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Abstract 
 

In October 2014, the Basel Committee on Banking Supervision released a Basel Consultative Document 

entitled, “Operational Risk: Revisions to the Simpler Approaches,” and in it describes operational risk as “the 

sum product of frequency and severity of risk events within a one-year time frame and defines the 

Operational Capital at Risk (OPCAR) as the tail-end 99.9% Value at Risk (VaR)” [1]. The Basel Consultative 

Document describes a Single Loss Approximation (SLA) model defined as   
        

     
   

 
  

         , where the inverse of the compound distribution   
   is the summation of the unexpected losses 

     
     

   

 
  and expected losses             ;   is the Poisson distribution’s input parameter 

(average frequency per period; in this case, 12 months); and   represents one of several types of continuous 

probability distributions representing the severity of the losses (e.g., Pareto, Log Logistic, etc.). The 

Document further states that this is an approximation model limited to subexponential-type distributions only 

and is fairly difficult to compute. The   distribution’s cumulative distribution function (CDF) will need to be 

inverted using Fourier transform methods, and the results are only approximations based on a limited set of 

inputs and their requisite constraints. Also, as discussed, the SLA model proposed in the Basel Consultative 

Document significantly underestimates OPCAR. The OPCAR methodology estimates a bank’s operational 

risk capital through the convolution of a single severity distribution and a single frequency distribution. Each 

bank’s OPCAR estimate was assumed to refer to a unique operational risk category, having a specific 

aggregated frequency and severity of losses [1]. 
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The concept of significant loss events attributed to operational risk was introduced in the Basel II-IV accords 

by the Bank of International Settlements. Loss processes that contribute most to capital risk, the so-called 

high-consequence, low-frequency loss processes, with heavy-tailed loss process modeling where implications 

of such tail assumptions for the severity risk model is important in operational risk [2]. 

This paper provides a new and alternative convolution methodology to compute OPCAR that is applicable 

across a large variety of continuous probability distributions for risk severity and includes a comparison of 

their results with Monte Carlo risk simulation methods. As will be shown, both the new algorithm using 

numerical methods to model OPCAR and the Monte Carlo risk simulation approach tends to the same results 

and seeing that simulation can be readily and easily applied in the CMOL software and Risk Simulator 

software, simulation methodologies should be used for the sake of simplicity. While the Basel Committee 

has, throughout its Basel II-IV requirements and recommendations, sought after simplicity so as not to burden 

banks with added complexity, it still requires sufficient rigor and substantiated theory. Monte Carlo risk 

simulation methods pass the test on both fronts and are, hence, the recommended path when modeling 

OPCAR. 
 

 
Keywords: Monte Carlo risk simulation; convolution; operational risk; Basel Accords; OPCAR. 

 

1 Problem with Basel OPCAR 
 
We submit that the SLA estimation model proposed in the Basel Consultative Document is insufficient and 

significantly underestimates an actual OPCAR value. A cursory examination shows that with various   values, 

such as                      , the      
     

   

 
  will yield    

   

 
  probability values ( ) 

of 0.999, 0.9999, 0.99999, and 0.999999.      
      for any severity distribution,  , will only yield the 

severity distribution’s values and not the total unexpected losses. For instance, suppose the severity distribution 

( ) of a single risk event on average ranges from $1M (minimum) to $2M (maximum), and, for simplicity, 

assume it is a Uniformly distributed severity of losses. Further, suppose that the average frequency of events is 

1,000 times per year. Based on a back-of-the-envelope calculation, one could then conclude that the absolute 

highest operational risk capital losses will never exceed $2B per year (this assumes the absolute worst-case 

scenario of $2M loss per event multiplied by 1,000 events in that entire year). Nonetheless, using the inverse of 

the   distribution at            will yield a value close to $2M only, and adding that to the adjusted 

expected value of EL (let’s just assume somewhere close to $1.5B based on the Uniform distribution) is still a 

far cry from the upper end of $2B. 

