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ABSTRACT

We tackle the issue of the factorial growth in the amplitudes of multi-Higgs production at high
energy by developing a phenomenological approach based on the Higgs splitting functions and
Sudakov factors. We utilize the method of generating functionals to define several jet observables
for the Higgs sector. Our results suggest that pure Higgs splittings should retain a good Ultraviolet
(UV) behavior in contrast to the common picture represented by the breakdown of perturbation
theory and the violation of unitarity due to the high multiplicity of particles produced at or near
threshold, which is found in scalar theories. We thus argue that the issue of the factorial growth in
the amplitude of multi-Higgs production is probably associated with applying perturbation theory in
a regime where it is no longer valid and with the nλ Ñ 8 limit, as opposed to being a sign of new
physics.

Keywords: Higgs; factorial growth; splitting function; Sudakov factor; exclusive jet distribution; jet
multiplicity; jet scaling pattern.

1 INTRODUCTION

It has long been known [1] that in a weakly-
interacting theory, the production of high-
multiplicity final states n at sufficiently high
energies leads to the breakdown of perturbation
theory when n Á 1{λ, where λ is the coupling of

the theory. This has been studied intensively in
theories with scalars.

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], where it was
found that for both the broken and the unbroken
phases of ϕ4 theories, the amplitude of n final
state scalars produced at or near threshold
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through the decay of a highly off-shell initial scalar
would grow „ n!λn. This factorial growth leads to
an exponential growth in the cross-section after
integrating over the phase space:

σn „
1

n!

ż

dΦn|A1˚Ñn|
2

„ n!λn
„ en log pλnq.

(1)
The factorial growth in the amplitude can be
traced to the factorial growth in the number of
Feynman diagrams for ϕ˚ Ñ nϕ, which unlike the
case in Quantum Chromodynamics (QCD), lacks
destructive interference that would compensate
for this factorial growth. It has been argued in
the literature that an exponentially growing cross-

section would signal the onset of strong dynamics
in the weak sector, indicating new physics at high
energies.

Recently, the proposed 100-TeV Future Circular
Collider (FCC) has renewed the interest in multi-
particle production and in particular in the SM
Higgs sector. It was suggested that a very
high number of Higgses can be produced near
threshold at the scale of tens of TeV, thereby
presenting a probe for new physics through the
Higgs sector. More specifically, the scattering
amplitude of h˚ Ñ nh at threshold in the Higgs
sector is given by [4], [5]

A1˚Ñn “

´

B

Bz

¯n

hcl “ n!p2vq
1´n, (2)

where hcl is the classical solution of the Higgs equation of motion at threshold and v is the Higgs
Vacuum Expectation Value (VEV). It was shown in [9] that the cross-section would exponentiate in
the double-scaling limit

σn „ enF pnλ,εq, for n Ñ 8, nλ “ fixed, ε “ fixed, (3)

where ε is the average kinetic energy per particle:

ε “ pE ´ nMq{pnMq, (4)

and F pnλ, εq is an approximately known function dubbed ”the holy grail” function that includes all
contributions to all orders, including loop contributions. It was argued that the exponential cross-
section would violate unitarity at high energy (or high multiplicity) thus signaling new physics, (see for
example the ”Higgsplosion” proposal [14], [15], [16], [17], [18] (also see [19] for a review)).

The same results were replicated using a semi-classical treatment analogous to instanton-based
calculations [10], [11], [18], however, both approaches were derived for the double-scaling limit in Eq.
(3), which assumes that n would be large ab initio. However, there is no reason for the number of
produced Higgses to be large from the beginning, as we show that the probability of producing each
extra Higgs should be minuscule, and thus it would be highly unlikely that the Higgs sector will ever
enter a non-perturbative regime at colliders.

Before proceeding with our approach, we note that in addition to the complication arising from the
factorial growth of the final-state Higgs bosons, there is another complication that arises from the
production of the intermediate Higgs itself. As discussed in detail in [20], [14], [15], the production
of the Higgs boson is dominated by gluon fusion gg Ñ h˚ Ñ n ˆ h, and one needs to include the
computation of Feynman diagrams involving 1-loop polygons with 2 ` k edges for all k ď n, where k
is the number of outgoing Higgs lines. However, the number of contributing diagrams grows with n

1In [10], it was argued that the total probability associated with multi-boson states should rapidly
fall with energy in the high-energy regime: Γp1˚ Ñ nq „ |Ap1˚ Ñ Bq|2ΓpB Ñ nq „ e´2DpEq, where
B is an intermediate N -state bubble formed by the initial virtual particle, and DpEq is a function of
energy which will eventually cut off the amplitude.
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and eventually explodes with high multiplicity n " 1. We stress that this issue is beyond the scope of
this work. Interested readers are referred to [20], [14], [15].

In this work, we try to approach the issue of multi-Higgs production at high energies differently. We
follow a more phenomenological approach to argue that the Higgs sector should retain a good UV
behavior at high energy scales relevant to the FCC. Here we try to utilize the success of QCD in
describing multi-jet events to the Higgs sector by extending the definition of jets to the Higgs sector.
This analogy is motivated by the fact the Higgs quartic coupling λ at high energy exhibits a behavior
similar to asymptotic freedom in QCD. More specifically, the Renormalization Group Equation (RGE)
running of λ was calculated up to the Next-to-Next-to-LeadingOrderpNNLOqr21s, r22s, r23s, and
showsthatλ becomes smaller at higher energies and eventually runs to a fixed point at scales Á 109

GeV. This behavior is somewhat similar to asymptotic freedom in QCD, in spite of the fact that λ does
not become non-perturbatively strong in the Infrared (IR) region. In addition, at high energies relevant
for the 100 TeV collider, the Higgs can be treated as massless in a manner similar to the case in QCD.
This represents enough motivation to extend the QCD treatment to the Higgs sector at high energies.

