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Abstract

Data mining methods often include matrix inversion tasks. Big data mining requires fast and
accurate inversion of high-dimensional arrays. The presented work describes the concept of
stepwise matrix inversion using the basis exchange algorithm based on the Gauss-Jordan vector
transformation. The article also includes a demonstrative numerical example.

Keywords: Large matrices; high-dimensional arrays; Gauss-Jordan transformation; linear programm-
ing.
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1 Introduction

The complexity of large matrices inversion is currently an important challenge in many practical
problems in data exploration methods [1, 2, 3].

Various numerical techniques aimed at efficient and precise inverting of large matrices are currently
being developed [4]. Basis exchange algorithms are also examined in this context [5, 6, 7]. They
are based on the Gauss-Jordan transformation and as a result are similar to the Simplex algorithm
used in linear programming [8].
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A new version of the basis exchange algorithm specified for matrices inversion with a Gauss-Jordan
transformation is proposed and examined in the presented paper. A multistage process of reversing
matrices with gradually increased computational complexity is described.

2 Sequence of Inverted Matrices

Consider a square, non-singular matrix X of the dimension n× n:

X = [x1, . . . ,xn]
T . (2.1)

The rows of the non-singular matrix X (2.1) are assumed to be composed of n linearly independent
feature vectors xj = [xj,1, . . . , xj,n]

T belonging to a given n-dimensional feature space F[n] (xj ∈
F[n]). In this case, there exists the inverse matrix X−1 (XX−1 = I, where I = [e1, . . . , en] is the
unit matrix):

X−1 = [r1, . . . , rn]. (2.2)

The inverse matrix X−1 is composed of n columns ri = [ri,1, . . . , ri,n]
T which fulfill the below

equations:

(∀j ∈ {1, . . . , n}) xT
j rj = 1

and (∀i ∈ {1, . . . , n; i ̸= j}) xT
j ri = 0.

(2.3)

New methods for reversing the matrix are proposed and implemented to increase the efficiency of
calculations and the size of the inverted matrices [4, 9]. In this context, we propose using the basis
exchange algorithms for matrices inversion.

Let us consider the below family of the non-singular matrices (bases) Bk:

(∀k ∈ {1, . . . , n})

Bk = [xj(1), . . . ,xj(k), ek+1, . . . , en]
T ,

(2.4)

where j(k) is the index of the feature vector xj(k) inserted to the basis Bk−1 (2.4) during the k-th
stage.

The k-th basis Bk (2.4) is composed of k feature vectors xj(l) (l = 1, . . . , k) and n− k unit vectors
el (l = k + 1, . . . , n).

The selected feature vectors xj(i) (i = 1, . . . , k) and n − k unit vectors ei (i = k + 1, . . . , n)
constituting the rows of the nonsingular matrix Bk (2.4) form the base of the n-dimensional feature
space F[n]. The bases Bk (2.4) are ranked in the below sequence:

B0,B1, . . . ,Bn−1,Bn. (2.5)

The first matrix B0 in this sequence is equal to the unit matrix I (B0 = I), and the k-th base
matrix Bk is composed of k feature vectors xj(k) (j(k) ∈ {1, . . . , n}) and n − k unit vectors ei

(i = k + 1, . . . , n). The last matrix Bn = [xj(1), . . . ,xj(n)]
T in the sequence (2.5) is composed of n

feature vectors xj (j = 1, . . . , n).

The Gauss-Jordan transformation makes it possible to generate the following sequence of the
inverted matrices B−1

k obtained from the non-singular matrices Bk (2.4) [6]:

B−1
0 ,B−1

1 , . . . ,B−1
n−1,B

−1
n . (2.6)

The k-th inverted matrix B−1
k can be represented in the following manner:

(∀k ∈ {1, . . . , n}) B−1
k = [r1(k), . . . , rn(k)], (2.7)

where the symbol ri(k) stands for the i-th column of the k-th inverse matrix B−1
k .
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3 Gauss-Jordan Vector Transformation

The sequence of the inverse matrices B−1
k (2.6) results from the multistage process of the matrices

