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Abstract 

 
The panacea to the global challenge of plastic waste management is the transition towards plastic circular 

economy, which can be sustained through tailor-made management strategies. However, cutting-edge 

strategic solutions are constrained by inadequate data due to inadequate plastic-based predictive models. This 

paper presents an improved version of an existing two-state cyclical dynamic closed (CDC) model. The CDC 

model was formulated using a homogeneous linear system of ordinary differential equations (ODEs) and was 

modified by introducing a separation target which plays an essential role in determining both quantity and 

quality of recycled plastics. The Laplace transforms technique was the main analytic solution technique used. 

Values of the parameters were computed using the global plastic data applied for the existing CDC model, 

and with a technique termed the nth-order product derivative proximity, alternating pairs of initial values 

were selected each for the global annual plastic production and the global annual plastic waste generation. 

The validation process of the new CDC model was accomplished using the root mean squared error (RMSE) 
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and the mean average percentage error (MAPE), which are measures of the model’s predictive power. 

Comparatively, RMSEs of the new CDC model were smaller than the RMSEs of the existing CDC model. 

MAPEs for the new CDC model were 6.5%  and 7% (as against 13% and 18% in the existing model) 

respectively for the global annual plastic: production and waste generation, indicating that the new model 

predicts with 93.5% and 93% degrees of accuracy respectively for the global annual plastic: production and 

waste generation. Therefore, the new CDC model has outperformed the existing CDC model in terms of 

predictive power, and thus, establishing the new CDC model as an improved version of the existing one. The 

model can therefore make impactful policy decisions for sustainable plastic waste management thereby 

aiding to achieve the transition towards circular economy in plastic waste management. 

 

 

Keywords: Separation target; nth-order product derivative proximity; cyclical dynamics; closed model. 

 

1 Introduction 
 

The challenge of plastic waste management has still remain a growing worldwide concern. The excruciating 

nature of the problem fueled by lack of accurate or reliable data to engineer optimal planning, decision - making 

and policy formulation. The incident of inadequate and unreliable data was opined to have emanated from the 

existence of very few predictive models in the area of plastic waste management [1], and suggestively, the 

inadequate quantitative treatment of issues concerning plastic waste management [2]. Because the area of plastic 

waste and waste management in general is dominated with qualitative approach, quantification of crucial 

correlates of unsustainable plastic waste management has remain a ubiquitous challenge. It was recently 

revealed [1] that the very few predictive models do not reflect the roles of crucial determinants such as the 

recycling rate, waste generation rate, incineration and discarding rates. In fact, most of the studies on life-cycle 

assessment of plastics do not exemplify the complete dynamic variation of the plastic life-cycle (PLC). The 

complete dynamic of the PLC involves both forward and reverse logistics. Direct determinants of the forward 

logistics activities include primary plastic production rate, waste generation rate, among others, while the 

recycling rate, incineration and discarding rates constitute reverse logistics activities. Hence, predictive accuracy 

of models will be affected if these significant determinants are excluded in modelling predictive and forecasting 

models for plastic production and its corresponding waste generation. We contend that a good forecasting model 

with a potential predictive accuracy will be essential for optimal decision-making and policy formulation for 

efficient management of plastic waste. Addor et al. [1] developed a cyclical dynamic closed (CDC) model 

involving two states for plastic waste management, which reflected the roles of the recycling rate, waste 

generation rate, incineration rate and the discarding rate. Although the model exhibited a higher degree of 

predictive or forecasting accuracy, that is 87 percent (for the plastic production model) and 83 percent (for the 

plastic waste generation model), the model did not account for the role of plastic waste separation. The waste 

separation rate is very crucial in plastic waste recycling since the plastics waste streams are contaminated with 

varying degrees of impurities [2, 3, 4, 5, 6, 7, 8, 9]. The quality and quantity of recycled plastics are affected by 

the level of separation [10,11,12] and every decision-making involving this parameter is pareto-exemplified, 

since there are trade-off implications of choosing between high and low targets of separation. High level of 

separation will imply high quality of both recycled and recovered waste, and vice versa. Therefore, the existing 

CDC model proposed does not represent the complete dynamic complexities of plastic waste management. 

Hence, the aim in this paper is to improve upon the above CDC model by introducing a separation target. The 

motivation behind this study was engineered by the limited application of time-dependent deterministic or 

predictive models to the study of the dynamics of the PLC. 