To describe our approach more concretely, we imagine an intermediate off-shell Higgs produced with
very high energy that subsequently undergoes multiple splittings into several soft Higgses with small
transverse momenta. This picture allows us to define a splitting function for the Higgs in a way similar
to the QCD splitting functions. If we visualize these radiated soft Higgses (together with their possible
decay products) as Higgs ”jets”, then we can use the splitting functions to resum all the soft splittings
radiated off the hard Higgs through the usual Sudakov factor.

The analogy with the QCD sector can be extended to allow for the description of the evolution of the
Higgs distribution through the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [24], [25],
[26]:

BfBpz, µ2q

Bµ2
“

ÿ

A

ż 1

z

dξ

ξ

dPpz{ξ, µ2q

dzdp2T
fApξ, µ2

q. (5)

Defining the Higgs distribution through the DGLAP equation allows us to furnish several useful
observables that can be used to study the Higgs production at high energies. As we shall see,
this picture suggests that the Higgs production should remain well-behaved at high energies, i.e., the
number of Higgses produced at high energy should remain low and the Higgs sector should be well-
described by the Standard Model (SM). We note here that with this approach, perturbative unitarity is
assumed ab initio as we will be using perturbation theory implicitly. This is justified as we will do our
calculation in the region of the phase space where it remains valid, and use the results as insight to
argue that the good behavior should be extrapolated to all regions in the phase space.

We should emphasize here, however, that we are not claiming to have solved the factorial divergences
problem, which is more of a technical problem associated with Quantum Field Theory (QFT) and
perturbation theory. Instead, what we are suggesting is that this problem is probably an artifact
resulting from applying perturbation theory (and other semi-classical treatments) in a regime where it
breaks down and from assuming the double-scaling limit, and therefore should not be interpreted as
a sign of new physics and should not appear in real processes at colliders, at least in the SM Higgs
sector.

This paper is organized as follows: In Section 2 we derive the splitting functions of the Higgs cubic
and quartic interactions and use them to find the associated Sudakov factors. In Section 3 we define
a number of Higgs jet observables for both the cubic and the quartic interactions by utilizing the
method of generating functionals and show that the average number of Higgses expected at high
energy should remain low. We also compare the cubic and the quartic interactions and find that
cubic splittings are dominant. We relegate some of the technical details to Appendix A. In Section 4

41



Abu-Ajamieh; AJR2P, 6(1):39-56, 2022; Article no.AJR2P.85588

we estimate the contribution of secondary emissions and then we discuss our results and the future
outlook in Section 5.

C

D
D

Fig. 1. Factorization of the 3-vertex splitting

2 SPLITTING FUNCTIONS AND THE SUDAKOV FACTORS

Our starting point will be to derive the splitting functions for the Higgs cubic and quartic interactions
and then to use them to find the corresponding Sudakov factors. In doing so, we follow the method
originally introduced in [24] and recently utilized by [35] to find all of the splitting functions for the
entire Electroweak (EW) sector. In all of our calculations, we work in the high energy limit Q " m, v
(the Higgs mass and VEV), such that all masses can be dropped. However, we do keep the mass as
an Infrared (IR) cutoff when we find the Sudakov factors later on. Furthermore, we shall assume the
collinear limit where the transverse momentum is small compared with the energy scale of the hard
process pT ! Q.

2.1 The 3-Higgs Vertex
This section is largely a review of the standard procedure for calculating splitting functions and
the Sudakov factor. To derive the splitting function of a general cubic interaction, we consider the
processes shown in Fig. 1. We assume that the process in (a) is comprised of the hard process in
(b) and a soft splitting A Ñ B ` C. Particles A and B are assumed to slightly off-shell with small
transverse momenta. Then the differential splitting function dPABpzq is defined as the probability of
finding particle B in particle A with an energy fraction z of the energy of A at the lowest order in the
coupling:

dPAÑBCpz, p2T q “
α

2π
PAÑBCpzqdzdp2T , (6)

where pT is the transverse momentum and PABpzq is the so-called kernel function. The matrix
elements of the two processes in Fig. 1 can be expressed in terms of their interaction vertices as

MA`DÑC`f “ g2
VAÑB`CVD`BÑf

p2EBqpEB ` EC ´ EAq
, (7a)

MB`DÑf “ gVB`DÑf , (7b)
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where Vij are the invariant matrix elements of the vertices with the factor p2Ekq´1{2 removed and g
is the coupling constant. The matrix elements in Eq. (7) can be used to calculate the cross-sections
of the two processes

dσa “
g4

8EAED

|VAÑB`C |2|VB`DÑf |2

p2EBq2pEB ` EC ´ EAq2
p2πq

4δ4pKA ` KD ´ KC ´ Kf q
d3k⃗C

p2πq32EC

ź

f

d3p⃗f
p2πq32Ef

,

(8a)

dσb “
g2

8EBED
|VB`DÑf |

2
p2πq

4δ4pKB ` KD ´ Kf q
ź

f

d3p⃗f
p2πq32Ef

. (8b)

