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We investigate a motion of the incompressible 2D-MHD with power law-type nonlinear viscous fluid. In this paper, we establish
the global existence and uniqueness of a weak solution ðu, bÞ depending on a number q in ℝ2. Moreover, the energy norm of the
weak solutions to the fluid flows has decay rate ð1 + tÞ−1/2.

1. Introduction

In this paper, we study the weak solutions to the incompress-
ible 2D-MHD with power law-type nonlinear viscous fluid:

ut−∇ · S + u · ∇ð Þu+∇π = b · ∇ð Þb,
bt −△b + u · ∇ð Þb − b · ∇ð Þu = 0,
div u = 0, div b = 0,

8>><
>>:

 inQT ≔ℝ2 × 0, Tð Þ:

ð1Þ

Here, u : ℝ2 × ð0, TÞ→ℝ2 is the flow velocity vector, b
: ℝ2 × ð0, TÞ→ℝ2 is the magnetic vector, and π : ℝ2 × ð0,
TÞ→ℝ is the total pressure. We consider the initial value
problem of (1), which requires initial conditions:

u x, 0ð Þ = u0 xð Þ,
b x, 0ð Þ = b0 xð Þ x ∈ℝ2:

ð2Þ

We assume that the initial data u0ðxÞ, b0ðxÞ ∈ L2ðℝ2Þ
hold the incompressibility, i.e., ∇·u0ðxÞ = 0 and ∇·b0ðxÞ = 0,
respectively. In this paper, we deal with S given as

S≔ S Duð Þ = μ0 + μ1 Duj j2� � q−2ð Þ/2Du, Du = ∇u+∇u⊥
2 ,

ð3Þ

where μ0 ≥ 0 and μ1 > 0 are constants (see, e.g., [1, 2]).
In modern industrial application, non-Newtonian fluids

play an important role (see [3–5]). In particular, equation
(1) is the simplest self-consistent model which describes the
dynamics of electrically conducting liquid with involved rhe-
ological structure in a magnetic field.

Some examples of non-Newtonian fluids are coal-water,
glues, soaps, etc. (see, e.g., [6]). One class of non-
Newtonian fluids can be defined by S = μð∣D ∣ ÞD (D is the
rate of the strain tensor, μð·Þ > 0 a real function). That is,
the relation between the shear stress and the strain rate is
nonlinear. In this paper, we study the case μðsÞ = μ0 + μ1
sq−2 which is called power law fluids. Commonly, the case
of q > 2 describes dilatant (or shear thickening) fluids whose
viscosity increases with the rate of shear (see, e.g., [6]). On the
other hand, pseudoplastic (or shear thinning) fluids corre-
spond to the case of 1 < q < 2, where viscosity decreases with
the increasing rate of shear (see, e.g., [1]).

In what follows, we review some known results related to
our concerns. For incompressible Navier-Stokes equation for
a non-Newtonian type, namely, b = 0 in (1), the existence of
weak solutions for ð3n + 2Þ/ðn + 2Þ ≤ q was first obtained in
[7, 8], which is unique for ðn + 2Þ/2 ≤ q for any dimension
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n (cf. [9]). Later, the existence of weak solutions was investi-
gated for 2n/ðn + 2Þ < q in [10, 11]. On the other hand, in the
case of q = 2, that is, SðDuÞ =Du and n = 3, numerous results
are known. Among them, we only mention that Ferreira and
Villamizar-Roa [12] showed well-posedness, time decay, and
stability for 3D magnetohydrodynamic equations.

In [13, 14], Samokhin first studied a nonstationary sys-
tem of equations describing the motion of the Ostwald-de
Waele media type and showed a unique existence of a gener-
alized solution for q ≥ 1 + ð2n/ðn + 2ÞÞ to the problem based
on the Faedo-Galerkin method and the monotone operator
method. Later on, Gunzburger et al. in [15] proved the global
unique solvability of the initial boundary value problem for
the modified Navier-Stokes equations coupled with the Max-
well equations. Here, the authors use the strain tension con-
taining the diffusion operator; that is, they do not deal with
the degenerate power law fluids. Recently, Razafimandimby
[16] proved the existence of weak solutions for q ∈ ð1, ð2n +
6Þ/ðn + 2Þ� to this model of bipolar type.

