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ABSTRACT 
 

The analysis presented in the paper explains computational issues related to the use of a new 
method of determining the curvature of the track axis – the so-called moving chord method. It 
indicates the versatility of this method – it may be used both in a horizontal and vertical plane. It also 
draws attention to its very high precision, as evidenced by the exemplary geometric cases under 
consideration. The focus here is on the computational foundations of the discussed method 
regarding the angles of inclination of the moving chord. It was found that for a circular arc in the 
horizontal plane, the inclination angles of the moving chord depend on the track turning angle, while 
the difference in inclination angles depends only on the radius of the arc. In the case of a circular arc 
in the vertical plane, the moving chord inclination angles are much smaller than in the horizontal 
plane, which is connected with the range of the applied radii of the arcs. As in the horizontal plane, 
the radius of the vertical curve is the only factor that determines the discrepancy in the inclination 
angles of the moving chord. 
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1. INTRODUCTION 
 
The achievable speed of trains is mainly 
determined by the shape of the track axis in the 
horizontal plane. Therefore, the key maintenance 
operation is to determine the basic geometric 
parameters: the location and length of straight 
sections, the location of circular arcs together 
with their radius and length, and the location of 
transition curves along with their type and            
length. The principles of carrying out               
appropriate measurements are similar across 
various railway authorities [1-7]. 

 
The traditional surveying methods that have 
been used for many years are very labour-
intensive and, therefore, they require significant 
financial outlays. This situation was an inspiration 
to undertake research on the use of a new 
measurement technique, which was called the 
method of mobile satellite measurements [8-17]. 
This technology has been developed in Poland 
for over 10 years and since 2018 it has been 
applied in the current research project BRIK                  
[18-19], the aim of which is to obtain a practical 
solution for implementation. 

 
As a result of mobile satellite measurements, a 
set of numerical data is available, which,                  
after appropriate processing, form a set of 
coordinates in the corresponding Cartesian 
system (in Poland – as far as the horizontal 
plane is concerned - the most common is the PL-
2000 two-dimensional perpendicular coordinate 
system, which is an element of the national 
spatial reference system) [20]. Having a set of 
coordinates, one can focus on the issue of 
identifying the occurring geometrical elements. 
The method used so far has been based on a 
diagram of horizontal arrows from a chord 

stretched along the path, which is the most 
frequently used tool for assigning track points to 
sections with defined geometry. Such a graph is 
identical with the horizontal arrow graph and the 
superelevation graph (if any). In practice, the 
arrow graph is often equated with the curvature 
diagram. 
 
The article deals with selected specific issues 
related to the new method of determining the 
curvature of the track axis, the assumptions of 
which – for the horizontal plane – are described 
in [21] and supplemented in [22]. Namely, factors 
determining the curvature, i.e. the inclination 
angles of the moving chord, were analyzed, 
considering both the horizontal and the vertical 
curvature. 
 

2. DETERMINING CURVATURE WITH THE 
APPLICATION OF THE MOVING 
CHORD METHOD 

 
To define the curvature it is necessary to 
manipulate the angles of the tangent to the 
geometric system. This does not constitute a 
problem if you have an analytical record of a 
given curve. However, with the real railway track 
in mind, which is usually deformed as a result of 
operation, an idea appeared not to use the 
tangent but the corresponding chords when 
determining the curvature of the track. Paper [21] 
presents a method of changing inclination angles 
of a chord with a fixed length (the so-called 
moving chord method), of a theoretical character 
but verified on selected geometric systems. 
Using analytical notation, the position of the ends 
of the chord may be clearly determined in a given 
case. Fig. 1 shows a schematic diagram of 
determining the curvature with the application of 
the proposed method. 

 

 
 

Fig. 1. Schematic diagram of determining the curvature by the moving chord method [21] 
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It was assumed that for the considered short 
sections of the track, the tangent and 
corresponding chords are parallel to each other, 
and the points of contact are projected 
perpendicularly onto the centre of the chord. 
Curvature ki occurring at a given point i is 
determined by the following formula: 
 

i
i

c

k
l


                  (1) 

 
where lc is the length of the chord, and angle ∆��  
results from the difference between the 
inclination angles of the adjacent chords 
converging at point i, i.e. 
 