Inspecting eqs. (8a) and (8b), we can see that they are related in the following way

dσa “
EB

EA

g2|VAÑB`C |2

p2EBq2pEB ` EC ´ EAq2
d3k⃗C

p2πq32EC
dσb. (9)

On the other hand, in the collinear limit where the transverse momenta of particles B and C are small
compared to the energy scale of the hard process, the two processes factorize through the differential
splitting function [27]

dσa » dPAÑB`Cpz, tq ˆ dσb. (10)

Comparing eqs. (9) and (10), we can immediately find a general expression for the splitting function
of any cubic interaction:

dPAÑBCpz, tq “
1

S

EB

EA

g2|VAÑB`C |2

p2EBq2pEB ` EC ´ EAq2
d3k⃗C

p2πq32EC
, (11)

where S is a possible symmetry factor. The splitting function depends on a dimensionless variable z,
which expresses the fraction of the energy of the mother particle that is carried away by the daughter
particle (the other daughter particle carries the rest 1´z), and a dimensionful variable t that expresses
the energy scale of the splitting. Common choices of t are the transverse momentum of the daughter
particles, the virtuality, or the energy-weighted angle of the radiated particle relative to the mother
particle θEA. In our analysis, we shall use the transverse momentum and set t ” p2T .

In the collinear limit |p⃗T | ! Q, where Q is the energy scale of the mother particle, we can parameterize
the 4-momenta of A, B, and C to the leading order in the transverse momentum as follows:

KA “

´

Q, 0, Q
¯

, (12a)

KB “

´

zQ `
p2T
2zQ

, p⃗T , zQ
¯

, (12b)

KC “

´

p1 ´ zqQ `
p2T

2p1 ´ zqQ
,´p⃗T , p1 ´ zqQ

¯

. (12c)

Notice that particles B and C have virtualities of Opp4T q. Given this parameterization of momenta,
and integrating over the azimuthal angle, we can write the phase space factor as

d3k⃗C
p2πq32EC

“
1

16π2

dzdp2T
p1 ´ zq

. (13)

Plugging eqs. (12) and (13) in Eq. (11) and keeping only the leading term in p2T , the splitting function
simplifies to

dPAÑBC

dzdp2T
“

1

S

g2|V |2

16π2

zp1 ´ zq

p4T
. (14)
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Fig. 2. (Left): The cubic Higgs Sudakov factor as a function of the virtuality t. (Right): The
quartic Higgs Sudakov factor. The plots are on a log-log scale

We are now ready to apply this to the Higgs trilinear splitting h˚ Ñ hh. Here we work in the
normalization m2

h “ 1
2
λv2, such that gV3H “ 3

2
λv. Thus, we finally arrive at the 3H splitting function

dPhÑhhpz, tq “

´3
?
2vλ

16π

¯2 zp1 ´ zq

t2
dzdt. (15)

This result is consistent with [35]. Notice here that unlike the splitting functions in the QCD sector,
which scales like „ dp2T {p2T , the splitting function of the Higgs cubic interaction scale like „ dp2T {p4T .
This type of splitting function dubbed ultra-collinear in [35] is IR-dominated, with most of the contribution
being near t „ m2. Also, integrating these ultra-collinear splitting functions leads to power-law
Sudakov factors instead of the usual logarithms as we show below. Finding the Sudakov factor is
now a matter of simple integration. Assuming strong-ordering of the radiated particles, the Sudakov
factor can be expressed as

∆3Vpt, t0q “ exp

«

´
ÿ

BC

ż t

t0

dt1

ż 1

0

dz
dPAÑB`Cpz, t1q

dzdt1

ff

, (16)

where the sum goes over all particles B,C to which A can decay. Plugging Eq. (15) and using the
Higgs mass as an IR cutoff, we obtain

∆3hpt, t0q “ exp

«

´ 3

˜

vλ

16π

¸2˜

1

t0
´

1

t

¸ff

, (17)

where we set t0 “ m2. As noted earlier, the Sudakov factor is dominated near t „ m2 and becomes
essentially constant for t " m2. As the Sudakov factor expresses the probability of a particle not
splitting, it is easy to see that increasing the energy scale will have a limited effect on enhancing the
splitting of the Higgs. This stems from the ultra-collinear behavior of the splitting function which is a
direct result of the dp2T {p4T scaling of the splitting function. The Sudakov factor of the trilinear Higgs
interaction is shown on the left-hand side of Fig. 2, where we can clearly see that the probability of
Higgs splitting remains low even at very high energies. To better understand the smallness of the
splitting probability in the Higgs cubic interaction, we write Eq. (17) in a more transparent way:

∆3hpt, t0q “ exp

«

´
3αH

8

´

1 ´
m2

t

¯

ff

, (18)

where we have define αH ” λ{16π2 « 0.003. We can see that in the limit t Ñ 8, ∆3hpt, t0q Ñ

e´3αH {8 » e´0.001 » 1. Thus, we can see that the smallness of the splitting probability is a direct
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result of the weakness of the Higgs trilinear interaction, coupled with the ultra-collinear behavior
of this interaction. This result seems to suggest that one should not anticipate a large number of
Higgses in pure Higgs events even at high energies, at least for splittings produced through the
trilinear interaction, since the probability of splitting is always small.