In this paper, we will prove the global-in-time existence
and uniqueness of the weak solutions for the incompressible
2D-MHD with power law-type nonlinear viscous fluid
(1)–(2) under a condition on the range of q.

Our results are based on the standard Galerkin method
and some uniform estimates.

Denote M2
sym by the vector space of all symmetric 2 × 2

matrices ζ = ðζijÞ1≤i,j≤2. Let S≔ jDujq−2Du and 1 ≤ q <∞.

The deviatoric stress tensor S = ðSijÞ, i, j = 1, 2, satisfies the
following conditions:

(i) S : QT ×M2
sym →M3

sym is a Carathéodory function

(ii) Symmetry: Sij = Sji

(iii) Polynomial growth:

Sij ξð Þ�� �� ≤ μ0 + μ1 ξj jq−2
� �

ξj j: ð4Þ

(iv) Coercivity condition: there exists c1 > 1 such that

μ0 + μ1 ξj jq−2
� �

ηj j2 ≤ ∂Sij
∂ξkl

ηklηij ≤ c1 μ0 + μ1 ξj jq−2
� �

ηj j2:

ð5Þ

(v) Strict monotonicity: for all ζ, η ∈M2
symðζ ≠ ηÞ,

SðζÞ − SðηÞ: ðζ − ηÞ > 0

By the weak solution of the incompressible 2D-MHD
with power law-type nonlinear viscous fluid, we mean solu-
tions satisfying the following definitions:

Definition 1 (weak solution). Let μ0 ≥ 0, μ1 > 0, and q ∈ ð1,∞Þ
. Suppose that u0, b0 ∈ L2ðℝ2Þ. We say that ðu, bÞ is a weak
solution of the incompressible 2D-MHD with power law-
type nonlinear viscous fluid (1)–(2) if u and b satisfy the fol-
lowing:

u ∈ L∞ 0, T½ Þ ; L2 ℝ2� �� �
∩ L2 0, T½ Þ ;W1,q ℝ2� �� �

,

b ∈ L∞ 0, T½ Þ ; L2 ℝ2� �� �
∩ L2 0, T½ Þ ;H1 ℝ2� �� �

:
ð6Þ

(i) ðu, bÞ satisfies (1) in the sense of distribution; that is,

ðT
0

ð
ℝ2

∂ϕ
∂t

+ u · ∇ð Þϕ
� �

u dxdt +
ðT
0

ð
ℝ2
S Duð Þ: ∇ϕ dxdt

=
ð
ℝ2
u0ϕ x, 0ð Þ dx +

ðT
0

ð
ℝ2

b · ∇ð Þϕ b dxdt,

ðT
0

ð
ℝ2

∂ϕ
∂t

+ Δϕ + u · ∇ð Þϕ
� �

b dxdt

=
ð
ℝ2
b0ϕ x, 0ð Þ dx +

ðT
0

ð
ℝ2

b · ∇ð Þϕ u dxdt,
ð7Þ

for all ϕ ∈ C∞
0 ðℝ2 × ½0, TÞÞ with div ϕ = 0, and
ð
ℝ2
u · ∇ψdx = 0,

ð
ℝ2
b · ∇ψdx = 0, ð8Þ

for every ψ ∈ C∞
0 ðℝ2Þ.