 ( 1) ( 1)i i i i i         (2) 

 
where ��÷(���) is the inclination angle of the front 

chord, and �(���)÷� is the inclination angle of the 

rear chord. 
 
The application of this procedure requires the 
knowledge of the coordinates of a given curve in 
the Cartesian system as angles �(���)÷�  and 

��÷(���) result from the inclination coefficients of 

the lines describing both chords. 
 
As far as the sign of the curvature is concerned, 
the general rule is that if the curve turns to the 
right as the independent variable x increases, the 
curvature of the curve is negative, and if it turns 
to the left it is positive. This means that the 
positive value ki in formula (1) corresponds with 
the case of convexity of the curve pointing 
downwards, and the negative value – with the 
one directed upwards. 
 
Paper [21] presents a verification of the proposed 
method of determining the horizontal curvature 
on a clearly defined elementary geometric 
system of tracks, consisting of a circular arc and 
two symmetrically positioned transition curves     
(of the same type and length), calculated 
according to the principles of analytical design 
method [23]. Several geometric cases for various 
train speeds were considered, and the types                
of transition curves applied and the route turning 
angles were also differentiated. The obtained 
curvature diagrams were fully consistent with            
the diagrams constituting the basis for obtaining 
the corresponding geometric solution.                       
This pertained both to the sections of the   
circular arc and the areas around transition 
curves. 

It was also noted that the proposed method 
offers great opportunities of application. The 
practical aspect of the presented considerations 
may become evident when the geometrical 
characteristics of the track axis determined by 
measurements are not known and their 
determination becomes the primary goal. In this 
situation, the discussed method perfectly 
corresponds to the principles of mobile satellite 
measurements. Such measurements provide the 
coordinates of the track axis in the rectangular 
coordinate system in a very large number and in 
a very short time. 
 
Two important detailed issues were discussed in 
[22] the influence of the chord length on the 
obtained values of horizontal curvature and the 
possibility of determining the location of border 
points between individual geometric elements. 
The analyzed variants depended on the type of 
transition curves used. It was found that the 
chord length within the range from 5 to 20 m 
does not play a significant role in determining the 
curvature and does not limit the application of the 
described method. We also note the precision of 
determining the nature of the curvature and its 
compliance with the theoretical course of 
transition curves. The analysis shows that in the 
moving chord method it is possible to determine 
the location of the border points between 
individual geometric elements, while the required 
chord length must be correlated with the type of 
transition curve. For example, for a transition 
curve in the form of a clothoid (with linear 
curvature), a chord with a length lc = 2 m should 
be used locally, for a Bloss curve (i.e. a smooth 
curve), a chord with a length lc = 5 m should be 
applied. In addition, some inaccuracies should be 
expected at both ends of clothoid (i.e. at the 
points between straight sections and the circular 
curve). 
 

3. RESULTS AND DISCUSSION 
 
3.1 Analysis of the Chord Inclination 

Angles in the Horizontal Plane  
 
3.1.1 Principles of the conducted analysis 
 
An analysis of the inclination angles of the 
moving chord in the horizontal plane was carried 
out in the x, y coordinate system, on the 
elementary geometric system of tracks, 
consisting of a circular arc with a 1000 m radius 
and two symmetrically positioned transition 
curves in the form of a 150 m long clothoid. The 
assumed superelevation hO = 105 mm allows to 
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obtain train speed V = 140 km/h. When 
determining the speed of the train, the 
permissible values of kinematic parameters in 
force in Poland were taken into account: 
unbalanced acceleration on a circular arc aper = 
0.85 m/s

2
 and acceleration increment on the 

transition curve ψper = 0.3 m/s
3
. 

 
A universal mathematical notation of such a 
system was presented in [23]. Three special 
cases were considered, each one with a different 
turn angle: α = π/8 rad, π/4 rad and π/2 rad, 
respectively. 
 