Bk (2.5) transformations. During the k-th stage the matrix
Bk (2.4) is transformed into the basis Bk+1:

(∀k ∈ {1, . . . , n− 1}) Bk → Bk+1. (3.1)

The basis Bk+1 is obtained as the result of replacing the (k + 1)-th unit vector ek+1 in the matrix
Bk (2.4) by the j(k + 1)-th feature vector xj(k+1). In accordance with the Gauss-Jordan vector
transformation the replacement of the unit vector ek by the feature vector xj(k+1) (3.1) causes the
following modifications of the columns ri(k) of the inverse matrix B−1

k (2.7) [7]:

(∀k ∈ {0, . . . , n− 1})

rk+1(k + 1) = (1/rk+1(k)
Txj(k+1))rk+1(k)

and (∀i ̸= k)

ri(k + 1) = ri(k)− (ri(k)
Txj(k+1))rk+1(k + 1) =

= ri(k)− (ri(k)
Txj(k+1)/rk+1(k)

Txj(k+1))rk+1(k),

(3.2)

where j(k + 1) is the index of the feature vector xj(k+1) inserted to the basis Bk (2.4).

Remark 3.1. The Gauss-Jordan transformation (3.2) linked to the replacement of the unit vector
ek+1 by the feature vector xj(k+1) cannot be performed when the below condition is met:

rk+1(k)
Txj(k+1) = 0. (3.3)

The condition ( 3.3) would result in the division by zero in the equation (3.2).

Remark 3.2. The k-th column of the inverse matrix
B−1

k = [r1(k), . . . , rn(k)] (2.6) is the vector
rk(k) = [rk,1(k), . . . , rk,n(k)]

T with the last n− k components rk,l(k) equal to zero:

(∀k ∈ {0, 1, . . . , n− 1}) (∀l ∈ {k + 1, . . . , n})
rk,l(k) = 0.

(3.4)

The above property results directly from the matrix inverse equations (2.3). The k-th column rk(k)
of the inverse matrix B−1

k (2.7) is perpendicular to all vectors xj(l) belonging to to the basis Bk (2.4)
except the vector xj(k) [6]:

(∀k ∈ {1, . . . , n− 1}) (∀l ∈ {1, . . . , k − 1})

rk(k)
Txj(l) = 0.

Given the conditions (3.4), the above equations can be represented as follows:

(∀k ∈ {1, . . . , n− 1}) (∀l ∈ {1, . . . , k − 1})

r[k]Txj(l)[k] = 0,
(3.5)

where the symbol rk[k] means the k-th column rk(k) = [rk,1(k), . . . , rk,n(k)]
T of the inverse matrix

B−1
k (2.7) after reducing the last n− k components rk,i(k):

(∀k ∈ {1, . . . , n− 1})

rk[k] =[rk,1(k), . . . , rk,k(k)]
T .
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Similarly, the symbol xj [k] = [xj,1, . . . , xj,k]
T means the reduced vector obtained from the feature

vector xj = [xj,1, . . . , xj,n]
T after reducing the last n− k components xj,i:

(∀j ∈ {1, . . . , n}) xj [k] = [xj,1, . . . , xj,k]
T . (3.6)

During step k we try to replace the (k+1)-th unit vector ek+1 in the matrix Bk (2.4) by the j(k+1)-
th feature vector xj(k+1). In accordance with the vectoral Gauss-Jordan transformation (3.2) such
replacement is impossible if the condition (3.3) appears.

Lemma 3.3. If the reduced vector xj(k+1)[k] (3.6) during the k-th step is a linear combination of
the basis reduced vectors xj(i)[k] with i ≤ k, then the condition rk(k)

Txj(k+1) = 0 (3.3) appears,
when:

xj(k+1)[k] = αj(k+1),1xj(1)[k] + . . .+ αj(k+1),kxj(k)[k], (3.7)

where (∀i ∈ {1, . . . , k}) αj(k+1),i ∈ R1.

The lemma can be directly proved by using the equations (3.5).