2.2 The 4-Higgs Vertex
Now we are in a position to generalize the splitting function and the Sudakov factor to quartic interactions.
Previous studies tended to neglect quartic interactions and only focus on cubic terms. We now
consider the emission of two particles from the same vertex instead of one. Considering the process
in Fig. 3(a), we can define the quartic splitting function as the probability of finding a pair of particles C
and D in particle A with energy fractions x and z of the energy of A at the lowest order of the coupling.
The two particles could have different transverse momenta p⃗T , k⃗T , and therefore the definition of the
splitting function generalizes to:

dPAÑBCDpx, z, p2T , k
2
T q “

α

2π
PAÑBCDdxdzdp2T dk

2
T . (19)

Fig. 3. Factorization of the 4-vertex splitting

Similarly to the case of the cubic interaction, we assume that the process in Fig. 3(a) is comprised
of the hard process in (b) and the soft splitting A Ñ B ` C ` D. The matrix elements of the two
processes can be written as

ME`AÑC`D`f “ g2
VAÑB`C`DVB`EÑf

p2EBqpEB ` EC ` ED ´ EAq
, (20a)

ME`BÑf “ gVE`BÑf , (20b)

and their respective cross-sections are thus given by

dσa “
g4

8EAEE

|VAÑB`C`D|2|VB`EÑf |2

p2EBq2pEB ` EC ` ED ´ EAq2

ˆ p2πq
4δp4q

pKA ` KE ´ KC ´ KD ´ Kf q
d3k⃗C

p2πq32EC

d3k⃗D
p2πq32ED

ź

f

d3p⃗f
p2πq32Ef

, (21a)

dσb “
g2

8EBEE
|VB`EÑf |

2
p2πq

4δp4q
pKB ` KC ´ Kf q

ź

f

d3p⃗f
p2πq32Ef

. (21b)
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Inspecting eqs. (21a) and (21b), and assuming that in the collinear limit pT , kT ! Q, the two process
factorize in a way similar to the cubic case in Eq. (10), and it is not hard to see that the quartic splitting
function is given by the following general formula

dPAÑBCDpx, z, p2T , k
2
T q “

1

S

EB

EA

g2|VAÑB`C`D|2

p2EBq2pEB ` EC ` ED ´ EAq2
d3k⃗C

p2πq32EC

d3k⃗D
p2πq32ED

. (22)

This equation is similar to the cubic case, except now it has two energy fractions x and z (with
x ` z “ 1) and two energy scales p⃗T , k⃗T . The 4-momenta of the particles can be parameterized as

KA “

´

Q, 0, Q
¯

, (23a)

KD “

´

xQ `
p2T
2xQ

, p⃗T , xQ
¯

, (23b)

KC “

´

zQ `
k2
T

2zQ
, k⃗T , zQ

¯

, (23c)

KB “

´

p1 ´ x ´ zqQ `
pp⃗T ` k⃗T q2

2p1 ´ x ´ zqQ
,´p⃗T ´ k⃗T , p1 ´ x ´ zqQ

¯

. (23d)

Notice that p⃗T and k⃗T could have different directions and that the azimuthal angle ϕ between them
needn’t be small even in the collinear limit. In fact, ϕ could have any value between 0 and 2π. This
is because the orientations of the emitted particles are independent of the angles θi between their
individual directions and that of the mother particle A, which are small in the collinear limit. Thus, the
azimuthal dependence can be integrated in one of the phase space factors, but not in both

d3k⃗C
p2πq32EC

“
dxdp2T
16π2x

, (24a)

d3k⃗D
p2πq32ED

“
dzdϕdk2

T

32π3z
. (24b)

Putting all pieces together, and keeping only the leading terms in the transverse momenta, Eq. (22)
simplifies to the following general formula

dPAÑBCD

dxdzdϕdp2T dk
2
T

“
1

2πS

´ g|V |

16π2

¯2 xzp1 ´ x ´ zq

rzp1 ´ zqp2T ` xp1 ´ xqk2
T ` 2xz pT kT cosϕs2

, (25)

where S is a possible symmetry factor. To apply this to the Higgs quartic interaction, we insert
g|V4H | “ 3

2
λ (in the normalization adopted above) and set S “ 3, we obtain

dPhÑhhh

dxdzdϕdp2T dk
2
T

“

´

?
3λ

32
?
2ππ2

¯2 xzp1 ´ x ´ zq

rzp1 ´ zqp2T ` xp1 ´ xqk2
T ` 2xz pT kT cosϕs2

. (26)

Before we use the splitting function to find the Sudakov factor, there is a subtlety that we need to
address: In cubic splittings, there is a single well-defined energy scale p2T ” t, however, for quartic
splitting we have two energy scales p2T , pk2

T q ” t1, pt2q. Therefore, we first need to generalize Eq. (16)
to the case of quartic interactions. We write

∆4V pt0, tq “ exp

«

´
ÿ

BCD

ż 1

0

dz

ż 1´z

0

dx

ż 2π

0

dϕ

ż t

t0

dt1

ż t1

t0

dt2 dP
dxdzdϕdt1dt2

ff

, (27)

where the sum should go over all quartic splittings that the mother particle A could undergo. Now
we are in a position to use Eq. (26) to find the Sudakov factor for the Higgs quartic interaction. The
integrals over the energy scales can be done exactly giving the familiar logarithmic factor, while the
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remaining integrals contain a complicated function of the energy fractions and the azimuthal angle
and can be done numerically. The final quartic Higgs Sudakov factor reads