The procedure consists of two main stages. First, 
the coordinates of successive points on the curve 
are determined, which are separated in a straight 
line by value lc (i.e. by the chord length). As part 
of the analysis, lc = 5 m was assumed and – due 
to the symmetry of the geometric system – the 
procedure was started from the point located in 
the centre of the system (i.e. on the circular arc), 
first covering the right side of the system. Then, 
on the basis of a mirror image, the required data 
for the left side of the system was completed. 
 
In the second stage, the curvature of the track 
axis is determined. The main effort is focused on 
determining angle values �(���)÷� and ��÷(���). To 

do this, first determine the inclination coefficients 
of both adjoining chords using the following 
formulas: 
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As ( 1) ( 1)arctani i i is    
 and 

( 1) ( 1)arctani i i is    
, we can apply formula 

(2) and determine the curvature with the 
application of formula (1). 
 
3.1.2 Case 1 (track turning angle α = π/8 rad) 
 
Fig. 2 shows a diagram of the horizontal 
ordinates y(x) obtained with the analytical design 
method [6] for the geometric system under 
consideration and the assumed track turn angle 
 α = π/8 rad. The same scale was applied to both 
the ordinate and abscissa axes. 
 
As can be seen, at a small track turning angle α 
= π/8 rad, the length of the entire geometric 
system is determined by the lengths of the 
transition curves (marked in blue). The ordinates 
y(x) are relatively small; their maximum values 
(in the middle of the circular arc) slightly exceed 
30 m. 
 
Fig. 3 shows the corresponding diagram of the 
ordinates of curvature k(l) determined by the 
moving chord method. 
 
As was the case in [21-22], Fig. 3 shows 
complete compliance with the model solution – 
circular arc curvature is of constant value k = 
1/R, and the change of curvature on transition 
curves in the form of clothoid is                    
linear. 
 
The curvature values result from the difference 
of the inclination angles of the chords derived 
from point i – backward �(���)÷�  and forward 

��÷(���) . Fig. 4 shows diagrams of both these 

angles along the geometric system. 

 
 
Fig. 2. Diagram of horizontal ordinates for the geometric system in Case 1 (circular arc in red, 

transition curves in blue; radius of circular arc R = 1000 m, transition curves in the form of 
clothoid with length lk = 150 m and track turning angle α = π/8 rad) 



 
Fig. 3. Diagram of curvature along the entire

(circular arc radius R 
with length lk = 150 m and track turning angle 

 

 
Fig. 4. Diagrams of the chord inclination derived from point
(+) – in Case 1 (radius of circular arc 

length lk = 150 m and track turning angle 
 
Fig. 4 clearly shows that along the circular arc 
there is a certain distance between the two lines 
(i.e. they are parallel to each other). By dividing 
the constant value of the difference of angles by 
the length of the chord, a constant value of 
curvature is obtained. Along the transition 
curves, the angle difference decreases to zero in 
the straight sections; in the case under
consideration this leads to a linear curvature.
 
3.1.3 Case 2 (track turning angle α

 

Fig. 5 presents a diagram of the horizontal 
ordinates y(x) for the considered geometrical 
system and the assumed turning angle 
rad. As in Case 1 (Fig. 2), the same scale was 
kept on the ordinate axis and the abscissa axis.
 

As can be seen, with the track turning angle 
twice as large as in Case 1, the length of the 
circular arc (marked in red) plays a decisive role 
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Fig. 3. Diagram of curvature along the entire length of the geometrical system in Case1 
 = 1000 m, transition curves in the form of clothoid
= 150 m and track turning angle α = π/8 rad) 

Fig. 4. Diagrams of the chord inclination derived from point i – backwards ϴ (–) and forwards 
in Case 1 (radius of circular arc R = 1000 m, transition curves in the form of clothoid with 

= 150 m and track turning angle α = π/8 rad) 

4 clearly shows that along the circular arc 
there is a certain distance between the two lines 

o each other). By dividing 
the constant value of the difference of angles by 
the length of the chord, a constant value of 
curvature is obtained. Along the transition 
curves, the angle difference decreases to zero in 
the straight sections; in the case under 
consideration this leads to a linear curvature. 

α = π/4 rad) 

5 presents a diagram of the horizontal 
for the considered geometrical 

system and the assumed turning angle α = π/4 
2), the same scale was 

kept on the ordinate axis and the abscissa axis. 