 
Fig. 1 shows a more detailed calculation that proves the Basel Consultative Document’s SLA approximation 

method significantly understates the true distributional operational Value at Risk amount. In the figure, we test 

four examples of a Poisson–Weibull convolution. The Poisson distribution with Lambda risk event frequency 

                and       are tested, together with a Weibull risk severity distribution:       and 

     . These values are shown as highlighted cells in the figure. Using the Basel OPCAR model, we compute 

the UL and EL. In the UL computation, we use      
     

   

 
    

     . The column labeled PROB is    

The ICDF   column denotes the      
     . By applying the inverse of the Weibull CDF on the probability, 

we obtain the    values. Next, the    calculations are simply              with      being the expected 

value of the Weibull distribution  , where           
 

 
   The OPCAR is simply      . The four 

OPCAR results obtained are 31.30, 65.87, 122.82, and 236.18.  

 
We then tested the results using Monte Carlo risk simulation using the Risk Simulator software (source: 

www.realoptionsvaluation.com) by setting four Poisson distributions with their respective   values and a single 

Weibull distribution with       and      . Then, the Weibull distribution is multiplied by each of the 

Poisson distributions to obtain the four Total Loss Distributions. The simulation was run for 100,000 trials and 

the results are shown in Fig. 1 as forecast charts at the bottom. The Left Tail ≤ 99.9% quantile values were 

obtained and can be seen in the charts (116.38, 258.00, 476.31, and 935.25). These are significantly higher than 

the four OPCAR results.  

 

Next, we ran a third approach using the newly revised convolution algorithm we propose in this article. The 

convolution model shows the same values as the Monte Carlo risk simulation results: 116.38, 258.00, 476.31, 
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and 935.25 when rounded to two decimals. The inverse of the convolution function computes the corresponding 

CDF percentiles, and they are all 99.9% (rounded to one decimal; see the Convolution and Percentile columns in 

Fig. 1). Using the same inverse of the convolution function and applied to the Basel Consultative Document’s 

SLA model results, we found that the four SLA results were at the following OPCAR percentiles: 75.75%, 

66.94%, 62.78%, and 60.38%, again significantly different than the requisite 99.9% Value at Risk level for 

operational risk capital required by the Basel Committee.  

 

Therefore, due to this significant understatement of operational capital at risk, the remainder of this article 

focuses on explaining the theoretical details of the newly revised convolution model we developed that provides 

exact OPCAR results under certain conditions. We then compare the results using Monte Carlo risk simulation 

methods using Risk Simulator software as well as the Credit, Market, Operational, and Liquidity (CMOL) Risk 

software (source: www.realoptionsvaluation.com). Finally, the caveats and limitations of this new approach as 

well as conclusions and recommendations are presented.  

 

 
 

Fig. 1. Comparing Basel OPCAR, Monte Carlo Risk Simulation, and the Convolution Algorithm 

 

2 Literature Review and Theoretical Constructs 
 

Convolution is one of the primary concepts of linear system theory. It answers the problem of finding the system 

zero-state response due to any input—the most important problem for linear systems [3]. In developing 

continuous-time convolution, the procedure is much the same as in discrete-time events although in the 

continuous-time case the signal is represented first as a linear combination of narrow rectangles (basically a 

staircase approximation to the time function). As the width of these rectangles becomes infinitesimally small, 

they behave like impulses. The superposition of these rectangles to form the original time function in its limiting 

form becomes an integral, and the representation of the output of a linear, time-invariant system as a linear 

combination of delayed impulse responses also becomes an integral. The resulting integral is referred to as the 

convolution integral and is similar in its properties to the convolution sum for discrete-time signals and systems 

[4]. An associated approach, the convolutional neural network is a feed-forward neural network that is generally 

used to analyze visual images by processing data with grid-like topology. In convolution operation, the arrays 

are multiplied element-wise, and the product is summed to create a new array. The first three elements in Matrix 

A are multiplied by the elements of Matrix B. The product is summed to get the result. The next three elements 

from Matrix A are multiplied by the elements in Matrix B, and the product is summed up. This process 

continues until the convolution operation is complete [5]. 