Remark 3.4. The collinearity condition (3.7) which appears during the k-th step may disappear
during the (k + 1)-th step.

The disappearance of the collinearity condition (3.7) may result from taking into account the
additional component xj(k+1),k+1 of the reduced feature vector
xj(k+1)[k + 1].

The condition (3.3) provides a possibility to block the insertion of almost linearly dependent vectors
xj(k+1)[k + 1] (3.7) into the nonsingular matrix Bk (2.4).

4 Matrix Inversion through Basis Exchange

Simplex algorithm from linear programming is defined by the exit criterion, entry criterion and the
stop criterion [8]. Any basis exchange algorithm can also be defined by such criteria. The basis
exchange algorithm oriented to matrices inversion is defined by the following criteria:

1. exit criterion
The unit vector ek+1 leaves the basis Bk (2.4) during the step k.

2. entry criterion
The feature vector xj(k+1) which enters the basis Bk (2.4) during the step k has the smallest
index j(k+1) among all such vectors xj which fulfill the below collinearity condition (3.3):

|rk+1(k)
Txj(k+1)| ≥ ϵ (4.1)

where ϵ is a small, positive parameter (ϵ > 0).

3. stop criterion
The algorithm is stopped during the step k (k ≤ n) if no vector xj(k+1) (xj(k+1) /∈ Bk) can
be inserted into the basis Bk (2.4) in accordance with the condition (4.1). The choice of the
value of the parameter ϵ in the entry condition (3.5) gives the possibility to control the level
of ill-conditioning of the inverted matrices Bk (2.7) Fulfillment of the stop criterion during
the k-th step (k < n) means that the matrix X (2.1) is not reversible at the acceptable ϵ-level
of ill-conditioning (4.1).

Properties of the basis exchange algorithm defined by the above criteria can be analyzed by using
the convex and piecewise linear (CPL) criterion functions.
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5 The Inversion Criterion Function

The convex and piecewise linear (CPL) criterion functions are used, among others, for the purpose
of examining the linear separability of data sets or for extracting collinear patterns [7]. Similar CPL
criterion functions can also be useful in examining the nonsingularity of high-dimensional matrices
X (2.1). The following penalty functions φj(w) can be used for this purpose [5]:

(∀j ∈ {1, . . . , n})

1− xT
j w if xT

j w ≤ 1

φ(w) = |1− xT
j w| =

xT
j w − 1 if xT

j w > 1

(5.1)

where w = [w1, . . . , wn]
T is the parameter (weight) vector (w ∈ Rn).

The inversion criterion function Φinv(w) is the sum of the penalty functions φj(w):

Φinv(w) =
∑

j=1,...,n

φj(w). (5.2)

Two types of the dual hyperplanes h1
j and h0

i in the n-dimensional parameter space Rn are
introduced in order to explore the properties of the inversion criterion function Φinv(w) (5.2) [7].
Each of n feature vectors xj (2.1) defines the below dual hyperplane h1

j :

(∀j ∈ {1, . . . , n}) h1
j = {w : xT

j w = 1}. (5.3)

Similarly, each of n unit vectors ei = [0, . . . , 1, . . . , 0]T defines the hyperplane h0
i :

(∀i ∈ {1, . . . , n}) h0
i = {w : eT

i w = 0} = {w : wi = 0}, (5.4)

where w = [w1, . . . , wn]
T ∈ Rn.

Let us consider the k-th subset Sk of n linearly independent feature vectors xj (2.1) and unit vectors
ei:

Sk = {xj : j ∈ Jk} ∪ {ei : i ∈ Ik}. (5.5)

The set Sk is composed of k feature vectors xj (j ∈ Jk) and n− k unit vectors ei (i ∈ Ik).

The vertex wk of the rank rk is defined as the intersection point of the rk hyperplanes h1
j (5.3)

where j ∈ Jk, and the n − rk hyperplanes h0
i (5.4) which are determined by the unit vectors ei

(i ∈ Ik) from the subset Sk (5.5).