∆4Hpt, t0q “ exp

«

´
3b

8π
α2
H logpt{t0q

ff

, (28)

where the numerical factor b » 1.57 comes from integrating over x, z and ϕ. Comparing the Sudakov
factor of the Higgs cubic splitting with that of the quartic splitting, a couple of remarks are in order:
(1) The Higgs quartic splitting exhibits the usual logarithmic scaling instead of the power-law scaling
that we found in the cubic Higgs case. This logarithmic scaling is a result of the additional integral
over the extra energy scale, and (2) the Sudakov factor of the quartic interaction contains an extra
phase space factor of 1{16π2 which leads to a significant suppression relative to the cubic Sudakov
factor. We plot the Higgs quartic Sudakov factor on the right-hand-side of Fig. 2 where we can see
that relative to the cubic Higgs case, the probability of quartic splittings is much smaller due to the
extra phase space factor. We will discuss this suppression in more detail in the next section.

3 HIGGS GENERATING FUNCTIONALS AND JET OBSERVABLES

Having defined the splitting functions and Sudakov factors for the Higgs cubic and quartic interactions,
we would like to treat the Higgses as jets and define several IR-safe jet observables that can be used
to investigate the production of multi-Higgses at high energy. To this end, we shall apply the method
of generating functionals used for studying QCD jets [28], [29] to the Higgs sector. The method of the
generating functionals simply aims at constructing an n-particle functional in an arbitrary parameter
u, whose repeated differentiation with respect to u yields the cross-sections of the n-particles as the
coefficients of the expansion. Thus, the generating functional can be constructed by summing all tree-
level cross-sections weighted by an appropriate power of u. In the following, we follow a construction
more suitable for our purposes presented in [30] (see also [31]). When we divide the contributions
by the total cross-section, then the repeated differentiation yields the exclusive multiplicity distribution
Pn “ σn

σtot
. Thus, the generating functional is constructed as follows:

Φ “

8
ÿ

n“1

unPn´1 where Pn´1 “
σn´1

σtot
“

1

n!

dn

dun
Φ

ˇ

ˇ

ˇ

ˇ

ˇ

u“0

. (29)

Note here that Pn´1 describes n ´ 1 radiated jets, i.e. n “ 1 corresponds to the original particle not
splitting. We can see that Pn´1 expresses the relative contribution of each additional radiated particle
to the total cross-section. Another important observable that can be extracted from the generating
functional that is relevant for our purposes is the average jet multiplicity, which describes the average
number of radiated particles at a given energy scale

n̄ “
dΦ

du

ˇ

ˇ

ˇ

ˇ

ˇ

u“1

“

8
ÿ

n“1

nun´1 σn´1

σtot

ˇ

ˇ

ˇ

ˇ

ˇ

u“1

“ 1 `
1

σtot

8
ÿ

n“1

pn ´ 1qσn´1. (30)

The generating functional method can also be used to study the jet scaling pattern, which simply
expresses the relative suppression associated with each additional radiated particle. The jet scaling
pattern can be expressed as the ratios of the successive exclusive jet cross-sections

Rpn`1q{n ”
σn`1

σn
“

Pn`1

Pn
. (31)

The scaling pattern was investigated for the case of QCD jets in [30], [32]. In QCD jets, there are two
main limiting cases that describe the jet scaling pattern. If the ratio of the successive cross-sections
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is constant, then the pattern is referred to as a staircase pattern. On the other hand, the pattern is
called Poisson if it follows a Poisson distribution:

Pn “
n̄ne´n̄

n!
ùñ Rpn`1q{n “

n̄

n ` 1
. (32)

Below, we derive these observables for the Higgs cubic and quartic interactions and use them to
investigate the production of multi-Higgses at high energies.

3.1 The Higgs Cubic Interaction
To derive the generating functional, we will follow the method presented in [31]. The DGLAP equation
describes the evolution of parton densities in QCD. Thus, they can be used to describe parton
splittings i Ñ jk where each jet is described by the generating functional instead of the parton
density. We can thus write the general formula describing the evolution of the generating functionals
as

Φiptq “ ∆ipt, t0qΦipt0q `

ż t

t0

dt1∆ipt, t
1
q

ÿ

iÑjk

ż 1

0

dz
dP
dzdt1

Φjpz2t1
qΦkpp1 ´ zq

2t1
q. (33)

Given the splitting function and the Sudakov factor that describe a certain splitting, the generalization
to any sector will be straightforward. Using the results found earlier, we find the generating functional
of the cubic Higgs interaction

Φ3hptq “ u
”

∆3hpt, t0q

ı1´u

. (34)

The detailed derivation is presented in Appendix A. Eq. (34) can be used in eqs (29), (30) and (31) to
find the exclusive multiplicity distribution, average jet multiplicity and jet scaling pattern respectively

Pn´1 “ ∆3hpt, t0q
| log∆3hpt, t0q|n´1

pn ´ 1q!
, (35a)

n̄ “ 1 ´ log∆3hpt, t0q, (35b)

Rpn`1q{n “
| log∆3hpt, t0q|

n ` 1
. (35c)

Before we study these observables, we point out a few remarks: (1) Since ∆3hpt, t0q ď 1, we can see
from Eq. (35b) that n̄ ě 1, with the average jet multiplicity being equal to unity only when t “ t0. This
simply means that t “ t0 corresponds to the original Higgs not splitting, while the number of radiated
Higgses is enhanced with increasing the energy scale, and (2) from Eq. (35c), we can see that the
cubic Higgs splitting follows a Poisson pattern.