 

Contribution to science: The study contributes to science by improving the predictive accuracy of the existing 

CDC model for plastic waste management. The improvement was achieved by the introduction of the plastic 

waste separation target which cannot be neglected in modelling the dynamics of the PLC. Thus, introducing this 

parameter extends the existing CDC model in terms of its representation of a real-life exposition of plastic waste 

management. Another factor that helped to improve predictive accuracy was the proposal of a new technique of 

selecting and alternating pairs of initial values, which we have labelled the nth-order product derivative 

proximity. The improvement in the predictive accuracy will therefore, help to optimize decision-making and 

policy formulation for effective, efficient and sustainable plastic waste management. 
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2 Materials and Methods 
 

2.1 Model development 

 

In this section, the main task is to adopt and modify to improve the cyclical dynamic closed (CDC) model that 

was developed by [1]. The assumptions underlying the original CDC model are as follows: 

 

 The plastic wastes management is considered within the frame work of a closed system, where no 

newvirgin plastics are produced. The motive is to ensure that plastic production occurs only through 

recycling, this will help to ascertain if plastic wastes management can be sustained only through 

recycling. 

 The plastic recycling and waste generation rates occur according to a Poisson process. This is to help to 

ascribe randomness to the plastic recycling and plastic wastes generation processes so that transitional 

probabilities can be derived. 

 Technology is fixed at a value 1 (Cobb-Douglas production Function) 

 The role of a plastic waste receptor is ignored 

 The role of plastic waste separation is ignored. 

 

We denote by     , the volume of plastic products at the consumption unit at any given point in time    ;     , 

the volume of plastic wastes at by the production unit at any given point in time    ;  , plastic waste generation 

rate;  , plastic recycling rate and;   the combined rate of plastic waste incineration rate (  ) and discard (  ), 

where        . It is assumed that with these variables and their respective rates, the volume of plastic 

waste that will be generated at the household or consumption unit to be transferred to the production unit at any 

given point in time is   . Also, total volume of recycled plastics at any given point in time is   . All plastic 

waste generated at the household are transferred to the production unit, therefore, the volume of plastic products 

experiences a decrement of   . As a result, the volume of plastic waste at the production unit faces an 

increment of   . Similarly, since all recycled plastic products are sent to the household for consumption, the 

volume of plastic products at the household faces an increment of   , while the volume of plastic waste at 

production unit experiences a decrement of   . In addition, the amount of plastic waste faces another source of 

decrement from the   to the environment or landfills. Hence, the total decrement to plastic waste at the 

production unit due to incineration and discarding of plastic waste at any point in time ( ) is   . 
 

Based on the above descriptions and explanations, the guiding equations for original CDC model developed by 

[1] is given by the system of homogeneous linear ordinary differential equations below. 

 

  

     

  
          

     

  
      

                                                                                                                                          

 

The above equation, (1) represents the CDC non-separation model for a 2-multistate cyclical dynamics of plastic 

wastes management. Neglecting the role of waste separation in the original CDC model for plastic waste 

management is not a realistic assumption since separation plays a pivotal role in determining both quantity and 

quality of recovered plastic wastes as well as recycled plastics. Although the model outperformed other equally 

best performing models, we still believe that integrating the role of the separation target will still improve the 

model. By assuming the role of plastic waste separation, which is innovatively motivated at a separation target 

 , our modified version of the CDC model for plastic waste management can be specified by Equation 2. 

 

 

     

  
               

     

  
           

                                                                                                                           

 

By the original concept,   is supposed to be a decrement to both   and  . However, technological innovation is 

introduced so that the amount of separation can be recovered as a product. Therefore, in this version, the 

separation target is an increment to plastic products but a decrement to plastic waste at the production unit. 
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Laplace transforms (LT) is the solution technique applied in solving the system represented by Equation 2. 

Following the LT technique, we obtain as follows: 

 

  
     

  
                    

 

                            
 

By applying the initial conditions, we simplify to get 

 

                        

      
             

   
                                                                                                                                 

 

Where       

 

Following similar approach, we have 

 

  
     

  
                

      
        

        
                                                                                                                                            

 

If Equation 3 is substituted into Equation 4, we have 

 

     
  

             

   
    

        
  

 

Which is simplified to 

 

     
             

   
  

 
 

 

 

 
 
 
    

     

 

 
 
 
 
  

 

Where                   

 

If we decompose the      into partial fractions, we have 

 
             

         
 

    

         
  

                     
 

Where,  

                      
   

     

 
   

  

 
 