As can be seen, with the track turning angle 
twice as large as in Case 1, the length of the 
circular arc (marked in red) plays a decisive role 

in the length of the entire geometric s
system in Fig. 5 is almost twice as long as that in 
Fig. 2, and the ordinates y(x) reach 100 m in the 
central section. 

 
Fig. 6 shows the corresponding diagram of the 
ordinates of curvature k(l) determined by the 
moving chord method. As can be se
significant extension of the circular arc section is 
the only difference between this and the situation 
in Fig. 3. 
 
In this case, it would be difficult to draw the 
diagrams of chord inclination angles on an 
appropriate scale backward and forward from
point i (as in Fig. 4) that would not be identical. 
Therefore, it was limited only to the extreme 
parts of the geometric system. Fig. 7 shows the 
graphs of angles �(���)÷� and �

initial section, and Fig. 8 – for the final one.
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length of the geometrical system in Case1 
= 1000 m, transition curves in the form of clothoid 

 

) and forwards ϴ 
= 1000 m, transition curves in the form of clothoid with 

in the length of the entire geometric system. The 
system in Fig. 5 is almost twice as long as that in 

reach 100 m in the 

Fig. 6 shows the corresponding diagram of the 
determined by the 

moving chord method. As can be seen, a 
significant extension of the circular arc section is 
the only difference between this and the situation 

In this case, it would be difficult to draw the 
diagrams of chord inclination angles on an 
appropriate scale backward and forward from 

(as in Fig. 4) that would not be identical. 
Therefore, it was limited only to the extreme 
parts of the geometric system. Fig. 7 shows the 

��÷(���)  for the 

for the final one. 



 
Fig. 5. Diagram of horizontal ordinates for the geometric system in Case 2 (circular arc in red, 

transition curves in blue; radius of circular arc 
clothoid with length 

 
 

 
Fig. 6. Diagram of curvature along the geometrical system in Case 2
1000 m, transition curves in the form of clothoid

 

 
Fig. 7. Diagrams of the inclination of the chords derived from point 
forwards ϴ (+) – for the initial section in Case 2 (radius of circular arc 

curves in the form of clothoid with length 
 
The graphs in Fig. 7 and 8 fully confirm the 
observations on Case 1 (Fig. 4). A stable 
distance is maintained between the two lines 
over the circular arc, and in the transition curves 
the difference between the angles decreases to 
zero on adjacent straight lines. 
 
3.1.4 Case 3 (track turning angle α
 
Fig. 9 demonstrates a diagram of the horizontal 
ordinates y(x) for the considered geometrical 
system and the assumed track turning angle 
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Fig. 5. Diagram of horizontal ordinates for the geometric system in Case 2 (circular arc in red, 
transition curves in blue; radius of circular arc R = 1000 m, transition curves in the form of 

clothoid with length lk = 150 m and track turning angle α = π/4 rad) 

Fig. 6. Diagram of curvature along the geometrical system in Case 2 (radius of circular arc 
1000 m, transition curves in the form of clothoid with length lk = 150 m and track turning angle 

α = π/4 rad) 

Fig. 7. Diagrams of the inclination of the chords derived from point i – backwards 
for the initial section in Case 2 (radius of circular arc R = 1000 m, transition 

curves in the form of clothoid with length lk = 150 m and the track turn angle α

The graphs in Fig. 7 and 8 fully confirm the 
observations on Case 1 (Fig. 4). A stable 
distance is maintained between the two lines 
over the circular arc, and in the transition curves 

the angles decreases to 

α = π/2 rad) 

Fig. 9 demonstrates a diagram of the horizontal 
for the considered geometrical 

system and the assumed track turning angle α = 

π/2 rad. As in Cases 1 and 2 (Figs. 2 and 5), the 
same scale was applied to the ordinate axis and 
the abscissa axis. 
 