 



 

 
 

 

Mun; JAMCS, 37(1): 8-21, 2022; Article no.JAMCS.84000 
 

 

 
11 

 

Numerical simulation can sometimes be time-consuming when simulating the evolution of distributions. 

Convolution is a more efficient way to analyze the evolution of the entire population of data distributions and 

their VaR. Convolution using modified scaled input distributions can match the results of numerical simulation 

perfectly for independent data [6]. Modified scale distributions can be simplified using average order 

approximations of the distributions’ functions [7] as will be discussed later.  

 

In addition, the Taylor expansion series can be used to model the convolution series and deduce explicit 

formulas for the relevant coefficients within the n-fold general sequential fractional derivatives [8]. Also, the 

convolution of distributions can be achieved using fractional differentiation and integration [9]. A combination 

of these convolution methods can also be applied to neural networks, creating a convolution neural network 

(CNN) model suitable for applications in artificial intelligence such as face recognition as well as natural 

language processing application [10]. CNN can also be applied to simulate complex weather patterns when 

multiple probabilistic weather effects interact in a certain location [11-13].  

 

Let  ,  , and   be real-valued random variables whereby   and   are independently distributed with no 

correlations. Further, we define   ,   , and    as their corresponding CDFs, and   ,   ,    are their 

corresponding PDFs. Next, we assume that   is a random variable denoting the Frequency of a certain type of 

operational risk occurring and is further assumed to have a discrete Poisson distribution.   is a random variable 

denoting the Severity of the risk (e.g., monetary value or some other economic value) and can be distributed 

from among a group of continuous distributions (e.g., Fréchet, Gamma, Log Logistic, Lognormal, Pareto, 

Weibull, etc.). Therefore,                    equals the                  , which we define as  , where 

     .  

 

Then the Total Loss formula, which is also sometimes known as the Single Loss Approximation (SLA) model, 

yields:  

                                      

 

                                
 

where the term with     is treated separately: 

 

                              
 

 
               

 

               
 

 
            (Equation 1) 

 

The next step is the selection of the number of summands in Equation 1. As previously assumed,       

        is a Poisson distribution where        
     

  
 and the rate of convergence in the series depends 

solely on the rate of convergence to 0 of 
  

  
 and does not depend on  , whereas the second multiplier 

  Therefore, for all values of   and an arbitrary     there is a value of   such that:   

 

 
     

  
   

 

 
       (Equation 2) 

 

In our case,   can be set, for example, to 1/1000. Thus, instead of solving the quantile equation for    with an 

infinite series, on the left-hand side of the equation we have:  

 

                  
 

 
 

     

  
    (Equation 3) 

 

We can then solve the equation:  
 

         
     

  
   

 

 
       (Equation 4) 

 

with only   summands.   
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For example, if we choose       ,         , and   such that Equation 2 takes place, then the solution 

      of Equation 4 is such that: 
 

                        
 

    
 (Equation 5) 

 

In other words, a quantile found from Equation 4 is almost the true value, with a resulting error precision in 

probabilities less than 0.1%.  
 

The only outstanding issue that remains is to find an estimate for   given any level of  . We have: 
 

 
     

        
 

 
      

  

      (Equation 6) 

 

The exponential series        
  

      in Equation 6 is bounded by 
      

      
 by applying Taylor’s Expansion 

Theorem, with the remainder of the function left for higher exponential function expansions. By substituting the 

upper bound for       in Equation 6, we have: 
 

 
     

        
 

 
  

    

      
 (Equation 7) 

 

Now we need to find the lower bound in   for the solution of the inequality: 
 

    

      
   (Equation 8) 

 

Consider the following two cases:  
 

1. If    , then 
    

      
 

 

      
              . Consequently, we can solve the inequality 

. Since grows quickly, we can simply take   . For example, for 

 it is sufficient to set     to satisfy Equation 8. 