 

 By simplifying and applying the inverse Laplace transform, the solution      is given by 
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where, 

 

   
            

 
    

       

 
 

 

Similarly, we solve for      by substituting (3) into (4) as follows: 

 

     
       

        

        
    

     
 

 

Simplifying and denoting the following parameters;  

 

                     
  

 
   

   
     

 
                  

 

     is decompose into partial fractions 

 

     
             

         
 

    

         
  

 

The inverse Laplace transform is applied as follows, after simplifying we have      given by 

 

                                                                                                                                      

 

where,  

 

   
         

 
    

       

 
 

 

The solutions, Equations 5 and 6, represent the predictive models for plastic production and plastic waste 

generation. Hence, the modified CDC model is represented by Equations 5 and 6. It is important to note that the 

steady state solution is zero, therefore, introducing the separation target does not change the steady state solution 

as obtained in the original CDC model. 

 

2.2 Fitting the model to real data 
 

Data and computations of values of parameters. 

 

The values of the parameters  ,   and  , will be computed. For the purpose of comparison, we applied the same 

data as used in [1]. The parameters were computed using the following equations:  
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Where, we denote in addition; the number of years ( ), the volume of incinerated plastic wastes ( ), the volume 

of recycled wastes (    ), and the volume of discarded wastes (  ). Applying the data in Table 1 to the 

Equations 7 to 9, we have the computed values of the parameters. 

 

              

              

               

               

                    

 

Table 1. Global annual volume of production, waste generation and recycled plastics 

 

Year Production Waste Generation Recycled 

1988 110000000 41731536.85 250389.2211 

1989 114000000 45491548.32 591390.1282 

1990 120000000 49635828.37 992716.5675 

1991 124000000 54152688.76 1462122.596 

1992 132000000 59031846.01 2007082.764 

1993 137000000 64126294.32 2629178.067 

1994 151000000 69602679.86 3340928.633 

1995 156000000 75560669.26 4155836.809 

1996 168000000 82361129.49 5106390.028 

1997 180000000 89683033.9 6188129.339 

1998 188000000 97584109.19 7709144.626 

1999 202000000 106376437.4 8829244.306 

2000 213000000 116163069.7 10454676.27 

2001 218000000 126733909 12293189.17 

2002 231000000 138013226.9 14353375.6 

2003 241000000 150434417.3 16698220.32 

2004 256000000 163973514.9 19348874.76 

2005 263000000 178731131.2 22341391.4 

2006 280000000 194816933 25715835.16 

2007 295000000 212350457 29516713.53 

2008 281000000 231461998.1 33793451.73 

2009 288000000 252293578 38600917.43 

2010 313000000 275000000 44000000 

2011 325000000 299777500 50062842.5 

2012 338000000 327057252.5 56907961.94 

2013 352000000 356525111 64531045.08 

2014 367000000 388612370.9 73059125.74 

2015 381000000 302000000 58890000 

2016 350000000 242000000 48884000 

2017 348000000 261000000 54549000 

2018 359000000 269250000 57350250 

2019 368000000 276000000 61548000 

2020 367000000 275250000 63307500 

2021 398195000 298646250 70779161.25 

 9285195000 6402590694 970248085 
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In general, over the entire period of the data (1988-2021), approximately 80% of all plastics produced became 

waste; close to 14% of the total waste was recycled, about 21% incinerated and 64% discarded. The total rate of 

unrecovered was close to 85%. All the parameters are in line with major research that have uncovered the 

uncontrollable level of mismanaged plastic waste [12,13,14].  

 

Now, the power of the model depends on the separation parameter  , which is defined by 

 

                                                                                                                                                                

 

where,   is the global annual plastic in-stock given by 

 

  
          

   

   
  
   

                                                                                                                                                   

 

The next step is to compute the values of the other parameters                       and   . These play 

significant roles in the validation process of the models. We compute the first five given below. 

 

              

               

              

              
 

The value of   is adjusted by    
 

 
 

           

           
            . This is to ensure that strength of the decay 

does not overpower that of the hyperbolic growth, else the values will decay continuously, and the data will not 

fit both      and     . 