The below linear equations are fulfilled in the vertex wk of the rank rk:

(∀j ∈ Jk) wT
k xj = 1 (5.6)

and
(∀i ∈ Ik) wT

k ei = 0. (5.7)

The equations (5.6) and (5.7) can also be represented by using the matrix Bk (2.4):

Bkwk = 1′ = [1, , 1, 0, , 0]T

and (3.7)
wk = B−1

k 1′ = r1(k) + . . .+ rk(k). (5.8)
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Remark 5.1. The vertex wk (5.8) of the rank rk can be represented as the below vector wk =
[wk,1, . . . , wk,n]

T with the last n− rk components wk,i equal to zero:

wk = [wk,1, . . . , wk,rk , 0, . . . , 0]
T . (5.9)

The components wk,i of the vertex wk (5.8) equal to zero are linked to the n − rk unit vectors ei

(i ∈ Ik) (5.7) in the basis Bk (2.4).

The inversion criterion function Φinv(w) (5.2) is convex and piecewise linear (CPL) and their
minimum can be located in one of the vertices wk (5.9) [7].

(∃w∗
k)(∀w)Φinv(w) ≥ Φinv(w

∗
k) = Φ∗

inv ≥ 0. (5.10)

The basis exchange algorithms allow efficient finding the optimal vertexw∗
k constituting the minimal

value Φinv(w
∗
k) (5.10) even in the case of large matrices X (2.1) [7].

Remark 5.2. The minimal value Φinv(w
∗
k) of the CPL criterion function

Φinv(w) (5.2) is equal to zero if and only if each of n dual hyperplanes h1
j (5.3) passes through the

optimal vertex w∗
k (5.10):

(Φinv(w
∗
k) = 0) ⇔ ((∀j ∈ {1, . . . , n})(w∗

k)
Txj = 1). (5.11)

The above property results directly from the definition (5.2) of the penalty functions φj(w) (5.1). If
the relation (5.11) holds, then each of penalty functions φj(w) (5.1) is equal to zero in the optimal
vertex w∗

k.

Remark 5.3. The optimal vertex w∗
n (5.10) of the rank n can be linked to the final basis Bn =

[xj(1), . . . ,xj(n)]
T (2.4) composed of n linearly independent vectors xj(k) (k ∈ {1, . . . , n}). In this

case, the vector w∗
k (5.10) is the sum of n columns ri(n) of the inverse matrix

B−1
n = [r1(n), . . . , rn(n)] (2.7):

w∗
n = B−1

n 1 = r1(n) + . . .+ rn(n). (5.12)

Remark 5.4. If all the unit vectors ek (k = 1, . . . , n) in the matrix I = [e1, . . . , en] have been
replaced in accordance with the Gauss-Jordan equations (3.2) by the feature vectors xk, then the
matrix X−1 (2.2) is equal to the inverted basis B−1

n (2.7) (X−1 = B−1
n ).

The above remark specifies the sufficient conditions for the equality X−1 = B−1
n (2.7). It was

assumed in this remark, that the j-th unit vectors ej was always replaced by the j-th feature
vector xj (j = 1, . . . , n). The collinearity condition (3.3) can cause a situation when the final
matrix Bn = [xj(1), . . . ,xj(n)]

T (2.7) in the sequence (2.5) will be different from the data matrix
X = [x1, . . . ,xn]

T (2.1). In this case, the equality X−1 = (B′
n)

−1 can be reached by changing the
order of the rows xT

j(i) in the final basis Bn (2.7) and the columns ri(n) in the inverted matrix

B−1
n = [r1(n), . . . , rn(n)] (2.7).

Changing the order of the rows xT
j(i) in the matrix Bn = [xj(1), . . . ,xj(n)]

T should be accompanied

by such changing of the columns ri(n) order in the inverse matrix B−1
n (2.7) that the inverse

equation BnB
−1
n = I is preserved:

(∀i ∈ {1, . . . , n}) xT
j(i)ri(n) = 1

and (∀i′ ∈ {1, . . . , n; i′ ̸= i}) xT
j(i)ri′(n) = 0
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Remark 5.5. The equation BnB
−1
n = I is preserved during the replacement of the j(i)-th vector

xj(i) in the matrix Bn = [xj(1), . . . ,xj(n)]
T (2.4) to the i-th row of this matrix if it is accompanied

by the replacement of the j(i)-th column of the inverse matrix B−1
n = [r1(n), . . . , rn(n)] (2.6) to

the i-th column.