2. If    , then, in this case, using the same bounds for the factorial, we can choose n such that: 
 

                                                                     (Equation 9) 
 

To make the second multiplier greater than 1, we will need to choose           .  

  

Approximation to the solution of the equation is         for a quantile value.  
 

From the previous considerations, we found that instead of solving              , we can solve         

 
     

  
   

 

 
       with   set at the level indicated above. The value for    resulting from such a substitution 

will satisfy the inequality                          .  

 

The solution to the equation is                        . By moving   to the left one unit at a time, we can 

find the first occurrence of the event     such that          . Similarly, moving   to the right we can find 

  such that          . Now we can use a simple Bisection Method or other search algorithms to find the 

optimal solution to           . 

 

3 Empirical Results: Convolution vs. Monte Carlo Risk Simulation 

OPCAR 

 
Based on the explanations and algorithms outlined above, the convolution approximation models are run, and 

the results are compared with Monte Carlo risk simulation outputs. These comparisons will serve as empirical 

evidence of the applicability of both approaches. Fig. 2 shows the 10 most commonly used Severity 
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distributions, namely, Exponential, Fréchet, Gamma, Logistic, Log Logistic, Lognormal (Arithmetic and 

Logarithmic inputs), Gumbel, Pareto, and Weibull. The Frequency of risk occurrences is set as Poisson, with 

Lambda ( ) or average frequency rate per period as its input. The input parameters for the 10 Severity 

distributions are typically Alpha ( ) and Beta ( ), except for the Exponential distribution that uses a rate 

parameter, Rho ( ), and Lognormal distribution that requires the mean ( ) and standard deviation ( ) as inputs. 

For the first empirical test, we set     ,      ,      ,       ,      , and       for the Poisson 

frequency and 10 severity distributions. The Convolution Model row in Fig. 2 was computed using the 

algorithms outlined above, and Monte Carlo risk simulation assumptions were set with the same input 

parameters and simulated 100,000 trials with a prespecified seed value. The results from the simulation were 

pasted back into the model under the Simulated Results row and the Convolution Model was calculated based 

on these simulated outputs. Fig. 2 shows 5 sets of simulation percentiles: 99.9%, 99.0%, 95.0%, 90.0%, and 

50.0%. As can be seen, all of the simulation results and the convolution results on average agree to 

approximately within ±0.2%.  

 

Fig. 3 shows another empirical test whereby we select one specific distribution; in the illustration, we used the 

Poisson–Weibull compound function. The alpha and beta parameters in Weibull were changed, in concert with 

Poisson’s lambda input. The first four columns show that the alpha and beta are being held steady while the 

lambda parameter is changing, whereas the last six columns show the same lambda with different alpha and beta 

input values (increasing alpha with beta constant and increasing beta with alpha constant). When the simulation 

results and the convolution results were compared, on average, they agree to approximately within ±0.2%.  

 

Fig. 4 shows the Credit, Market, Operational, and Liquidity (CMOL) risk software’s operational risk module 

and how the simulation results agree with the convolution model. The CMOL software uses the algorithms 

described above, and the settings are 100,000 Simulation Trials with a Seed Value of 1 with an OPCAR set to 

99.90%. Figs. 5–8 show additional empirical tests where all 10 severity distributions were perturbed, 

convoluted, and compared with the simulation results. The results agree on average around ±0.3%.  

 

 
Fig. 2. Comparing Convolution to Simulation Results I 

 

4 High Lambda and Low Lambda Limitations 
 

As seen in Equation 4, we have the          
     

  
   

 

 
       convolution model. The results are 

accurate to as many decimal-points precision as desired as long as   is sufficiently large, but this would mean 

that the convolution model is potentially mathematically intractable. When   and   are high (the value   

depends on the Poisson rate  ), such as         , the summand cannot be easily computed. For instance, 

Microsoft Excel can only compute up to factorial 170! where 171! and above returns the #NUM! error. Banks 

whose operational risks have large   rate values (extremely high frequency of risk events when all risk types are 
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lumped together into a comprehensive frequency count) have several options: Create a breakdown of the various 

risk types (broken down by risk categories, by department, by division, etc.) such that the   is more manageable; 

use a continuous distribution approximation as shown below; or use Monte Carlo risk simulation techniques, 

where large   values will not pose a problem whatsoever.  