 

The predictive accuracy of the model largely depends on the remaining four:          and   , which are 

functions of the initial values (  ,   ). It is important to stress that since the models are assumed to operate in a 

closed model,    plays two alternating roles; either as the initial value for the volume of the global annual 

plastic products or the initial value of the global annual recycled plastics. The same ordered pair of initial values 

(  ,   ) cannot lead to higher predictive accuracy for both      and     , so we employed a novel alternating 

technique we have labelled the “nth-degree product derivative proximity”. In this approach, we compute the 

predicted values for a product by pairing its initial value with that of a product that is immediately derived from 

it. For example, if we consider     ,      is immediately derived from it so,      is a first-degree product 

derivative to     . Similarly, where as      is a first-degree product derivative to     , it is a second-degree 

derivative to     . Using the proposed method of n
th

-degree product derivative proximity, we select the ordered 

pair                                as initial values to compute the values of    and    to predict the 

values of     . We obtain 

 

             

               

 

Similarly, we select the ordered pair                     to compute the values of    and    to predict the 

values of     . We obtain as differently, the following parameter values: 

 

               

               

 

The predicted values of      at                                                

 

                  

 

can be located in column 4 of Table 2, in columns 3 and 5 are the predicted values of      at        and 

      . 
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3 Results and Discussions 
 

3.1 Predicting with the model 
 

Applying Equation 5, we generate the predicted values of the global annual plastic production (Table 2). 

 

Table 2. Historical values of the global annual plastic production against the corresponding predicted 

values (metric tonnes (Mt)) at different values of   

 

Year Annual Plastic 

Production (Mt)  

 Predicted Annual 

Plastic Production at 

       (Mt)  

Predicted Annual 

Plastic Production at 

      (Mt)  

Annual Plastic 

Production at 

       (Mt) (Mt) 

1988 95000000 95000000 95000000 95000000 

1989 100000000 106132993.9 106996074.1 107866692.8 

1990 105000000 112152012.3 113906636.2 115691095.3 

1991 109000000 116579969.1 119276330.3 122040184.3 

1992 115000000 120567676.5 124266189.2 128086545.8 

1993 120000000 124492768.2 129259822.1 134221437 

1994 130000000 128480917 134387409.3 140581428.2 

1995 134000000 132575743.6 139696653.2 147220357.5 

1996 145000000 136794205.7 145208555.9 154165488.9 

1997 157000000 141144656.4 150935623.6 161435867.9 

1998 165000000 145632733.9 156887813.6 169048334.8 

1999 175000000 150263284 163074483.7 177019510.8 

2000 185000000 155040989.9 169505036.9 185366470.5 

2001 195000000 159970580.4 176189141.3 194106985.3 

2002 204000000 165056900.9 183136811.9 203259629.3 

2003 210000000 170304940.1 190358447.5 212843841.3 

2004 225000000 175719841.6 197864852.9 222879972.4 

2005 227000000 181306911.4 205667258.2 233389332.4 

2006 240000000 193019627 222207217.7 255918047.8 

2007 257000000 199156748.9 230969515.3 267985237.3 

2008 245000000 205489002.6 240077336.7 280621425.6 

2009 250000000 212022592.4 249544306.8 293853442.5 

2010 270000000 218763919.8 259384587.9 307709382.7 

2011 279000000 225719589.9 269612900.8 322218666 

2012 288000000 232896417.9 280244546.9 337412098.9 

2013 299000000 240301435.3 291295430.6 353321941.1 

2014 311000000 247941897.8 302782083.9 369981972.9 

2015 322000000 255825291.2 314721690.4 387427567.8 

2016 335000000 263959339.7 327132111.4 405695767 

2017 348000000 272352012.9 340031912.6 424825358.5 

2018 359000000 281011533.9 353440391.6 444856959 

2019 368000000 289946387.2 367377607.3 465833100.7 

2020 367000000 299165327 381864409.1 487798321 

2021 398195000 308677386.1 396922469.1 510799257.6 

Total 7732195000 6463465635 7529225658 8820481721 

 

The predicted values of the global annual plastic waste generation      at the different values of   are 

summarized in Table 3. 
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Table 3. Historical values of the global annual plastic waste generation against the corresponding 

predicted values (metric tonnes (Mt)) at different values of    

 

Year  Annual Plastic 

Wastes Generation 

(Mt)  

Predicted Annual 

Plastic Wastes 

Generation at 

       (Mt) 

Predicted Annual 

Plastic Wastes 

Generation at 

      (Mt) 

Predicted Annual 

Plastic Wastes 

Generation at 

       (Mt) 