The cubic Higgs average jet multiplicity is shown on the left side of Fig. 4. The plot clearly shows that
even at very high energy scales, the average number of Higgses is very close to one, i.e. the average
number of radiated Higgses is always small, and that most Higgs events will not undergo any splitting
(at least through the trilinear interaction). This picture is in stark contrast with the conclusion that
a high multiplicity of Higgses would be produced at high energies due to the factorial growth in the
amplitude, as highlighted in the introduction. We are thus led to believe that the Higgs sector should
remain well-behaved at high energies, and that concluding that new physics should emerge in the
Higgs sector at high energy as a result of the supposed factorial growth of the amplitude is probably
the wrong conclusion to draw. To put this in more concrete terms, we argue that at high energies,
the multi-Higgs production in pure Higgs events should remain perturbative and well-described by the
SM; and that the factorial growth in the amplitudes of multiple Higgses produced at or near threshold

2Notice that in Eq. (32), n̄ refers to the average number of radiated particles, while in Eq. (35b) it
refers to the total number of jets, including the original one.
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is probably an artifact of applying perturbation theory where it is not valid, and of assuming the double-
scaling limit in Eq. (3). Thus, it should not be interpreted as a sign of new physics and should not
appear in real processes in colliders.
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Fig. 4. (Left): The cubic Higgs average jet multiplicity with the energy scale. (Right): The
cubic Higgs jet scaling pattern given in Eq. (35c), with n “ 1 (blue), n “ 2 (gray), n “ 3 (red),
n “ 4 (green), n “ 5 (magenta). The plot clearly shows a Poisson scaling pattern (see Eq.

(32)). Both plots are on a log-log scale

We should point out, however, that our results are approximate as we are only resumming a subset of
the possible n! Feynman diagrams through the Sudakov factor. Therefore, one might argue that other
topologies might drastically enhance the Higgs production. For instance, it was argued in [17] that the
leading contribution to the amplitude stems from the interference terms among the different Feynman
diagrams, which contribute an additional n! to the amplitude, however, the exponential growth in the
amplitude implicitly assumes that the number of particles that are produced is already large, which is
probably not the case. In spite of our approximate treatment, we should emphasize that the differential
probability of splitting, as represented by the splitting function, is independent of the topology of the
Feynman diagram, and since the probability of splitting is always small, other topologies should not
exhibit drastically different behavior. Another approximation in our calculation is the assumption of
the collinear limit, which could impact our results. Nonetheless, this assumption is quite justified in
the high energy limit wherein we are interested. Therefore, we conclude that the Higgs sector should
remain under control at high energy.

We should also point out that we are working in the leading order of λ and we are neglecting its RGE
running, however, as λ becomes smaller at higher energies (see for instance Fig. 1 in [23]), then the
probability of splitting will become even lower, thereby making the average jet multiplicity even lower
than what we find in our calculation with the running neglected. This gives further reasons to believe
that the number of Higgses produced at high energies should not become large.

We must, however, emphasize that our results do not represent a solution to the technical problem
of the factorial growth in scalar amplitudes in the high multiplicity limit. What we argue here is that
this behavior (at least for the Higgs sector), is not a sign of new physics, but rather a limitation of
perturbation theory itself and of assuming the double-scaling limit and that for all practical purposes
we should trust the predictions of the SM at high energies (at least energies relevant for colliders).
Our results are in line with the argument recently presented in [33], where they presented an entirely
different, semi-classical non-perturbative treatment for the production of a large number of scalars in
the processes 2 Ñ n and n Ñ n in a non-broken ϕ4 theory. Their results also suggest that using
perturbation theory in the regime n Á λ´1 is erroneous and that the growth in amplitude is weaker
than n!. Furthermore, our results are also reminiscent of the results in [34], where it is argued that:
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1) The formula for Higgsplosion has limited applicability and that it is inconsistent with the unitarity of
the SM, and 2) it is not possible to resum the contribution from Higgsplosion in the imaginary part of
the Higgs boson propagator, therefore a solution to the hierarchy problem cannot be furnished with
this mechanism. We will show below that including the Higgs quartic interaction will not alter this
conclusion.

To conclude this subsection, we show the jet scaling pattern for the cubic Higgs interaction on the
right side of Fig. 4, where we see that the Poisson pattern is manifest.