 
 

Fig. 3. Comparing Convolution to Simulation Results II 

 

 

 

 
 

Fig. 4. Comparing Convolution to Simulation Results III 
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Frequency: Poisson ( =10) and Severity: 10 Distributions ( =1.5, =2.5, =0.01,  =1.8, =0.5) 

SIMULATION RESULTS (APPROXIMATE PERCENTILE FROM SIMULATION GIVEN LEFT TAIL VALUES) 

Exponential Frechet Gamma Logistic Log Logistic Lognormal Gumbel Pareto Weibull 

99.8% 99.8% 99.8% 99.9% 99.9% 99.8% 99.9% 99.8% 99.8% 

0.06% 0.08% 0.07% 0.03% 0.04% 0.09% 0.03% 0.10% 0.08% 

98.9% 99.0% 99.4% 99.0% 98.9% 98.9% 98.9% 98.9% 98.9% 

0.10% 0.03% -0.38% 0.00% 0.07% 0.08% 0.06% 0.10% 0.10% 

94.9% 95.1% 94.7% 95.0% 95.2% 95.0% 95.0% 94.9% 95.0% 

0.06% -0.06% 0.35% 0.03% -0.15% 0.00% 0.00% 0.10% 0.01% 

90.0% 90.2% 90.1% 90.1% 90.2% 90.0% 90.0% 89.9% 90.1% 

0.00% -0.17% -0.08% -0.08% -0.17% -0.02% -0.01% 0.10% -0.12% 

50.0% 50.2% 50.1% 50.1% 50.1% 50.1% 50.1% 50.0% 50.1% 

0.05% -0.15% -0.05% -0.08% -0.13% -0.10% -0.06% 0.01% -0.11% 

 

Fig. 5. Empirical Results 1: Small Value Inputs 

 

Frequency: Poisson ( =50) and Severity: 10 Distributions ( =3, =5, =0.10,  =5, =1) 

SIMULATION RESULTS (APPROXIMATE PERCENTILE FROM SIMULATION GIVEN LEFT TAIL VALUES) 

Exponential Frechet Gamma Logistic Log Logistic Lognormal Gumbel Pareto Weibull 

99.9% 99.8% 99.9% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% 

0.04% 0.05% -0.01% 0.06% 0.06% 0.07% 0.09% 0.08% 0.09% 

98.9% 99.0% 99.0% 99.0% 98.9% 98.9% 98.9% 98.9% 98.9% 

0.08% -0.01% -0.05% -0.04% 0.08% 0.08% 0.06% 0.06% 0.08% 

95.0% 95.0% 95.1% 94.9% 95.1% 94.9% 94.9% 94.9% 95.1% 

-0.02% -0.02% -0.05% 0.06% -0.10% 0.10% 0.05% 0.09% -0.07% 

90.2% 90.0% 90.0% 90.0% 90.2% 90.0% 90.0% 89.8% 90.1% 

-0.15% -0.03% 0.00% 0.04% -0.20% 0.00% 0.03% 0.16% -0.05% 

49.8% 50.0% 50.0% 50.1% 49.4% 50.0% 50.0% 50.0% 50.1% 

0.18% 0.00% 0.00% -0.10% 0.65% 0.00% 0.00% 0.00% -0.10% 

 

Fig. 6. Empirical Results 2: Average Value Inputs 

 

Frequency: Poisson ( =100) and Severity: 10 Distributions ( =25, =35, =0.025,  =2.5, =0.9) 

SIMULATION RESULTS (APPROXIMATE PERCENTILE FROM SIMULATION GIVEN LEFT TAIL VALUES) 