1988 82900000 82900000 82900000 82900000 

1989 86800000 90644712.68 90875318.34 91107602.71 

1990 89500000 95192179.07 95994153.16 96806963.23 

1991 93400000 98761727.2 100280369 101829835.4 

1992 97400000 102078856.6 104398126.9 106780955.5 

1993 102600000 105382175 108568165.2 111864785.5 

1994 107900000 108751640.7 112866724.2 117155439.3 

1995 113200000 112215564.6 117323071.2 122684822.6 

1996 118400000 115785493.3 121951322.9 128471424.6 

1997 126300000 119467582.2 126760833.5 134529735.2 

1998 134200000 123266305.2 131759590.6 140873336.9 

1999 142100000 127185666.8 136955331.1 147515933.6 

2000 150000000 131229599.1 142355911.9 154471705.9 

2001 160500000 135402094.3 147969439.7 161755447.6 

2002 165800000 139707250.4 153804321.1 169382632.1 

2003 171100000 144149288.7 159869287.9 177369456.5 

2004 181600000 148732562.6 166173414.1 185732879.5 

2005 192100000 153461562.9 172726130.7 194490659.2 

2006 200000000 163375424.6 186616932.9 213264545.2 

2007 207900000 168569999.5 193975798.8 223320513.1 

2008 221100000 173929737.5 201624846.8 233850645.6 

2009 223700000 179459890.2 209575519.8 244877300.7 

2010 218400000 185165875.9 217839711.7 256423890.8 

2011 227600000 191053285.3 226429785.5 268514932.1 

2012 244700000 197127886.7 235358591.6 281176096.9 

2013 252600000 203395632.1 244639487.4 294434267.9 

2014 265800000 209862662.5 254286356.8 308317595.6 

2015 300000000 216535314.2 264313631.2 322855557.6 

2016 242000000 223420125.1 274736311.1 338079021.6 

2017 261000000 230523840.8 285569988.6 354020310.9 

2018 269250000 237853421.4 296830870.5 370713272.6 

2019 276000000 245416048.5 308535802.8 388193350.1 

2020 275250000 253219131.7 320702295.7 406497657.9 

2021 298646250 261270316.5 333348549.9 425665060.6 

Total 6299746250 5474492854 6327915993 7355927635 

 

3.2 Validation of the model: The mean absolute percentage and the root mean square 

errors 

 

The mean absolute percentage error (MAPE) provides a measure for testing the predictive accuracy of the 

model. It has been described in [15] as measure of a model’s predictive power. It measures the average of the 

percentage absolute deviations of a model’s predicted values from its observed or actual values. It provides an 

average measure of the margin below which the predicted values fall and above which the predicted values fall. 

Instances of MAPE application are easy to find [16,17,18]. By adopting the variables used in [1], the MAPE is 

given by  

  

     
 

 
  

     
 

  

     

  

   

                                                                                                                              



 

 
 

 

Addor et al.; ARJOM, 18(5): 52-68, 2022; Article no.ARJOM.87124 
 

 

 
61 

 

where,    denotes the historical values while   
  is denotes predicted values.  

 

Mathematically, the root mean square error (RMSE), is the square root of the mean of the squared deviations of 

the predicted values from the historical values. This can be defined by  

 

    

    
       

  
   

   

 
                                                                                                                                                  

 

A close look at Equation 13 show the square root of the variance between the observed and the predicted values 

of the global annual plastic: production and waste generation. Therefore, the RMSE can be interpreted as the 

standard deviation of the unexplained variation between the historical and the predicted values. It is a good 

estimator for the standard deviation of the distribution of the errors [19]. An example of RMSE as a metric for 

evaluating predictive accuracy can be found in [20]. The smaller the RMSE, the better the fit, however, there is 

no standard measure of how small or big the RMSE should be. The application of the size of the RMSE in 

judging how better a model may fit a data depends on the values, range and units of the data. However, when 

two different models are tested on a data, the one that produces the smaller RMSE reflects a better fit. So, in the 

validation process of a model, picking the test value that produces the smallest RMSE is just enough to obtain a 

good fit. In this study, the predictions were done at different values of the separation target, then Equation 13 

was applied to compute the RMSE corresponding to each value of the separation target. Subsequently, Equation 

12 was applied to as a confirmation and to give a better interpretation of the both the explained and unexplained 

variations. From the predictions in Table 2, the RMSE corresponding to the following values of  ; 0.89, 0.9 and 

0.91 are respectively 52, 043, 566; 16, 660, 445; and 36, 347, 663 approximately. Similarly, we have RMSEs of 