3.2 The Higgs Quartic Interaction
Here we perform the same analysis for the quartic Higgs sector. The generalization of the DGLAP
equation for generating functionals to the quartic Higgs interaction is fairly straightforward, and the
calculation of the generating functional follows the same logic as that for the 3H case. The 4H
generating functional is given by

Φ4hptq “ u
”

∆4hpt, t0q

ı1´u2

. (36)
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Fig. 5. (Left): The quartic Higgs average jet multiplicity with the energy scale. (Right): The
quartic Higgs jet scaling pattern given in Eq. (37c), with n “ 1 (blue), n “ 2 (gray), n “ 3 (red),

n “ 4 (green), n “ 5 (magenta). The plot clearly shows a Poisson scaling pattern (see Eq.
(32)). Both plots are on a log-log scale

The 4H generating functional is very similar to the 3H one, with the only difference being in the power
of 1 ´ u2 instead of 1 ´ u. This is because, in a quartic splitting, two particles are radiated from the
same vertex instead of one. The jet observables can be easily found

Pn´2 “

$

&

%

n!!
n!
∆4hpt, t0q

”

´ 2 log∆4hpt, t0q

ı
n´1
2 ; n “ odd,

0 ; n “ even,
(37a)

n̄ “ 1 ´ 2 log∆4hpt, t0q, (37b)

Rpn`2q{n “
Pn`2

Pn
“

|2 log∆4hpt, t0q|

n ` 1
;n “ odd, (37c)

and here we see that the jet observables are only defined for an odd number of jets corresponding to
an even number of radiated Higgses (2 per splitting) in addition to the original hard Higgs. Here too
we find that n̄jet ě 1 and that the scaling pattern is of Poisson type.
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We plot the average jet multiplicity and the jet scaling pattern for the quartic Higgs interaction in Fig.
5. Here too we see that the average number of radiated Higgses is minuscule, thereby confirming
our earlier conclusion of a good UV behavior of pure Higgs events. Comparing the average jet
multiplicities through the cubic and quartic interactions, we find that the cubic interaction dominates.
This is hardly surprising as the quartic splitting function has an extra phase space factor of 1{16π2

that exponentiates in the Sudakov factor, thus providing significant suppression, as mentioned in the
previous section.

To compare the average jet multiplicities more rigorously, we recall, that the number of splittings
ns “ n̄jet ´ 1. Thus, we can define the splitting fraction for a certain vertex as

βhi “
nsi

ns3h ` ns4h

. (38)
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Fig. 6. Splitting fractions of the Higgs cubic (red) and quartic (blue) interactions. Notice that
β3h ` β4h “ 1. The plot shows that for moderate energies the cubic splitting dominates over
the quartic one, while the quartic only begins to dominate at energies Á 8 ˆ 10134 GeV (not

shown on the plot), see Eq. (39). The plot is on a log-log scale.

We plot the splitting fraction in Fig. 6. The plot shows that the cubic Higgs splitting dominates over
the quartic one. However, we can also see that the relative contribution of the quartic splitting grows
with energy. To estimate the energy scale at which the quartic splitting begins to dominate, we can
compare the quartic Sudakov factor (Eq. (28)) with the cubic one (Eq. (18)). For t0 “ m2, one finds
that the quartic scale begins to dominate at an energy scale of:

Q » m exp
´4π3v2

b m2

¯

“ m exp
´ π

2 b αH

¯

» 8 ˆ 10134 GeV! (39)

thus, for all practical purposes, we can completely neglect the Higgs quartic splittings.

4 PRIMARY VS. SECONDARY EMISSIONS

So far, we have only considered primary emissions and neglected secondary ones. What we mean
by primary emissions are the emissions characterized by the hard Higgs radiating successive soft
Higgses. On the other hand, secondary emissions refer to the ones where the soft Higgses themselves
radiate other soft Higgses (see Fig. 7). For the case of QCD jets, primary emissions dominate at high
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energy, while at low energy it is the secondary emissions that dominate [30]. In the Higgs sector,
we would like to estimate how much uncertainty is associated with neglecting secondary emissions.
To estimate the contribution of primary and secondary emissions in pure Higgs splittings, we can
calculate their cross-sections as follows:

σP
pQ2, Q2

0q “ CP
ż Q2

Q2
0

dtΓpQ2, tq∆hpt, t0q

ż Q2

Q2
0

dt1ΓpQ2, t1
q∆hpt1, t0q, (40a)

σS
pQ2, Q2

0q “ CS
ż Q2

Q2
0

dtΓpQ2, tq∆hpt, t0q

ż t

Q2
0

dt1Γpt, t1
q∆hpt1, t0q, (40b)

where CP , CS are prefactors of roughly the same order that depend on the hard process, Q is
the scale of the hard process, Q0 is the scale of the daughter particle, and ΓpQ2, tq is obtained by
integrating the splitting functions over the energy fractions x and z. Notice that the two equations only
differ in the upper limit of the second integral. Plugging the Sudakov factors found earlier and the
integrated splitting functions ΓpQ2, tq in Eqs. (40a) and (40b), one can show that for both the cubic
and the quartic Higgs interactions we have

σSpQ2, t0q

σPpQ2, t0q
“

CS

2CP . (41)

Q Q0QQ0

Fig. 7. Primary emission (left) vs. secondary emission (right)

This implies that both primary and secondary
emissions have roughly similar magnitudes. This
is hardly surprising as our results seem to
suggest that pure Higgs events will mostly
undergo a single splitting, thus primary and
secondary emissions become indistinguishable,
as all emitted Higgses (including the one along
the ”hard” line) are soft. This high-level
comparison seems to suggest that there is an
Op1q correction to our earlier results. On
the other hand, it also seems to suggest that
other splitting topologies should not be drastically
different from the ones resummed through the
Sudakov factor, which provides further evidence
that the probability of splitting is independent of
the topology of the process, and that the Higgs
sector should still have good behavior at high
energies. Therefore, our conclusions remain
valid.