Theorem 2. Let 2 < q <∞ and μ0 ≥ 0 and μ1 > 0. Assume that
u0, b0 ∈ L2ðℝ2Þ. A weak solution ðu, bÞ of the incompressible
2D-MHD with power law-type nonlinear viscous fluid
(1)–(2) exists. In particular, in the case μ0 > 0 and μ1 > 0,
the weak solution ðu, bÞ is unique. Moreover, we obtain the
following decay rate of the weak solution:

u tð Þk kL2 + b tð Þk kL2 ≤ C 1 + tð Þ−1/2: ð9Þ

2. Preliminaries

In this section, we introduce the notation. Let I be a finite
time interval. For 1 ≤ q ≤∞, we denote by Wk,qðℝ2Þ the
usual Sobolev spaces, namely, Wk,qðℝ2Þ = f f ∈ Lqðℝ2Þ: Dα f
∈ Lqðℝ2Þ, 0 ≤ jαj ≤ kg. The set of the q-th power Lebesgue
integrable functions on ℝ2 is denoted by Lqðℝ2Þ, and Lqlocð
ℝ2Þ indicates the set of the locally q-th power Lebesgue inte-
grable functions defined onℝ2. For a function f ðx, tÞ, O ⊂ℝ2

, and J ⊂ I, we denote k f kLp,qx,t ðO×JÞ = kk f kLpðOÞkLqðJÞ. For vec-
tor fields u, v, we write ðuivjÞi,j=1,2,3 as u ⊗ v. We denote A

: B = aijbij for 3 × 3 matrices A = ðaijÞ, B = ðbijÞ. The letter C
is used to represent a generic constant, which may change
from line to line.

2 Advances in Mathematical Physics



Before looking for a solution for the system (1), we give a
lemma.

Lemma 3. Let ðu, bÞ be a solution to the initial value problem
of (1)–(2) with the initial data u0, b0 ∈ L2ðℝ2Þ ∩ L1ðℝ2Þ.
Then, we have for 2 ≤ p

û ξ, tð Þj j + b̂ ξ, tð Þ
��� ��� ≤ C û0 ξð Þð + b̂0 ξð Þ

��� ��� + ξj j
ðt
0

� u sð Þk k2L2 ℝ2ð Þ + b sð Þk k2L2 ℝ2ð Þ
� �

ds

+ C ξj j
ðt
0
u sð Þk kL2 ℝ2ð Þds

� �1/ p−1ð Þ
,

ð10Þ

where C depends only on the ðL2 ∩ L1Þðℝ2Þ-norm of u0 and b0
.

Proof. The proof is easily checked. Indeed, it is almost the
same as that in [17] replacing (2.5) in [17] by

ðt
0
∇u sð Þk kp−1

Lp−1 ℝ2ð Þds ≤
ðt
0
u sð Þk k1/ p−1ð Þ

L2 ℝ2ð Þ ∇u sð Þk kp p−2ð Þ/ p−1ð Þ
Lp ℝ2ð Þ ds

≤ C
ðt
0
u sð Þk kL2 ℝ2ð Þds

� �1/ p−1ð Þ

�
ðt
0
∇u sð Þk kp

Lp ℝ2ð Þdt
� � p−2ð Þ/ p−1ð Þ

≤ C
ðt
0
u sð Þk kL2 ℝ2ð Þds

� �1/ p−1ð Þ
, p > 2:

ð11Þ

3. Proof of Theorem 2

In this paper, we assume that μ0 = 0 and μ1 = 1 for conve-
nience. Let

Vq ≔ φ ∈D′ ℝ2� �2
: ∇ · φ = 0

n o
, ð12Þ

with kφkVq
≔ kDφkLqðℝ2Þ. Now, we will construct the exis-

tence of a weak solution to the system (1) via the standard
Galerkin method. For this, first of all, we need to find a
countable dense subset of the space fφ ∈Dðℝ2Þ: ∇·φ = 0g
in W2,2ðℝ2Þ ∩Vq in Lemma 3.10 of [18].