As can be seen, with the turning angle
rad for the entire length of the geometric system, 
what is a decisive factor is the length of t
circular arc (marked in red). The layout in Fig. 9 
is almost three times the length of the layout in 
Fig. 2 and more than 50% longer than the layout 
in Fig. 5; ordinates y(x) reach maximum values of 
about 350 m in the central section.
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Fig. 5. Diagram of horizontal ordinates for the geometric system in Case 2 (circular arc in red, 
= 1000 m, transition curves in the form of 

 

 

(radius of circular arc R = 
= 150 m and track turning angle 

 

backwards ϴ (–) and 
= 1000 m, transition 

α = π/4 rad) 

As in Cases 1 and 2 (Figs. 2 and 5), the 
same scale was applied to the ordinate axis and 

As can be seen, with the turning angle α = π/2 
rad for the entire length of the geometric system, 
what is a decisive factor is the length of the 

. The layout in Fig. 9 
is almost three times the length of the layout in 
Fig. 2 and more than 50% longer than the layout 

reach maximum values of 
about 350 m in the central section. 



Fig. 10 shows the corresponding diagram of the 
ordinates of curvature k(l) determined by the 
moving chord method. As can be seen, 
 

 
Fig. 8. Diagrams of the inclination angles of the chords derived from point
and forwards ϴ (+) – for the end section in Case 2 (radius of circular arc

curves in the form of clothoid
 

 
Fig. 9. Diagram of horizontal ordinates for the geometric system in Case 3 (circular arc in red, 

transition curves in blue; radius of circular arc 
clothoid with length 

 

Fig. 10. Diagram of curvature along the geometrical system in Case 3 (radius of circular arc 
= 1000 m, transition curves in the form of c
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esponding diagram of the 
determined by the 

moving chord method. As can be seen, 

compared to the situation in Figs 3 and 6, the 
lengths of the transition curves here represent 
only a small percentage of the entire system.

Fig. 8. Diagrams of the inclination angles of the chords derived from point i – backwards 
for the end section in Case 2 (radius of circular arc R = 1000 m, transition 

curves in the form of clothoid with length lk = 150 m and the track turn angle α

Fig. 9. Diagram of horizontal ordinates for the geometric system in Case 3 (circular arc in red, 
transition curves in blue; radius of circular arc R = 1000 m, transition curves in the form of 

clothoid with length lk = 150 m and track turning angle α = π/2 rad) 

 
Fig. 10. Diagram of curvature along the geometrical system in Case 3 (radius of circular arc 

= 1000 m, transition curves in the form of clothoid with length lk = 150 m and track turning 
angle α = π/2 rad) 
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compared to the situation in Figs 3 and 6, the 
lengths of the transition curves here represent 
only a small percentage of the entire system. 

 

backwards ϴ (–) 
= 1000 m, transition 

α = π/4 rad) 

 

Fig. 9. Diagram of horizontal ordinates for the geometric system in Case 3 (circular arc in red, 
= 1000 m, transition curves in the form of 

 

 

Fig. 10. Diagram of curvature along the geometrical system in Case 3 (radius of circular arc R 
= 150 m and track turning 
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In the case under consideration, the diagrams of 
angles �(���)÷�  and ��÷(���)  were neglected, as 

they would basically coincide with each other 
(even in the extreme sections). Simultaneously, 
the corresponding numerical values were taken 
into account in the further analysis carried out in 
section 3.1.5. 
 
3.1.5 Comparison of inclination angle values  
 
Table 1 presents a list of selected values of the 
inclination angles of the moving chord when 
determining the curvature of the track axis in 
Cases 1 ÷ 3, i.e. for the track turning angle α = 
π/8 rad, π/4 rad and π/2 rad. These values 
pertain to the area of transition from the circular 
arc to the transition curve (the linear coordinate 
lEA of the connection point of these geometric 
elements is given). 
 
Table 1 clearly shows that for a given radius of a 
circular arc, the track turning angle determines 
the moving chord inclination angles – they are 
the greater, the greater α is. In the considered 
cases, the order of magnitude of the angles 
�(���)÷�  and ��÷(���)  for individual α differs 

significantly (from 0.1 to 0.7 rad), yet the 
differences of these angles are the same. On a 
circular arc they are 0.005 rad, given a curvature 
of 0.001 rad/m. The data in Table 1 provide a 
numerical illustration of the moving chord 
method, indicating its very high precision. 
 