5 DISCUSSON, CONCLU-
SIONS AND OUTLOOK

In this paper, we tackled the issue of multi-Higgs
production at high energies. It is commonly
suggested in the literature that due to the factorial
growth in the amplitudes of n-Higgs production
(An „ n!), the number of Higgses produced
at high energy should be large, leading to a
breakdown in perturbation theory and violation
of unitarity, thereby signaling the emergence of
new physics at these energy scales. Here we
approached this issue from a different angle.
We developed a phenomenological approach
by defining the splitting functions and the
Sudakov factors for the Higgs cubic and quartic
interactions. Then we generalized the method of
generating functionals employed in the QCD
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sector to pure Higgs events, and we defined
several Higgs jet observables and used them
to show that the pure Higgs sector should exhibit
good UV behavior. We found that on average,
the number of Higgses produced at high energy
should remain low. This good UV behavior is
mainly a result of the weak couplings of the Higgs
cubic and quartic interactions which render the
probability of the Higgs splitting to other Higgses
low even at high energy.

Our results are in stark contrast with the
results found for multi-Higgs production at or
near threshold at high energies, such as the
Higgsplosion proposal. We conjecture that
the breakdown of perturbation theory and the
violation of unitarity one finds in such a case
are probably artifacts of applying perturbation
theory where it is not valid, and of assuming
the double-scaling limit (which implicitly assumes
a large n ab initio) rather than a sign of
new physics. We showed that although our
treatment is approximate, as we are resumming
a subset of the total n! Feynman diagrams
and we are working in the collinear limit, it
nonetheless suggests that the Higgs sector
at high energies should remain under control
and well-described by the SM predictions. We
argue that including other topologies would not
drastically alter our conclusions as the splitting
functions are independent of these topologies,
and the probability of splitting remains low at high
energies.

We showed that for all energy scales of interest,
the Higgs cubic splitting is dominant and that the
quartic one is negligible. This is due to the extra
phase space suppression in the quartic case
relative to the cubic one. We also showed that
secondary Higgs emissions are comparable to
the primary ones but do not significantly affect
our results. We also studied the Higgs scaling
pattern and found that pure Higgs splittings follow
a Poisson pattern.

The observables developed in this paper can be
helpful in studying the Higgs production at high
energies, and the formalism developed in this
paper can be readily applied to the rest of the
EW sector. Recently, Chen et. al. [35] calculated
the splitting functions for all cubic interactions in

the EW sector. Thus, the generating functional
method can be used to define the jet observables
for the rest of the EW sector. EW jets and EW
corrections will become more important as the
energy scale of colliders increases, especially
for the 100-TeV FCC. We intend to extend our
analysis to the rest of the EW sector in future
work.
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APPENDIX A

Derivation of the Cubic Higgs Generating Funcional
Starting with Eq. (33), and using the cubic Higgs splitting function given in Eq. (15), the generating
functional is given by:

Φptq “ ∆pt, t0qΦpt0q `

˜

3
?
2vλ

16π

¸2
ż t

t0

dt1

t12
∆pt, t1

q

ż 1

0

dzzp1 ´ zqΦpz2t1
qΦpp1 ´ zq

2t1
q. (42)

We can see from the Sudakov factor of the cubic Higgs in Eq. (17) that at high energy, it becomes
almost constant. Thus, we can neglect the z-dependence of the generating functionals and pull them
out of the z-integral. This leaves

ş1

0
dzzp1 ´ zq “ 1{6. In addition, notice ∆pt, t1q “ ∆pt, t0q{∆pt1, t0q.

Thus, Eq. (42) simplies to

Φptq » ∆pt, t0qΦpt0q `

˜ ?
3vλ

16π

¸2

∆pt, t0q

ż t

t0

dt1

t12

Φ2pt1q

∆pt1, t0q
. (43)

Differentiating both sides w.r.t. t and then dividing by Φptq, we obtain a simple differential equation for
the generating functional

dΦptq

Φptq
“

d∆pt, t0q

∆pt, t0q
`

˜ ?
3vλ

16π

¸2
Φptq

t2
dt. (44)

Integrating both sides from t0 to t and noting that ∆pt0, t0q “ 1, we obtain the following expression
for the generating functional

Φptq “ Φpt0q∆pt, t0qexp

«

´

?
3vλ

16π

¯2
ż t

t0

dt1

t12
Φpt1

q

ff

. (45)

By definition, the generating functional evaluated at t0 describes jets that have no opportunity of
splitting, thus Φpt0q ” u. Given Eq. (17), we can write Eq. (45) as

Φptq “ u exp

«

´

?
3vλ

16π

¯2
ż t

t0

dt1

t12

´

Φpt1
q ´ 1

¯

ff

. (46)

Since
şt

t0

dt1

t
12 is dominated near t1 „ t0, we can approximate Φpt1q « Φpt0q “ u. Thus, we can further

simpify Eq. (46)

Φptq “ u exp

«

´ p1 ´ uq

´

?
3vλ

16π

¯2
ż t

t0

dt1

t12

ff

“ u

#

exp

«

´

´

?
3vλ

16π

¯2
ż t

t0

dt1

t12

ff+1´u

“ u
”

∆pt, t0q

ı1´u

. (47)
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