The replacement of the rows xT
j(i) in the matrix Bn = [xj(1), . . . ,xj(n)]

T (2.4) and the columns

ri(n) in the inverse matrix B−1
n = [r1(n), . . . , rn(n)] (2.6) in accordance with the Remark 8 allows

to find the inversed matrix X−1 (2.2) on the basis of the matrix B−1
n .

Theorem 5.6. The matrix X (2.1) is reversible (X−1 exists) if and only if the minimal value
Φinv(w

∗
k) (5.10) of the inversion criterion function Φinv(w) (5.2) is equal to zero and the rank rk

(Definition 1 ) of the optimal vertex w∗
k (5.10) is equal to n (rk = n).

Proof. If the optimal vertex w∗
k (5.10) has the rank rk equal to n (rk = n), then the basis Bn (2.4)

linked to this vertex is composed of n vectors xj(i) (Definition 1 ). The last matrix The last
matrix Bn = [xj(1), . . . ,xj(n)]

T in the sequence (2.5) is composed of linearly independent vectors
xj(k) (k = 1, . . . , n). In this case, the inverse matrix X−1 (2.2) can be obtained from the matrix
B−1

n = [r1(n), . . . , rn(n)] (2.6) through the replacement of the columns ri(n) (Remark 8 ). If the
matrix X−1 (2.2) exists, then the vector w∗

n (5.10) is the sum (5.12) of n columns ri(n) (2.6) and
the rank rk of this vertex is equal to n (rk = n) �.

The sequence of the bases Bk (2.5) is stopped at the stage k when there is no vector xj(k+1)

(xj(k+1) /∈ Brk) that could be inserted into matrix
Bk = [xj(1), . . . ,xj(k), ek+1, . . . , en]

T (2.4) in accordance with the condition
|rk+1(k)

Txj(k+1)| ≥ ϵ (4.1). Such situation occurs in the k vertexwk = [wk,1, . . . , wk,k, 0, . . . , 0]
T (5.9)

when each reduced, non-basis vector xj(k+1)[k] (xj(k+1) /∈ Bk) is a linear combination (3.7) of the
basis vectors xj(i)[k + 1] (3.6) with i ≤ k [6]:

(∀xj(k+1) /∈ Bk)xj(k+1)[k + 1] =

αj(k+1),1xj(1)[k + 1] + . . .+ αj(k+1),kxj(k)[k + 1],
(5.13)

where (∀i ∈ {1, . . . , k})αj(k+1),i ∈ R1.

Let us regard the parameters αj(k+1),i (5.13) which for some reduced feature vector xj(k+1)[k +
1] (3.6) fulfill the below standardizing condition [5]:

αj(k+1),1 + . . .+ αj(k+1),k = 1. (5.14)

Lemma 5.7. If the parameters αj(k+1),i (5.13) fulfill the standardizing condition (5.14) for some
feature vector xj(k+1) then the dual hyperplane h1

j(k+1) (5.3) defined by this vector passes through
the vertex wk (5.8) [5]:

wT
k xj(k+1) = 1.

The vertex wk (5.8) of the rank k is degenerated if the number nk of dual hyperplanes h1
j(k+1) (5.3)

passing through this vertex is greater than k (nk > k). The degree of degeneration of this vertex is
defined as dk = nk − k.

