19]. 
 

Sensitivity analysis of the model is determined by the partial derivatives of the basic reproduction number with 
respect to its parameters; 
 

“ P ”: 
O

OR
P

R

P

P

R
X O 




 . 

 

The results of the sensitivity indices of OR are as shown in the table below; 

 

Table 1. Signs of sensitivity index (s. I) of 0R
 

 

Parameter S. I. 

   Positive        

  Negative 
  Positive 

  Negative 

  Positive 

1  Negative 

2  Negative 

  Negative 
 

4 Numerical Simulation 
 

Table 2 Numerical behavior of equation (8) is studied using MAPLE 19 software with parameters values in the 
table below; 
 

Table 2. Description of Parameters with Values 
 

Parameter Descriptions Values 

  Recruitment into Population 2000 

  Effective Contact Rate 0.2 

  Natural Death Rate 0.02 

  Disease Induced Death Rate 0.01 

  Treatment Failure 0.01 

  Immunity Boost 0.1 

  Progression Rate 0.12 

1  Treatment Rate 0.2 

2  Treatment Rate 0.1 
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Fig. 1. Graph of total population when 
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Fig. 2. Graph of total population when 
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Fig. 3. Graph of total population when 
 

 

 
 

Fig. 4. Graph of total population when 
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Fig. 5. Graph of total population when 
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Fig. 6. Graph of total population when 
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Fig. 7. Graph of Total Population when 
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Fig. 8. Graph of total population when 
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Fig. 9. Graph of total population when 
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Fig. 10. Graph of basic reproduction number R0 against effective contact rate ( ) 
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Fig. 11. Graph of basic reproduction number R0 against effective contact rate ( 4.0 ) 

  

5 Discussion of Results 
 
Five (5) compartmental mathematical model for the transmission of HIV/AIDS with immunity boost is 
presented and analyzed to gain insight into early treatment of HIV/AIDS and other epidemiological features that 

cause the progression from HIV to full blown AIDS. We analyzed the basic reproduction number oR which 

determines whether disease dies off or spread, the result shows that the disease dies off whenever oR  is less 

than unity i.e. 1Ro  but spread when 1oR . Sensitivity analysis of basic reproduction number oR with 

respect to parameters shows the parameters that need to be checked by medical practitioners/policy health 
makers, parameters with positive index such as effective contact rate increases the basic reproduction number 
and must not exceed 0.3 to avoid endemic stage. The numerical analysis of the model shows the dynamical 
behavior of the epidemiological parameters used in the formulation of the model (8).  
 
Fig. 1-6 analyzed the early treatment of latently and active infected individuals; the results show that starting 
treatment early is the most effective way to prevent HIV being progressed to AIDS, the higher/early the 
treatment of infected individuals the less the active full blown AIDS individuals. The early treatment lowers the 
viral load in HIV patients and prevented the progression to the last stage. 
 
Fig. 7-9 show how immunity booster prevented HIV being progressed to full AIDS; HIV is a virus that attacks a 
specific type of immune system cell in the body known as T-cells, HIV-positive patients need extra vitamins 
and minerals to help repair and heal the damaged cells. Immunity booster plays a vital role in the dynamical 

control of HIV-AIDS. The result in Fig. 10 shows that when the immunity is full i.e. 1 , it reduces the 
progression from HIV to full blown AIDS. 
 
Figs. 10 and 11 depict the effect of effective contact rate on the basic reproduction number, the result shows that 
effective contact rate is one of the parameters that increases the spread of HIV i.e. the higher the contact rate the 
higher the basic reproduction number and the faster would be the spread in the community. Fig. 10 shows that 
R0 is less than one (1) when effective contact rate is 0.3, while Fig. 11 shows it is greater than one (1)   when 
contact rate is 0.4 and above. 
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6 Conclusion 
 
Starting treatment as soon as possible after someone is diagnosed with HIV is better than delaying it, treatment 
should be started as early as possible after HIV is diagnosed and interventions that boost the immunity should be 
adopted by policy health makers to reduce the progression to full blown AIDS. 
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