3.2 Analysis of Chord Inclination Angles 
in Vertical Plane 

 

The geometric presentation of the track in the 
vertical plane (i.e. the longitudinal profile of the 
track) is presented in the rectangular coordinate 
system l, h, where the abscissa l represents the 
longitudinal dimension of the track axis, and the 
ordinate h is the projection of the track axis onto 

the vertical plane. This system includes elements 
appearing on the horizontal plane – there are 
straight sections with a uniform inclination and 
circular arcs rounding the bends of the 
longitudinal profile. Thus, from a formal point of 
view, there is nothing to prevent the moving 
chord method from being used to determine the 
vertical curvature. However, the specificity of 
such a geometric system should be taken into 
account: the occurring longitudinal inclinations 
are very small (most often they amount to a few 
per mille), the bend values can not exceed the 
established allowed values, and the radii of the 
vertical curves must be far larger than the radii of 
the horizontal curves (even by an order of 
magnitude). As a result, the lengths of the 
vertical arc sections are smaller than their 
counterparts in the horizontal plane. 
 
The analysis of the inclination angles of the 
moving chord in the vertical plane was carried 
out on a geometric system consisting of two 
symmetrically positioned sections with a uniform 
inclination equal to 2,5%o and a circular arc with 
a radius of 10,000 m. Fig. 11 shows the plot of 
hight ordinates h(l) for the considered system. As 
these ordinates take very small values (3 cm 
max), the graph was drawn up with the axes 
representing two different scales. 
 
In determining the vertical curvature, the 
abscissa values for successive points in the 
curve h(l), spaced apart by the value lc, are taken 
along axis l; they are the result of the following 
dependence: ���� = �� + ��. As in the case of the 
horizontal plane, due to the symmetry of the 
geometric system, proceedings were started 
from a point located in the centre of the system 
(i.e. on the circular arc), first covering the right 
side of the system. Then, like in a mirror image, 
the required data for the left side of the system 
were completed. 

 

 
 

Fig. 11. Graph of elevation ordinates along a geometric system consisting of two sections with 
a uniform inclination equal to 2.5%o and a circular arc with a 10,000 m radius (where both axes 

represent two different scales) 
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Table 1. List of selected values of the inclination angles of the moving chord when determining the curvature of the track axis in Cases 1 ÷ 3 
 

Turn angle 
α rad) 

Location of end of 
arc lEA (m) 

Location of point 
li (m) 

Angle  �(���)÷� 

(rad) 

Angle  ��÷(���) 

(rad) 

Angle difference 
��� (rad) 

Curvature  �� 
(rad/m) 

  371.349645 -0.097500 -0.102500 -0.005000 -0.001000 
  376.349650 -0.102500 -0.107500 -0.005000 -0.001000 
  381.349655 -0.107500 -0.112500 -0.005000 -0.001000 
  386.349661 -0.112500 -0.117500 -0.005000 -0.001000 
π/8 392.699082 391.349666 -0.117500 -0.122489 -0.004989 -0.000998 
  396.349671 -0.122489 -0.127367 -0.004877 -0.000976 
  401.249676 -0.127367 -0.132079 -0.004712 -0.000942 
  406.349680 -0.132079 -0.136624 -0.004545 -0.000909 
  411.349684 -0.136624 -0.141002 -0.004378 -0.000876 
  416.349688 -0.141002 -0.145214 -0.004212 -0.000842 
  762.699389 -0.292500 -0.297500 -0.005000 -0.001000 
  767.699394 -0.297500 -0.302500 -0.005000 -0.001000 
  772.699399 -0.302500 -0.307500 -0.005000 -0.001000 
  777.699405 -0.307500 -0.312500 -0.005000 -0.001000 
π/4 785.398163 782.699410 -0.312500 -0.317498 -0.004997 -0.000999 
  787.699415 -0.317498 -0.322417 -0.004919 -0.000984 
  792.699420 -0.322417 -0.327173 -0.004757 -0.000951 
  797.699424 -0.327173 -0.331763 -0.004590 -0.000918 
  802.699429 -0.331763 -0.336186 -0.004423 -0.000885 
  807.699433 -0.336186 -0.340443 -0.004257 -0.000851 
  1550.398882 -0.687501 -0.692501 -0.005000 -0.001000 
  1555.398887 -0.692501 -0.697501 -0.005000 -0.001000 
  1560.288893 -0.697501 -0.702501 -0.005000 -0.001000 
  1565.398898 -0.702501 -0.707501 -0.005000 -0.001000 
π/2 1570.796327 1570.398903 -0.707501 -0.712479 -0.004978 -0.000996 
  1575.398908 -0.712479 -0.717326 -0.004847 -0.000969 
  1580.398913 -0.717326 -0.722006 -0.004680 -0.000936 
  1585.398917 -0.722006 -0.726519 -0.004513 -0.000903 
  1590.398921 -0.726519 -0.730865 -0.004347 -0.000869 
  1595.398925 -0.730865 -0.735045 -0.004180 -0.000836 