Exponential Frechet Gamma Logistic Log Logistic Lognormal Gumbel Pareto Weibull 

99.9% 99.9% 99.8% 99.9% 99.8% 99.8% 99.8% 99.9% 99.8% 

-0.05% 0.04% 0.06% 0.04% 0.07% 0.07% 0.07% 0.03% 0.08% 

99.5% 99.0% 99.0% 99.0% 99.0% 99.0% 98.9% 98.9% 99.0% 

-0.54% 0.03% 0.01% -0.02% -0.02% 0.05% 0.11% 0.06% 0.01% 

97.2% 95.0% 95.2% 95.0% 95.1% 95.0% 94.9% 94.9% 95.0% 

-2.20% 0.00% -0.17% 0.00% -0.10% 0.05% 0.15% 0.13% 0.00% 

93.7% 90.0% 90.0% 90.0% 90.0% 90.1% 90.0% 90.0% 90.3% 

-3.70% 0.00% 0.05% 0.00% 0.00% -0.05% 0.00% 0.00% -0.25% 

56.2% 50.0% 50.1% 50.0% 50.0% 50.0% 50.1% 50.0% 50.0% 

-6.21% 0.00% -0.05% -0.01% -0.01% 0.00% -0.06% 0.05% 0.00% 

 

Fig. 7. Empirical Results 3: Medium Value Inputs 
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Frequency: Poisson ( =15) and Severity: 10 Distributions ( =80, =25, =5,  =25, =3) 

SIMULATION RESULTS (APPROXIMATE PERCENTILE FROM SIMULATION GIVEN LEFT TAIL VALUES) 

Exponential Frechet Gamma Logistic Log Logistic Lognormal Gumbel Pareto Weibull 

99.9% 99.8% 99.9% 99.9% 99.9% 99.8% 99.8% 99.9% 99.8% 

0.05% 0.06% 0.04% 0.05% 0.03% 0.12% 0.08% 0.05% 0.06% 

98.9% 98.9% 99.0% 99.0% 99.0% 99.0% 98.9% 99.1% 99.0% 

0.07% 0.06% -0.02% 0.03% 0.04% 0.01% 0.08% -0.07% 0.04% 

95.0% 95.0% 95.0% 95.1% 95.0% 95.0% 95.0% 95.0% 95.0% 

0.04% 0.00% 0.01% -0.06% 0.00% 0.02% 0.02% 0.00% 0.05% 

90.0% 90.0% 90.2% 90.0% 90.2% 90.0% 89.9% 90.0% 90.1% 

0.00% 0.00% -0.16% 0.01% -0.17% 0.01% 0.09% 0.00% -0.10% 

49.9% 50.1% 50.1% 50.0% 49.9% 50.0% 50.1% 50.0% 50.0% 

0.08% -0.05% -0.05% 0.05% 0.10% 0.00% -0.10% 0.00% 0.00% 

 

Fig. 8. Empirical Results 4: High-Value Inputs 

 

Poisson distributions with large   values approach the Normal distribution, and we can use this fact to generate 

an approximation model for the convolution method. The actual deviation between Poisson and Normal 

approximation can be estimated by the Berry–Esseen inequality. For a more accurate and order of magnitude 

tighter estimation, we can use the Wilson–Hilferty approximation instead [13]. For the large lambda situation, 

we can compute the CDF of the compound of two continuous distributions whose PDFs are defined as      

defined on the positive interval of       for the random variable  , and      defined on the positive 
interval of      , for the random variable  . In other words, we have         and        . 
The joint distribution      has the following characteristics: 

 

            
 

 
 

 

 
  

 

 

 

          
 

 

        
 

 
 

 

 
  

   

   

 

 

The integration can be applied analytically using numerical integration methods, but the results will critically 

depend on the integration range of   and  . The values of         can be computed by taking the inverse 
CDF of the distributions at 0.01% and 99.99%, respectively (e.g., in the Normal distribution, this allows us 

to obtain real values instead of relying on the theoretical tails of    and   ). The following table summarizes 

the integration ranges: 