35, 842, 866; 16, 972, 407; and 41, 234, 768 respectively for the same respective values of   (as can be 

computed from Table 3). Therefore, the least value of RMSE computed is approximately 16, 660, 845 for the 

global annual plastic production and 16, 972, 407 for the global annual plastic waste generation which were 

obtained at      . These values may seem too big, but this is normal considering the range of values involved 

in the global plastic data in Table 1. We can express this as a percentage of the means of the observed values of 

the global annual plastic: production and waste generation. This is called the scattered index (SI) which can be 

expressed as 

 

   
    

    
     

 

Thus, denoting by     and    , the SI respectively for the global annual plastic: production and waste 

generation, we have 

 

    
          

         
           

 

    
          

           
           

 

Judging by the values of SI, we can be sure that both RMSEs are small in respect of the global plastic data. We 

now confirm from the MAPE that the least RMSE is associated with the least value of MAPE. Table 4 

summarizes the computation of MAPE for both the global annual plastic production and the global annual 

plastic waste generation at the various values of  . 

 

For the global annual plastic production     , the MAPE corresponding to       is approximately 6.5%, 

indicating that on average, each predicted value of      deviates from its corresponding observed value by 

6.5%. This implies that      can predict the observed values with a 93. 5% degree of accuracy. At       , the 

MAPE is 16% approximately, which also implies that      can predict, on average, its corresponding observed 

values with an accuracy degree of approximately 84%. Finally, to the right of 0.9 (      ), the MAPE is 

approximately 9%; meaning that the observed values of global annual plastic production can be predicted with 

an accuracy degree of 91%. Further computations have revealed that any movement to the left or right of 

      will worsen the predictive accuracy of     . Therefore,      predicts with the highest degree of 
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accuracy at      . It is worthy to note that at this value, the SI is equivalent to that of the MAPE by 

approximation. 

 

Table 4. Computation of MAPE at                     for both global annual plastic production and 

waste generation 

 

YEAR MAPES FOR ANNUAL PRODUCTION 

 
        

  

      

MAPES FOR ANNUAL WASTE 

GENERATION 

 
        

  

      

                                           