Now, we consider Galerkin approximate solutions umðt
Þ = Σm

i=1g
m
j ðtÞφj and bmðtÞ = Σm

i=1h
m
j ðtÞψj, where the φj, ψj

are the eigenfunctions which are chosen by using Lemma
3.10 of [18].

umt −∇ · S Duð Þ + um · ∇ð Þum − bm · ∇ð Þbm, φð Þ = 0, ð13Þ

bmt −△bm + um · ∇ð Þbm − bm · ∇ð Þum, ψð Þ = 0, ð14Þ
for φ ∈ spanfφ1, φ2,⋯φmg and ψ ∈ spanfψ1, ψ2,⋯ψmg. The

initial conditions were

um x, 0ð Þ = Σm
i=1aiφ

i xð Þ, bm x, 0ð Þ = Σm
i=1ciψ

i xð Þ, ð15Þ

where ai =
Ð
ℝ2umðx, 0Þ · φiðxÞ and ci =

Ð
ℝ2b

mðx, 0Þ · ψiðxÞ.
Indeed, the functions gmj ðtÞ and hmj ðtÞ satisfy the following
ordinary differential equations as follows:

_gm
j tð Þ + λug

m
j tð Þ + gm

k tð Þð Þp−1
ð
ℝ2

∇φk
��� ���p−2∇φk · ∇φj

+ gmk tð Þgml tð Þ
ð
ℝ2

φk · ∇φl
� �

φj − hmk tð Þhml tð Þ
ð
ℝ2

ψk · ∇ψl
� �

φj = 0,

ð16Þ

_h
m
j tð Þ + λbh

m
j tð Þ + gmk tð Þhml tð Þ

ð
ℝ2

φk · ∇ψl
� �

ψj

− hmk tð Þgml tð Þ
ð
ℝ2

ψk · ∇φl
� �

ψj = 0:
ð17Þ

By the Carathéodory theorem (see [19], Theorem 3.4 in
Appendix), there exist Tm such that equation (16) has unique
solutions on ½0, TmÞ. Now set Tm = T , T <∞.

Proof of Theorem 2. For a proof of existence for a weak solu-
tion, we assume that μ0 = 0 because it is easier for μ0 > 0.

Part A: existence
Multiplying equation (13) by um and equation (14) by bm

and summing up the equations, we have

um Tð Þk k2L2 ℝ2ð Þ + bm Tð Þk k2L2 ℝ2ð Þ + ∇umk kqLq QTð Þ + ∇bmk k2L2 QTð Þ

≤ um 0ð Þk k2L2 ℝ2ð Þ + bm 0ð Þk k2L2 ℝ2ð Þ,
ð18Þ

where we use the divergence free condition, Korn’s inequal-
ity, and vector identity for the magnetic vector field b. For

the distributive time derivative dum/dt, we have ðdum/dtÞ ∈
Lq′ð0, T ; ðW1,qÞ∗Þ + Lqð0, T ; ðW1,q′Þ∗Þ + L2ð0, T ; ðW1,2Þ∗Þ.
Here, q′ is the conjugate of p, and ðW1,q′ðℝ2ÞÞ∗ is the dual

space for W1,q′ðℝ2Þ. Indeed, for ϕ ∈ Lqð0, T ;W1,qÞ ∩ Lq′ð0,
T ; ðW1,q′ðℝ2ÞÞÞ ∩ L2ð0, T ; ðW1,2ðℝ2ÞÞÞ with ∇·ϕ = 0,

ðT
0

ð
ℝ2

dum

dt
· ϕdxdt =

ðT
0

ð
ℝ2

∇·S Dumð Þdx−∇ · um ⊗ umð Þ+∇ · bm ⊗ bmð Þð Þ · ϕdxdt

= −
ðT
0

ð
ℝ2

Dumj jq−2Dum : ∇ϕdxdt +
ðT
0

ð
ℝ2

um ⊗ umð Þ: ∇ϕdxdt

−
ðT
0

ð
ℝ2

bm ⊗ bmð Þ: ∇ϕdxd ≔I 1 +I 2 +I 3:

ð19Þ

(i) Estimate of I 1: using Hölder’s inequality and the
energy estimate (18), we have
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I1j j ≤ Dumj jq−1
			 			

Lq ′ 0,T ;Lq ′
� � ∇ϕk kLq 0,T ;Lqð Þ ≤ Dumk kq−1Lq 0,T ;Lqð Þ ∇ϕk kLq 0,T ;Lqð Þ