 

When       When       When       
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To obtain the values of   and  , we can first run a Monte Carlo Risk Simulation of the two independent 

distributions, then multiply them to obtain the joint distribution, and from this joint distribution, we obtain the 

left tail 0.01% value and set this as  . The value of   is the left tail VaR% (e.g., 99.95%) value. The second 

integral, when run based on this range, will return the CDF percentile of the OPCAR VaR. Alternatively, as 

previously described, the Bisection Method can be used to obtain the lowest value of   by performing iterative 

searches such that the CDF returns valid results at 0.01%, and then a second search is performed to identify the 

upper range or  , where the resulting   makes the integral equal to the user-specified VaR%, i.e., the OPCAR 

value.  

 
Finally, for low lambda values, the algorithm still runs but will be a lot less accurate. Recall in Equation 2 that 

 
     

  
   

 

 
       where   signifies the level of error precision (the lower the value, the higher the 

precision and accuracy of the results). The problem is, with low   values, both   and  , which depend on  , 
will also need to be a low value. This means that in the summand there would be an insufficient number 
of integer intervals, making the summation function less accurate. For best results,   should be between 5 

and 100. 

 

5 Convoluted Simulations vs. Simulation Multiplication 
 
The next experiment is to look at the convolution simulation of two distributions, specifically, a Poisson discrete 

distribution to model the frequency of occurrence, and a Lognormal continuous distribution to model the impact 

of each occurrence. On the one hand, the test is applied by simulating these two independent distributions for 

100,000 trials each, and in each trial, we multiply the results of the two simulated values. This will then generate 

a probability distribution of 100,000 losses. On the other hand, we will convolute these two probability 

distributions into a single simulation process to generate the 100,000 losses. Figs. 9–12 illustrate the results of 

these two competing simulation approaches. 

 
In Fig. 9, the same Lognormal distribution with a mean of 1,000 and standard deviation of 100 is used, while we 

vary the Poisson distribution, starting with a   (the average number of incidents) parameter of 10, 15, 20, all the 

way to 20,000. The analysis proceeds by the simple multiplication of the simulated distributions. A second 

parallel experiment was run with a convolution simulation. We then compare a few distributional moments of 

the results of these two methods, such as the mean, interquartile range (the first and third quartiles), and 90% 

confidence interval (5th and 95th percentiles). Their mean absolute deviations (MAD) were then computed. We 

see a heteroskedastic trend in the MAD values as   increases. 

 
Conversely, Fig. 10 shows the situation where the Poisson distribution is held constant, with a   of 100, while 

we vary the Lognormal distribution, where the mean is changed from 10, 50, 100, to 15,000,000 to model the 

impact of a loss distribution. We can see a more homoskedastic spread of MADs, regardless of the loss amounts.  

 
Fig. 11 shows what happens when we combine the two experiments, with varying Poisson and Lognormal 

distributional parameters. However, in all three experiments, we see that the first moments, the mean and 

median of all the combinations, tend to be similar, whether we ran a multiplicative simulation or convoluted 

simulation. We can quickly conclude that only the spreads of the total loss distributions differ, whereas the 

expected values remain the same. 

 
Fig. 12 more clearly shows a visual of the spread. Specifically, we see the left column charts where the Poisson 

  parameter is allowed to increase. In all cases, the expected values are the same, but when convolution 

simulation is applied, the spread of the convoluted distribution is usually less wide and more conservative than 

the multiplicative simulation results. The difference is most obvious when the   is large. 

 
The right column shows the results when the Poisson distribution is held constant while the Lognormal 

parameters are allowed to change. Just like in the homoskedastic chart, we see that the differential spreads 

between the multiplicative simulation and convolution simulation tend to be relatively stable (typically when the 

parameter is such that        ).  