1988 0 0 0 0 0 0 

1989 6.13299388 6.99607413 7.86669283 4.429392 4.695067 4.962676 

1990 6.8114403 8.48251071 10.1819956 6.359977 7.256037 8.164205 

1991 6.95410006 9.42782593 11.9634718 5.740607 7.366562 9.02552 

1992 4.84145781 8.05755583 11.3796051 4.803754 7.184935 9.631371 

1993 3.7439735 7.71651843 11.8511975 2.711672 5.816925 9.030005 

1994 1.16852535 3.3749302 8.13956018 0.789287 4.603081 8.577794 

1995 1.06287788 4.2512337 9.86593841 0.869643 3.642289 8.378819 

1996 5.6591685 0.14383166 6.32102686 2.208198 2.999428 8.506271 

1997 10.098945 3.86266015 2.82539358 5.409674 0.364872 6.516022 

1998 11.737737 4.91647661 2.45353622 8.147314 1.818487 4.97268 

1999 14.1352663 6.81458075 1.15400619 10.49566 3.620457 3.811354 

2000 16.1940595 8.37565575 0.19809217 12.5136 5.096059 2.981137 

2001 17.9638049 9.64659421 0.45795627 15.63732 7.807203 0.78221 

2002 19.0897544 10.227053 0.36292679 15.73748 7.23503 2.160816 

2003 18.9024095 9.35312025 1.35421012 15.75144 6.563829 3.664206 

2004 21.9022926 12.0600654 0.94223451 18.09881 8.494816 2.275815 

2005 20.1291139 9.39768363 2.81468387 20.11371 10.0853 1.244487 

2006 22.0534901 10.9261102 1.83093144 20.82954 10.23138 1.830695 

2007 24.8950868 13.5380476 0.42099307 21.41634 10.23717 2.580349 

2008 18.7115311 5.72672843 9.38172952 23.75848 12.26784 1.004303 

2019 17.8043989 3.96906533 12.2485703 22.24866 9.868195 4.537615 

2010 21.4731139 7.57618268 8.83460833 17.82972 4.040513 12.12331 

2011 21.5899929 7.03061366 10.2901013 18.64417 4.288352 12.66428 

2012 21.6251424 6.38440944 11.8814812 21.92346 7.466373 9.732298 

2013 22.1082215 6.2727268 12.8468558 21.96046 6.825577 11.31279 

2014 22.7326574 6.3358744 13.6083412 23.47794 7.961066 10.77286 

2015 22.9994106 5.96829693 14.9012338 30.04578 15.23788 2.772532 

2016 23.6342414 6.05322675 15.6500202 10.5226 9.220509 33.41139 

2017 24.149615 5.99651972 16.5792434 14.39842 5.262954 29.53219 

2018 24.1359295 5.28358982 18.3357544 14.38297 6.061277 31.48387 

2019 23.6381701 3.95641532 20.8850432 13.82122 7.547417 34.3164 

2020 20.9955348 0.10289026 26.9300002 10.83886 12.09293 41.03301 

2021 24.8696425 4.10115417 22.5023722 15.21101 7.385342 36.11343 

Total 543.9441 222.326222 307.259808 451.1272 230.6452 369.9067 

MAPE 15.9983559 6.53900652 9.03705317 13.26845 6.783681 10.87961 

 

Bringing into perspective the global annual plastic waste generation y   , we have         approximately 

for      , implying that on average, each predicted value of      varies from its corresponding observed 

value by 7%. This means that      can predict the observed values with an approximately 93% degree of 

accuracy. Also, at       , the MAPE is 13.3% approximately, which implies that     predicts the 

corresponding observed values with an accuracy degree of about 86.7%, on average. Further, at       , the 
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MAPE is approximately 11%; indicating that      predict the corresponding observed values of global annual 

plastic waste generation with an approximately 89% degree of accuracy. Further analyses have uncovered that 

any variation to the left or right of       will worsen the predictive accuracy of     . Thus, we conclude that 

     predicts with the highest degree of accuracy at      . It is imperative to compare the closeness of the 

values of the MAPEs and SIs. 

 

In summary, at a separation target of      , Equation 5 predicted the historical values of the global annual 

plastic production with a MAPE of 6.5% approximately, indicating that on average, the predicted values of the 

global annual plastic production will fall below or above the corresponding historical values by 6.5%. It can 

therefore be established that Equation 5 predicts the values of the global annual plastic production with 93.5% 

degree of accuracy. Similarly, with a MAPE value of approximately 7%, the Equation 6 predicts the values of 

the global annual plastic waste generation, implying that Equation 6 can predict the historical values of global 

annual plastic waste generation with approximately 93% degree of accuracy. In [1], the MAPEs for the non-

separation-based CDC model were approximately 13% for the global annual plastic production model and 18% 

for the global annual plastic waste generation model. Hence, non-separation-based CDC model predicted with 

approximately, 87% and 82% degrees of accuracies respectively for the global annual plastic: production and 

waste generation. From the perspective of the RMSE, the existing CDC model was associated with RMSEs of 

33, 708, 488 approximately for the global annual plastic production and 30, 815, 434 for the global annual 

plastic waste generation. Clearly, the separation-based CDC model in this current study has outperformed the 

non-separation-based CDC model developed by Addor et al. (2022); thereby establishing its predictive 

supremacy. 

 

Two significant elements determined the strength of the CDC model in this current study; the separation target, 

which is a very crucial determinant of both quality and quantity of recycled plastics; and the nth-order product 

derivative proximity technique applied in the selection of initial values. The computational processes revealed 

that there would have been worse performance if these two elements were not used together.  

 

Based on the MAPE analyses, a visual summary of the historical against the predicted values of the global 

annual: plastic production and waste generation are presented at different values of   (Figs. 1 and 2). 

 

 
Fig. 1. A time series plot of the historical against predicted values of      at            and 0.91 
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Fig. 2. A time series plot of the historical against the predicted values of      at             and 0.91 

 

3.3 Forecasting with the model 
 

In this section, we apply the best predicting models to forecast for a 29-year period from 2022 through to 2050. 

The purpose is to compare the cumulative values of global annual plastic production and waste generation with 

existing findings, especially, the existing CDC model. The results of the forecast are depicted in Figs. 3 and 4. 

 

 
 

Fig. 3. A plot of a 29-year (2022-2050) forecast for the volume of global annual plastic production 
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Fig. 4. A plot of a 29-year (2022-2050) forecast for the volume of global annual plastic waste generation 

 

The predictions by the models revealed that from 1988 through to 2021, cumulative volumes of approximately 

7530 (million metric tonnes) or 7.53 (billion metric tonnes); and 6328 (million metric tonnes) or 6.33 (billion 

metric tonnes) were estimated for the global annual plastic production and global annual plastic waste 

generation respectively. This shows that global cumulative plastic production and waste generation for 33 (1988 

– 2021) years is about the same as that produced over a period of 65 (1950 – 2015) years as estimated in [2]. 