≤ C u0k k2L2 ℝ2ð Þ, T , q
� �

∇ϕk kLq 0,T;Lqð Þ:

ð20Þ

(ii) Estimate of I 2: since um belongs to L2qð0, T ; L2qÞ,
we have

I2j j ≤ um ⊗ umk kLq 0,T ;Lqð Þ ∇ϕk kLq/ q−1ð Þ 0,T ;Lq/ q−1ð Þð Þ
≤ umk kL2q 0,T ;L2qð Þ umk kL2q 0,T ;L2qð Þ ∇ϕk kLq/ q−1ð Þ 0,T ;Lq/ q−1ð Þð Þ ≤ C:

ð21Þ

(iii) Estimate of I 3: using Hölder’s inequality, we have

I3j j ≤ bm ⊗ bmk kL2 0,T ;L2ð Þ ∇ϕk kL2 0,T ;L2ð Þ
≤ bmk kL4 0,T ;L4ð Þ bmk kL4 0,T ;L4ð Þ ∇ϕk kL2 0,T ;L2ð Þ ≤ C:

ð22Þ

We combine (20), (21), and (22) to get

dum

dt
∈ Lq′ 0, T ; W1,q� �∗� �

+ Lq 0, T ; W1,q′
� �∗� �

+ L2 0, T ; W1,2� �∗� �
:

ð23Þ

To obtain the distributive time derivative dbm/dt, using
the similar argument above, we have

dbm

dt
∈ L2 0, T ; W1,2� �∗� �

+ L2 0, T ; W1,4� �∗� �
: ð24Þ

Indeed, for ϕ ∈ L2ð0, T ;W1,2Þ ∩ L2ð0, T ;W1,4Þ with ∇·ϕ
= 0,
ðT
0

ð
ℝ2

dum

dt
· ϕdxdt = −

ðT
0

ð
ℝ2
∇bm

: ∇ϕdxdt +
ðT
0

ð
ℝ2

um ⊗ bmð Þ: ∇ϕdxdt ≔ J 1 + J 2: ð25Þ

(iv) Estimate of I 1: using Hölder’s inequality and the
estimate (18), we have

J 1j j ≤ ∇bmk kL2 0,T ;L2ð Þ ∇ϕk kL2 0,T ;L2ð Þ ≤ C: ð26Þ

(v) Estimate of I 2: using Hölder’s inequality, we have

J 2j j ≤ C umk kL2q 0,T ;L2qð Þ bmk kL4 0,T ;L4ð Þ ∇ϕk k
L

4q
3q−2 0,T ;L

4q
3q−2

� � ≤ C:

ð27Þ

Due to the energy estimate (18) and time derivative class
for um and bm, we can choose subsequences umk and bmk such
that

umk ⇀ uweakly in L∞ I ; L2 ℝ2� �� �
∩ Lq I ;W1,q ℝ2� �� �

,

bmk ⇀ bweakly in L∞ I ; L2 ℝ2� �� �
∩ L2 I ;W1,2 ℝ2� �� �

,

∂tu
mk ⇀ ∂tuweakly in Lq

′ 0, T ; W1,q� �∗� �

+ Lq 0, T ; W1,q′
� �∗� �

+ L2 0, T ; W1,2� �∗� �
,

∂tb
mk ⇀ ∂tbweakly in L2 0, T ; W1,2� �∗� �

+ L2 0, T ; W1,4� �∗� �
,

ð28Þ

when k goes to∞. From the class of umk and bmk in the con-
vergence above and by the Aubin-Lions lemma (e.g., [20],
Lemma 3.1), we have

umk ⇀ u strongly in Lploc ℝ2 × I
� �

, p ∈ 1, 2q½ Þ,
bmk ⇀ b strongly in L~ploc ℝ2 × I

� �
, ~p ∈ 1, 4½ Þ:

ð29Þ

Thus, we have

umk → u strongly in L2loc ℝ2 × I
� �

,

bmk → b strongly in L2loc ℝ2 × I
� �

,
ð30Þ

as k→∞. So then, due to the weak and strong convergence
above, it is possible to pass to the limit in the nonlinear terms
(see, e.g., [21]). Moreover, SðDumÞ is uniformly bounded in