Theorem 5.8. The minimal valueΦinv(w
∗
k) (5.10) of the inversion criterion functionΦinv(w) (5.2)

is equal to zero in the degenerated vertexwrk (5.8) of the rank k (k < n) if the degree of degeneration
of this vertex is equal to dk = n− k.
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Proof. The optimal vertex w∗
k (5.10) constitutes the minimal value Φinv(w

∗
k) of the criterion

function
Φinv(w) (5.2). The minimal value Φinv(w

∗
k) is equal to zero (Φinv(w

∗
k) = 0) if each of the n

dual hyperplanes h1
j (5.3) passes through the vertex w∗

k (5.10). The optimal vertex w∗
k (5.10) has

the rank rk = k. It means that the vertex w∗
k is located on the k hyperplanes h1

j (∀j∈Jk) (5.3), and
on the n− k the hyperplanes h0

i (∀i∈Ik) (5.4). As a result dk = n− k = n− rk. �.

The minimization of the criterion function
Φinv(w) (5.2) can be a useful tool in examining the matrix X (2.1) singularity. As it results
from the Theorem 1, the matrix X (2.1) is nonsingular if the minimal value Φinv(w

∗
k) (5.10) of the

inversion criterion function Φinv(w) (5.2) is equal to zero and the rank rk of the optimal vertex
w∗

k is equal to n. If the optimal vertex w∗
k (5.10) has the rank rk less than n (rk < n), then the

sequence of the bases Bk (2.5) is stopped at such base Brk (2.4) which contains rk feature vectors
xj(i)(i = 1, . . . , rk) and n − rk unit vectors ei (i = rk + 1, . . . , n). In this case, the matrix X (2.1)
singular. We infer, on the basis of the Theorem 2, that the maximal nonsingular submatrix X′

(X′ ⊂ X) can be extracted from the matrix X (2.1) under the condition that Φinv(w
∗
k) = 0 (5.10).

The submatrix X′ extracted in this case by neglecting n−rk rows and the same number of columns
in the matrix X (2.1) selected according to zero components w∗

k,i (w∗
k,i = 0) of the optimal vertex

w∗
k) (5.10) [5].

6 Matrix Inversion Based on the Gauss-Jordan Trans-
formation

We have assumed a natural order of the of unit vectors ek replacement in the proposed multistage
procedure. During the k-th stage, the unit vectors ek is replaced by the j(k)-th feature vector
xj(k). During the first stage (k = 1) the unit vector e1 in the matrix B0 = B−1

0 = I =
[e1, . . . , en] is replaced by the feature vector xj(1) = [xj(1),1, . . . , xj(1),n]

T , the nonsingular matrix
B1 = [xj(1), e2, . . . , en]

T (2.5) appears, and:

B−1
1 = [r1(1), . . . , rn(1)]. (6.1)

The columns ri(1) of the matrixB−1
1 (6.1) are determined by the Gauss-Jordan transformation (3.2):

r1(1) = (1/eT
1 xj(1))e1 = (1/xj(1),1)e1

and

(∀i ∈ {2, . . . , n})

ri(1) = ei − (ri(1)
Txj(1))r1(1) =

ei − (eT
i xj(1)/e

T
1 xj(1))e1 =

ei − (xj(1),i/xj(1),1)e1.

Remark 6.1. The feature vector xj(1) = [xj(1),1, . . . , xj(1),n]
T enters the basis B0 = [e1, . . . , en]

T

if xj(1),1 ≥ ϵ (4.1).

During the second stage (k = 2) the unit vector e2 in the matrix B1 = [xj(1), e2, . . . , en]
T is replaced

by the feature vector xj(2) = [xj(2),1, . . . , xj(2),n]
T and the below basis B2 appears:

B2 = [xj(1),xj(2), e3 . . . , en]
T .
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The columns ri(2) (i = 1, . . . , n) of the inverse matrix B−1
2 = [r1(2), . . . , rn(2)] can be computed in

the following manner (3.2):

r2(2) = [1/r2(1)
Txj(2)]r2(1) =

=[1/(e2 − (xj(1),2/xj(1),1)e1)
Txj(2)]

(e2 − (xj(1),2/xj(1),1)e1) =

=[1/(xj(2),2 − (xj(1),2/xj(1),1)xj(2),1)]