This means that plastic production has increased more than two times over the past 33 years. 

 

The model was used to forecast the volumes of global annual plastic: production and waste generation over a 

period of 29 years (2022-2050). The forecast estimated a global annual plastic production of 1219 (million 

metric tonnes) or (1.22 billion metric tonnes) and a global annual waste generation of 1023 (million metric 

tonnes) or (1.02 billion metric tonnes) by the year 2050. Finally, cumulative volumes of global annual plastic: 

production and waste generation from 1988 to 2050 are 29.2 (billion metric tonnes) and 24.52 (billion metric 

tonnes) approximately. This implies that an annual average of 1007 (million metric tonnes) and 846 (million 

metric tonnes) respectively for global plastic: production and waste generation. 

 

In [21], the cumulative global plastic production was projected to about 34 (billion metric tonnes), and plastic 

waste generation to about 12 (billion metric tonnes) by the year 2050. Cumulative global plastic waste 

generation was estimated to 12 (billion metric tonnes) by 2050 [2]. Additionally, a-2050 projection of 1600 

million metric tonnes was made for global annual plastic production in [22]. Last but not least, in [1], it was 

estimated that by 2050, a cumulative value of approximately 43.2 (billion metric tonnes) of plastic will be 

produced; and approximately 17.8 (billion metric tonnes) of plastic wastes will be generated. By adjusting our 

production values with plastic production data from 1950 to 1987 [2] our total cumulative estimate for global 

annual plastic production by the year 2050 is approximately 31 (billion metric tonnes). We can then assess the 

closeness of the 2050 estimated cumulative global annual plastic production by Statista (2022) to our forecast 

value. 

 

A comparison with our 29 years (2022-2050) forecast makes clear the difference, which can be explained by the 

difference in computational techniques as well as the base years applied. In the referenced studies, the base year 

was 1950. Another explanation can also be ascribed to the fact that the estimates made by [2] to 2050 was based 

on a projection of an assumed constant growth rate of 0.07%. However, according to [23,24], increase in plastic 

production and waste can be explained by rapid population growth, which follows exponential growth path. 
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Lastly, another reason may arise out of the different polymer types that characterize each plastic data. That 

notwithstanding, some techniques are more superior to others, which assertion has been established by the 

MAPEs of the improved CDC model. 

 

4 Conclusion 
 

The new CDC model for plastic waste management has outperformed the existing CDC model. The model’s 

outperformance links to the inclusion of the separation target and the nth-order product derivative proximity 

technique applied in the selection and paring of initial values. The RMSE associated with the global annual 

plastic production of the new CDC model is smaller (RMSE = 16, 660, 845) than that of the existing CDC 

model (RMSE = 33, 708, 488). Similarly, the RMSE associated with the global annual plastic waste 

generation in the new CDC model is smaller (RMSE = 16, 972, 407) relative to that of the existing CDC model 

(RMSE = 30, 815, 434). Furthermore, the existing CDC model had a MAPE of 13% approximately for the 

global annual plastic production and 18% for the global annual plastic waste generation. In comparison, the 

MAPEs associated with the improved CDC model are 6.5% for the global annual plastic production and 7% 

approximately for the global annual plastic waste generation. Therefore, the improved CDC model predicts with 

93.5% and 93% degrees of accuracy respectively for the global annual plastic production and the global annual 

plastic waste generation. The predicted cumulative estimates from 1988 through to 2021 are 7530 (billion metric 

tonnes) for the global annual plastic production and 6328 (billion metric tonnes) for the global annual plastic 

waste generation. The 29 years (2022 – 2050) forecast revealed a yearly estimate of 1.22 (billion metric tonnes) 

and 1.02 (billion metric tonnes) respectively for the global annual plastic production and the global annual 

plastic waste generation. By 2050, cumulative estimates for the global annual plastic production and the global 

annual plastic waste generation are respectively 29.2 (billion metric tonnes) and 24.52 (million metric tonnes). 

Thus, averagely, the global annual plastic production and global annual plastic waste generation are estimated to 

be 1007 (million metric tonnes) and 846 (million metric tonnes), respectively. The model can therefore make 

impactful policy decisions for sustainable plastic waste management thereby aiding to achieve the transition 

towards circular economy in plastic waste management. 
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