Lq′ðℝ2 × ð0, TÞÞ, and so SðDuÞ⇀ A in this class. Hence, we
will check A = SðDuÞ which is shown by monotonicity trick
(see [13], pp. 635-636). For this, we note that for q ≥ 2,

t→
ð
ℝ2

u · ∇uð Þ · udx ∈ L1 0, Tð Þ, t→
ð
ℝ2

u · ∇bð Þ · bdx ∈ L1 0, Tð Þ

t→
ð
ℝ2

b · ∇bð Þ · udx ∈ L1 0, Tð Þ, t→
ð
ℝ2

b · ∇uð Þ · bdx ∈ L1 0, Tð Þ:

ð31Þ

From the energy equality, we have for 0 ≤ s ≤ T

1
2 u sð Þk k2L2 + b sð Þk k2L2
� �

+
ðs
0
∇bk kL2dt +

ðs
0
A ·Dudt

= 1
2 u0k k2L2 + b0k k2L2
� �

:

ð32Þ
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Define

Xm
s =

ðs
0
S Dumð Þ − S Dϕð Þ,Dum −Dϕð Þdt + 1

2 u sð Þk k2L2 , ϕ ∈ Lq 0, T ;W1,q
σ

� �
:

ð33Þ

Here, W1,q
σ ≔ fv ∈W1,qðℝ2Þ: ∇·v = 0g. So, due to the

property of the monotone operator S and the semicontinuity
of the norm, we obtain

liminf
m→∞

Xm
s ≥

1
2 u sð Þk k2, ð34Þ

and also

lim
m→∞

Xm
s =

ðs
0

1
2 u0k k2L2 +

ðs
0
b · ∇bð Þ · udt −

ðs
0
A,Dϕð Þdt −

ðs
0
S Dϕð Þ,Du −Dϕð Þdt

ð35Þ

Then, due to the equality (32), we have

ðs
0
A − S Dϕð Þð Þ · Du −Dϕð Þdt ≥ 0, a:e:s ∈ 0, T½ �: ð36Þ

Putting ϕ = u − λw for λ > 0 and w ∈ Lqð0, T ;W1,q
σ Þ, we

obtain

ðs
0
A − S Du − λwð Þð Þ ·wdt ≥ 0: ð37Þ

As λ→ 0, we deduce

ðs
0
A − S Duð Þð Þ ·wdt ≥ 0, ð38Þ

which means that A = SðDuÞ for a.e. s ∈ ½0, T�. Hence, the
proof of existence for weak solutions is completed.

Part B: uniqueness
For this part, we consider the equation for v = u1 − u2, h

= b1 − b2, and ~π = π1 − π2:

∂tv−∇ · 1 + Du1
�� ��� �q−2

Du1
� �

+∇ · 1 + Du2
�� ��� �q−2

Du2
� �

+ u1 · ∇
� �

v

+ v · ∇ð Þu2 − b1 · ∇
� �

h − h · ∇ð Þb2+∇~π = 0,

∂th − Δ~h + u1 · ∇
� �

h + v · ∇ð Þb2 − b1 · ∇
� �

v − h · ∇ð Þu2 = 0,
ð39Þ

with div v = 0 and div h = 0. Testing v and h to the equations

above, we have

1
2
d
dt

vk k2L2 ℝ2ð Þ + hk k2L2 ℝ2ð Þ
� �

+ ∇vk k2L2 ℝ2ð Þ + ∇hk k2L2 ℝ2ð Þ
� �

≤
ð
ℝ2

v · ∇ð Þu2 · v −
ð
ℝ2

h · ∇ð Þb2 · v +
ð
ℝ2

v · ∇ð Þb2 · h −
ð
ℝ2

h · ∇ð Þu2 · h

≤ vk k2L2 u2
		 		2

L2
∇u2

		 		2
L2
+ hk k2L2 b2

		 		2
L2

∇b2
		 		2

L2
+ vk k2L2 b2

		 		2
L2

∇b2
		 		2

L2

+ hk k2L2 u2
		 		2

L2
∇u2

		 		2
L2
+ 1
2 ∇vk k2L2 + ∇hk k2L2
� �

,

ð40Þ

that is,

1
2
d
dt

vk k2L2 ℝ2ð Þ + hk k2L2 ℝ2ð Þ
� �

+ ∇vk k2L2 ℝ2ð Þ + ∇hk k2L2 ℝ2ð Þ
� �

≤ vk k2L2 + hk k2L2
� �

u2
		 		2

L2
∇u2

		 		2
L2
+ b2
		 		2

L2
∇b2

		 		2
L2

� �
:

ð41Þ

Applying Gronwall’s inequality, we obtain v = 0 and h = 0
in ℝ2 and hence u1 = u2 and b1 = b2.

Part C: decay rate
A proof of this part is almost the same as that in [17]. For

the convenience of the reader, it gives a proof. From the L2

-energy inequality and Korn’s inequality, it follows that

1
2
d
dt

ð
ℝ3

uj j2 + bj j2� �
dx +min C, 1f g

ð
ℝ3

∇uj j2 + ∇bj j2� �
≤ 0,

ð42Þ

where C > 0 is a Korn-type constant. Applying Plancherel’s
theorem to (42) yields

1
2
d
dt

ð
ℝ3

u∧ ξ, tð Þj j2 + b∧ ξ, tð Þj j2
� �

dξ +min C, 1f g
ð
ℝ3

ξj j2

� u∧ ξ, tð Þj j2 + b∧ ξ, tð Þj j2
� �

dξ ≤ 0:

ð43Þ

Put Φðξ, tÞ≔ ju∧ðξ, tÞj2 + jb∧ðξ, tÞj2. Let f ðtÞ be a
smooth function of t with f ð0Þ = 1, f ðtÞ > 0 and f ′ðtÞ > 0.
Set SðtÞ = fξ ∈ℝn : 2 min fC, 1gf ðtÞjξj2 ≤ f ′ðtÞg. Then,

2 min C, 1f gf tð Þ
ð
ℝ3

ξj j2 Φ ξ, tð Þj j2dξ

≥ f ′ tð Þ
ð
ℝ3

Φ ξ, tð Þj j2dξ − f ′ tð Þ
ð
S tð Þ

Φ ξ, tð Þj j2dξ:
ð44Þ

Since

d
dt

f tð Þ
ð
ℝ3

Φ ξ, tð Þj j2dξ
� �

+ 2 min C, 1f gf tð Þ
ð
ℝ3

ξj j2 Φ ξ, tð Þj j2dξ

≤ f ′ tð Þ
ð
ℝ3

Φ ξ, tð Þj j2dξ,

ð45Þ
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we have

d
dt

f tð Þ
ð
ℝn

u∧ ξ, tð Þj j2dξ
� �

≤ f ′ tð Þ
ð
S tð Þ

u∧ ξ, tð Þj j2dξ: ð46Þ

Integrating in time, we get

f tð Þ
ð
ℝn

u∧ ξ, tð Þj j2 + b∧ ξ, tð Þj j2
� �

dξ

≤
ð
ℝn

u∧0 ξð Þj j2 + b∧0 ξð Þj j2
� �

dξ + C
ðt
0
f ′ sð Þ

ð
S sð Þ

� u∧ ξ, sð Þj j2 + b∧ ξ, sð Þj j2
� �

dξds:

ð47Þ

Set f ðtÞ = ð1 + tÞ2. From Lemma 3 with Young’s inequal-
ity and the energy estimate, we have