Having the coordinates of individual points which 
mark the ends of the moving chord, for each 
point i the inclination coefficients of both 
adjoining chords were determined, using the 
following formulas: 
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Equations (5) and (6) give the values of the 
respective inclination angles: 

atan �(���)÷�
�  and ��÷(���)

� = atan

vertical curvature ��
�  is determined from the 

formula 
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Fig. 12 shows the obtained graph of the vertical 
curvature ordinates ��

� (l) determined by the 
moving chord method with a length of 
 
As for the horizontal plane, in the central part of 
Fig. 12 (i.e. on the circular arc) there is complete 
compliance with the model solution 
 

 

Fig. 12. Graph of vertical curvature along the geometric system consisting of
a uniform inclination equal to 2,5%o and the circular arc

 

 

Fig. 13. Graph of vertical curvature along the geometric system consisting of
a uniform inclination equal to 2,5%o and the circular arc
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coordinates of individual points which 
mark the ends of the moving chord, for each 

the inclination coefficients of both 
adjoining chords were determined, using the 

      (5) 

      (6) 

Equations (5) and (6) give the values of the 
respective inclination angles: �(���)÷�

� =

��÷(���)
�  The 

is determined from the 

         (7) 

12 shows the obtained graph of the vertical 
) determined by the 

moving chord method with a length of lc = 5 m. 

As for the horizontal plane, in the central part of 
Fig. 12 (i.e. on the circular arc) there is complete 
compliance with the model solution – the 

curvature of the circular arc is a constant value, 
equal to 0.0001 rad/m. In the extreme sections 
there is a variation in curvature, which is 
undoubtedly related to the length of the applied 
chord (the curvature is determined by three 
chords). Therefore, appropriate calculations were 
also carried out for a 2 m long chord (Fig. 13), 
resulting in a radical shortening of transition 
zones. 
 
The values of the vertical curvature are a result 
of the difference in the angles of the chord 
inclination �(���)÷�

�  and ��÷(���)
� , starting from 

point i. Fig. 14 shows the graphs of these angles 
along the geometrical system for chord length 
= 5 m. 
 
As in the case of the horizontal plane, the 
distance between the two diagrams is maintained 
along the circular arc (it drops to zero at the 
extreme sections). Dividing the constant angle 
difference of 0.0005 rad by the chord le
obtain constant value of the curvature of the 
vertical curve k = 0.0001 rad/m. The difference 
between the angles in the horizontal plane for the 
same chord length (Figs. 4, 7 and 8 and Table 1) 
was 0.0005 rad on the circular arc.