(e2 − (xj(1),2/xj(1),1)e1),

r1(2) = r1(1)− r1(1)
Txj(2)r2(2) =

= [1/(e2 − (xj(1),2/xj(1),1)e1)
Txj(2)]

(e2 − (xj(1),2/xj(1),1)e1) =

= [1/(xj(2),2 − (xj(1),2/xj(1),1)xj(2),1)]

(e2 − (xj(1),2/xj(1),1)e1),

and

(∀i ∈{3, . . . , n})

ri(2) = ri(1)− (ri(1)
Txj(2))r2(2) =

ei − (xj(1),i/xj(1),1)e1 − (xj(2),1/xj(1),1)

[1/(xj(2),2 − (xj(1),2/xj(1),1)xj(2),1)]

(e2 − (xj(1),2/xj(1),1)e1).

According to the proposed method, the inverse matrix X−1 (2.2) can be obtained through the n
stages of the computations of the inverted matrices B−1

k (2.6) with n rows qi(k):

(∀k ∈ {1, . . . , n})B−1
k = [q1(k), . . . ,qn(k)]

T . (6.2)

The rows qi(k) of the inverted matrices B−1
k (6.2) can be treated as the computational layers

(i = 1, . . . , n). When calculating the inverse matrix B−1
k (6.2) most calculations are performed in

the first layer q1(k). The first layer q1(k) has to be computed n times. Least calculations must be
performed in the last layer qn(k). The last layer qn(k) has to be computed only once.

7 Numerical Example

Experimental verification of the method presented in the paper has been done with a code written
in Python using the NumPy library [10]. The random matrix of the size 1000x1000 was inverted
and the results validated via multiplication by original data to test if they give the identity matrices.
The random matrix of the 1000x1000 were inverted in 6 seconds on the personal computer (Intel
Core i7-740QM processor with 8GB RAM).

The complete process of matrix inversion during the successive k (k = 5) stages is demonstrated on
the example of the following matrix X = [x1, . . . ,x5]

T (2.1) with five rows xj (Table 1).
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Each inverse matrix B−1
k = [r1(k), . . . , rn(k)] (2.6) is composed of five columns rj(k).

X =


1 −3 0 −1 0
0 0 −2 0 3
2 0 0 0 0
0 4 0 −4 0
5 0 −5 0 6



X−1 =


0 0 1/2 0 0

−1/4 0 1/8 1/16 0
0 2 2.5 0 −1

−1/4 0 1/8 −3/16 0
0 5/3 5/3 0 −2/3



Table 1. The complete process of matrix inversion during the successive stages.

As the order of the feature vectors xj entering the base is the following: [1, 3, 2, 4, 5], the final
inverse matrix has its columns rj(k) to be reordered accordingly – the second and the third ones
are swapped.

8 Concluding Remarks

The described multistage procedure of the matrix inversion X (2.1) is based on the successive
replacements (3.1) of the unit vectors ek in the matrix I = [e1, . . . , en] by some feature vector
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xj(k) (5.2). The replacement of the vector ek by the feature vector xj(k) (5.2) causes the modification
of the columns ri(k) of the k-th inversed basis B−1

k (2.6). New columns ri(k + 1) of the inverted
basis B−1

k (2.6) are efficiently computed with the Gauss-Jordan vector transformation (3.2).

The proposed method of inversion could make it possible to increase the size of the inverted matrices.
This possibility is based on similarity to the Simplex algorithm of linear programming [11].

It is also expected that the computational efficiency of the new procedure of large matrices inversion
will be high. In an attempt to increase the computational efficiency the parallel implementations of
the inversion algorithms based on the vector Gauss-Jordan transformation should be examined [4,
9, 12].

The presented stepwise method gives a possibility for a partial inversion of large matrices. A partial
inversion of a given matrix means that the inversion procedure is stopped during the k-th stage
(k < n) before all unit vectors ei in the matrix Bk (2.4) have been replaced by the feature vectors
xj(i). Earlier stopping of the inverting process may be caused by the condition (4.1) protecting
against an excessive increase of the matrix ill-conditioning.
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Code availability: The authors can make available the Python source code on demand.
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