1 + tð Þ2
ð
ℝn

u∧ ξ, tð Þj j2 + b∧ ξ, tð Þj j2
� �

dξ

≤
ð
ℝn

u∧0 ξð Þj j2 + b∧0 ξð Þj j2
� �

dξ + C
ðt
0
1 + sð Þ

ð
S sð Þ

� u∧0 ξð Þj j2 + b∧0 ξð Þj j2
� �

dξds + C
ðt
0
1 + sð Þ

ð
S sð Þ

ξj j2

�
ðt
0

u sð Þk k2L2 + b sð Þk k2L2
� �

ds
� �2

dξds

+ C
ðt
0
1 + sð Þ

ð
S sð Þ

ξj j2
ðt
0
u sð Þk k2L2 ℝ2ð Þds

� �1/ p−1ð Þ
dξds

≤
ð
ℝn

u∧0 ξð Þj j2 + b∧0 ξð Þj j2
� �

dξ + C
ðt
0
1 + sð Þ

ð
S sð Þ

� u∧0 ξð Þj j2 + b∧0 ξð Þj j2
� �

dξds + C
ðt
0
1 + sð Þ

ð
S sð Þ

s ξj j2

�
ðt
0

u sð Þk k4L2 + b sð Þk k4L2
� �

ds
� �

dξds

+ C
ðt
0
1 + sð Þ

ð
S sð Þ

s ξj j2
ðt
0
u sð Þk k2L2 ℝ2ð Þ ds + C

� �
dξd

≤
ð
ℝn

u∧0 ξð Þj j2 + b∧0 ξð Þj j2
� �

dξ + C
ðt
0
1 + sð Þ

ð
S sð Þ

� u∧0 ξð Þj j2 + b∧0 ξð Þj j2
� �

dξd

+ C
ðt
0
1 + sð Þ2

ð
S sð Þ

ξj j2
ðt
0

u sð Þk k4L2 + b sð Þk k4L2
� �

ds dξds

+ C
ðt
0
1 + sð Þ2

ð
S sð Þ

ξj j2
ðt
0
u sð Þk k2L2 ℝ2ð Þds dξds

≤ C + C 1 + tð Þ +
ðt
0

u sð Þk k2L2 + b sð Þk k2L2
� �

ds
� �

:

ð48Þ

Thus, we get

1 + tð Þ
ð
ℝ3

u ξ, tð Þj j2 + b ξ, tð Þj j2
� �

dξ

≤ C + C
ðt
0
1 + sð Þ u sð Þk k2 + b sð Þk k2� �

1 + sð Þ−1ds:
ð49Þ

Applying Gronwall’s inequality, we immediately deduce
that

u tð Þk kL2 + b tð Þk kL2 ≤ C 1 + tð Þ−1/2, ð50Þ

thus, we finally obtain the desired result.

Appendix

Here, we mention the existence of unique strong solution for
(1)–(2). Its proof is easily checked from the argument in [15]
or [22]. And thus, we omit the proof.

Definition A.1. Let 2 < q <∞ and μ0 ≥ 0 and μ1 > 0. Suppose
that u0 ∈ ðW1,2 ∩W1,qÞðℝ2Þ and b0 ∈W1,2ðℝ2Þ. We say that
a weak solution ðu, bÞ is a strong solution to the incompress-
ible 2D-MHD equations of non-Newtonian fluids (1)–(2) if

∇u ∈ L∞ 0, T ; Lq ∩ L2 ℝ2� �� �
,

b ∈ L∞ 0, T ;W1,2 ℝ2� �� �
∩ L2 0, T ;W2,2 ℝ2� �� �

,

ut , bt ∈ L2 QTð Þ, S Duð Þ ∈ Lq′ 0, T ;W1,q′
loc ℝ2� �� �

:

ðT
0

ð
ℝ2

Duj jq−2 D2u
�� ��2dxdt <∞:

ðA1Þ

Here, q′ means the Hölder conjugate of q.

Theorem A.2. Let 2 < q <∞ and μ0 ≥ 0 and μ1 > 0. Suppose
that u0 ∈ ðW1,2 ∩W1,qÞðℝ2Þ and b0 ∈W1,2ðℝ2Þ. Then, there
exists a strong solution ðu, bÞ of the incompressible 2D-MHD
equations of the non-Newtonian type (1)–(2) in the sense of
Definition A.1.
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