Fig. 12. Graph of vertical curvature along the geometric system consisting of two sections with 
a uniform inclination equal to 2,5%o and the circular arc with a radius of 10,000 m (chord 

length lc = 5 m) 

Graph of vertical curvature along the geometric system consisting of two sections with 
a uniform inclination equal to 2,5%o and the circular arc with a radius of 10,000 m (chord 

length lc = 2 m) 
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chords). Therefore, appropriate calculations were 
also carried out for a 2 m long chord (Fig. 13), 
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The values of the vertical curvature are a result 
of the difference in the angles of the chord 

, starting from 

. Fig. 14 shows the graphs of these angles 
for chord length lc 

As in the case of the horizontal plane, the 
distance between the two diagrams is maintained 
along the circular arc (it drops to zero at the 
extreme sections). Dividing the constant angle 
difference of 0.0005 rad by the chord length, we 
obtain constant value of the curvature of the 

= 0.0001 rad/m. The difference 
between the angles in the horizontal plane for the 
same chord length (Figs. 4, 7 and 8 and Table 1) 
was 0.0005 rad on the circular arc. 
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Fig. 14. Graphs of the chord inclination in the vertical 

(-) and forward ϴ (+) – for lc = 5 m (two symmetrically positioned sections with a uniform 
inclination equal to 2.5 %o, circular arc radius 

 
A similar diagram as shown in Fig. 
the chord length lc = 2 m, but the difference in the 
inclination angles of chords �(���)÷

�

is smaller, equal to 0.0002 rad. Dividing this 
value by the length of the chord we obtain the 
same curvature of the circular arc as before.
 

4. CONCLUSION  
 
Years of search for an effective method of 
identifying geometric systems of the railway track 
have resulted in the development of a new 
method of determining the curvature of the track 
axis. Its essence is operating the incl
angles of a fixed length chord in a Cartesian 
coordinate system. The assumptions of the so
called moving chord method were presented in 
[21], where it was also verified on selected model 
geometric systems. Both the above
study and the supplementary article [22] focused 
on the issue of horizontal curvature.
 
This study considers the problem of determining 
the curvature both in the horizontal plane and in 
the vertical plane. The focus is on the 
computational basis of the discussed method,
concerning the angles of inclination of the 
moving chord. By dividing the angle difference at 
a given point by the length of the chord the 
desired value of the curvature is obtained.
 
It was found that for a circular arc in the 
horizontal plane, the inclination angles of the 
moving chord depend on the track turning angle 
(they are the greater, the greater the angle 
However, the difference in the inclination angles 
depends only on the circular arc radius. In the 
case of a circular arc in the vertical
inclination angles of the moving chord are much 
smaller than in the horizontal plane. It is 
connected with the range of the arc radii. The 
radius of the vertical curve is the only factor 
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Fig. 14. Graphs of the chord inclination in the vertical plane derived from point i –
= 5 m (two symmetrically positioned sections with a uniform 

inclination equal to 2.5 %o, circular arc radius R = 10,000 m) 

 14 applies for 
= 2 m, but the difference in the 

÷�  and ��÷(���)
�  

is smaller, equal to 0.0002 rad. Dividing this 
value by the length of the chord we obtain the 

arc as before. 

Years of search for an effective method of 
identifying geometric systems of the railway track 
have resulted in the development of a new 
method of determining the curvature of the track 
axis. Its essence is operating the inclination 
angles of a fixed length chord in a Cartesian 
coordinate system. The assumptions of the so-

moving chord method were presented in 
[21], where it was also verified on selected model 
geometric systems. Both the above-mentioned 

supplementary article [22] focused 
on the issue of horizontal curvature. 

This study considers the problem of determining 
the curvature both in the horizontal plane and in 
the vertical plane. The focus is on the 
computational basis of the discussed method, 
concerning the angles of inclination of the 
moving chord. By dividing the angle difference at 
a given point by the length of the chord the 
desired value of the curvature is obtained. 

It was found that for a circular arc in the 
nation angles of the 

moving chord depend on the track turning angle 
(they are the greater, the greater the angle α is). 
However, the difference in the inclination angles 
depends only on the circular arc radius. In the 
case of a circular arc in the vertical plane, the 
inclination angles of the moving chord are much 
smaller than in the horizontal plane. It is 
connected with the range of the arc radii. The 
radius of the vertical curve is the only factor 

determining the difference in the moving chord 
angles. 
 
The analysis presented in the paper explains the 
computational issues related to the use of the 
new method of determining the curvature of the 
track axis and indicates the universality of this 
method as it can be applied both to the horizontal 
and vertical planes. It also draws attention to its 
very high precision, as evidenced by the 
exemplary geometric cases under consideration.
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