 



 

 
 

 

Mun; JAMCS, 37(1): 8-21, 2022; Article no.JAMCS.84000 
 

 

 
18 

 

 
 

Fig. 9. Different Poisson Assumptions with Identical Lognormal Distributions 

 

 
 

Fig. 10. Different Lognormal Assumptions with Identical Poisson Distributions 
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Fig. 11. Different Poisson and Different Lognormal Assumptions 

 

 
 

Fig. 12. Simulated Multiplication vs. Convolution (convolution simulation has the smaller dispersion) 
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6 Caveats, Conclusions, and Recommendations 
 

Based on the theory, application, and empirical evidence above, one can conclude that the convolution of 

Frequency × Severity independent stochastic random probability distributions can be modeled using the 

algorithms outlined above as well as using Monte Carlo simulation methods. On average, the results from these 

two methods tend to converge with some slight percentage variation due to randomness in the simulation 

process and the precision depending on the number of intervals in the summand or numerical integration 

techniques employed. However, as noted, the algorithms described above are only applicable when the   

parameter        , else the approximation using numerical integration approach is required.  

 

In contrast, Monte Carlo risk simulation methods using a standard multiplicative model vs. a convoluted 

simulation approach tend to yield the same expected value or central tendency results, i.e., the same mean 

values. But as   increases, the distributional width for the convoluted simulation approach tends to be more 

conservative and smaller, as compared to the multiplicative model. Monte Carlo risk simulation methods are the 

recommended path when it comes to modeling OPCAR. 

 

Competing Interests 
 
Author has declared that no competing interests exist. 

 

References 
 

[1] Basel Committee on Banking Supervision. Consultative Document on Operational Risk; 2014.  

Available: https://www.bis.org/publ/bcbs291.pdf 

 

[2] Peters G, Targino R, Shevchenko P. Understanding Operational Risk Capital Approximations: First and 

Second Orders. Journal of Governance and Regulation. 2013; 2:58-78. 

DOI: 10.22495/jgr_v2_i3_p6.  

 

[3] Gajic Z. Linear Dynamic Systems and Signals. Prentice-Hall; 2003. 

 

[4] Oppenheim A, Willsky A. Signals and Systems (Second Edition). PHI Press; 1996. 

 

[5] Simpli Learn. AI and Machine Learning: Convolutional Neural Network; 2022.  

Available: https://www.simplilearn.com/tutorials/deep-learning-tutorial/convolutional-neural-

network 

 

[6] Siu YM. Convolution Approach for Value at Risk Estimation. Review of Pacific Basin Financial Markets 

and Policies; 2022. DOI: 10.1142/S0219091522500059. 

 

[7] Ramaré O. The Convolution Method. Excursions in Multiplicative Number Theory; 2022. DOI: 

10.1007/978-3-030-73169-4_8.  

 

[8] Luchko YL. Convolution Series and the Generalized Convolution Taylor Formula. Fractional Calculus 

and Applied Analysis; 2022. DOI: 10.1007/s13540-021-00009-9. 

 

[9] Georgiev SG. Convolutions. Theory of Distributions; 2021.  

DOI: 10.1007/978-3-030-81265-2_6. 

 

[10] Kaur S, Agrawal R. Convolutional networks. Deep Learning Approaches to Cloud Security; 2022.  

DOI: 10.1002/9781119760542 

 

[11] Sayeed A, et al. A Deep Convolutional Neural Network Model for Improving WRF Simulations. 

Transactions on Neural Networks and Learning Systems; 2021.  

DOI: 10.1109/TNNLS.2021.3100902. 



 

 
 

 

Mun; JAMCS, 37(1): 8-21, 2022; Article no.JAMCS.84000 
 

 

 
21 

 

[12] Mun J. Advanced Analytical Models (Second Edition) ROV Press; 2016. 

 

[13] Mun J. Readings in Certified Quantitative Risk Management (Third Edition). IIPER Press; 2016.  

_______________________________________________________________________________________ 
© 2022 Mun; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited. 

 
 

 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 

https://www.sdiarticle5.com/review-history/84000 

http://creativecommons.org/licenses/by/3.0

