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In disease-association studies using neuroimaging data, evaluating the biological or clinical significance of individual associations
requires not only detection of disease-associated areas of the brain but also estimation of the magnitudes of the associations or effect
sizes for individual brain areas. In this paper, we propose a model-based framework for voxel-based inferences under spatial
dependency in neuroimaging data. Specifically, we employ hierarchical mixture models with a hidden Markov random field
structure to incorporate the spatial dependency between voxels. A nonparametric specification is proposed for the effect size
distribution to flexibly estimate the underlying effect size distribution. Simulation experiments demonstrate that compared with
a naive estimation method, the proposed methods can substantially reduce the selection bias in the effect size estimates of the
selected voxels with the greatest observed associations. An application to neuroimaging data from an Alzheimer’s disease study

is provided.

1. Introduction

In disease-association studies using neuroimaging data, such
as those related to brain magnetic resonance imaging (MRI),
screening of disease-associated regions in the brain is a funda-
mental statistical task to understand the underlying mecha-
nisms of disease and also to develop disease diagnostics.
Such screening analysis typically involves detection of disease
associations in the framework of hypothesis testing, followed
by estimation of the magnitudes of the associations or their
effect sizes to determine their biological or clinical significance.

Many statistical methods have been proposed to detect
disease associations. In a cluster-level inference, groups of
contiguous voxels whose association statistic values are above
a certain threshold are defined and then associated with dis-
ease status [1, 2]. Another approach is to test every voxel
individually, which takes into account the serious multiplic-

ity problem of testing enormous numbers of voxels simulta-
neously. In this voxel-level inference, several model-based
methods based on random field theory have been proposed.
Smith and Fahrmeir proposed to use an Ising prior in a clas-
sical Markov random field to model the dependency among
contiguous voxels [3]. More recently, Shu et al. [4] proposed
to use hidden Markov random field modelling and developed
a multiple testing procedure based on the local index of sig-
nificance (LIS) proposed by Sun and Cai [5] in multiple test-
ing under dependency. Brown et al. proposed to use a
Gaussian random field with conditional autoregressive
models [6]. With these voxel-level methods, contiguous
voxels may be more prone to rejection than conventional,
voxel-level multiple testing procedures. They may also facili-
tate the interpretation of significant voxels or regions in
neuroimaging data, as in cluster-level inference, while cir-
cumventing the problems with that approach, including the
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arbitrariness of the threshold used in initial clustering and
the lack of spatial specificity [1].

On the other hand, for the problem of estimating disease
associations, traditional neuroimaging studies reported
“naive” estimates, such as Cohen’s d, for significant voxels.
However, several authors have pointed out that such
methods may suffer from overestimation, reflecting a selec-
tion bias for picking up voxels with the greatest effect sizes,
possibly due to random errors [7, 8]. Reddan et al. recom-
mended several ways to either avoid such bias, for instance
by testing predefined regions of interest or integrating effects
across multiple voxels into a particular model, or to adjust
bias using independent samples [7]. However, in association
analysis of neuroimaging data with spatial dependency, the
estimation problem has not been well studied compared with
the detection problem using multiple testing.

In this paper, we use empirical Bayes estimation and
hierarchical modelling of summary statistics from the whole
set of features to derive shrinkage estimation for individual
features [9, 10] and adapt this method to the analysis of
disease-association studies using neuroimaging data with
spatial dependence. Specifically, we employ hierarchical mix-
ture models with a hidden Markov random field structure to
incorporate the spatial dependency between voxels. We
assume a nonparametric distribution for the underlying dis-
tribution of voxel-specific effect sizes. With a generalized
expectation-maximization (EM) algorithm, we can estimate
all the parameters in the model, including the effect size dis-
tribution. We then obtain shrinkage estimates for individual
voxels and also an estimate of the LIS for control of the false
discovery rate (FDR) in the detection problem based on the
fitted model.

With an appropriate effect size statistic and its asymp-
totic sampling distribution, our method is generally applica-
ble to effect size estimations in many neuroimaging
association studies where general linear models have been
employed, such as those with functional/structural MRI
(fMRI/sMRI), diffusion tensor imaging (DTI), and so forth.
This paper is organized as follows. We provide the proposed
method in Section 2. We describe simulation experiments to
evaluate the performance of the proposed methods and an
application to neuroimaging data from an Alzheimer’s dis-
ease study in Section 3. We discuss the details of the methods
and results in Section 4. Finally, we conclude this paper in
Section 5.

2. Materials and Methods

We propose an estimation method based on a hierarchical
mixture model in which the underlying distribution of
voxel-specific effect sizes is specified. We suppose a simple
situation where diseased and normal control subjects are
compared without any covariates (see Section 2.5 for incor-
poration of covariates). We introduce a binary disease status
variable with a group label of either 1 or 2, for example, dis-
ease or normal. Let n; and n, be the numbers of diseased and
normal control subjects, respectively, and n = n, + n, be the
total number of subjects. We suppose that spatial normaliza-
tion [1] has been performed for each subject to adjust for dif-
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ferences in the size or shape of the observed image, and the
image is divided into voxels by a three-dimensional grid.
We also suppose a further normalization to ensure normality
of the voxel-level intensity values across subjects within each
group. Let S be the set of all voxels in the neuroimaging data,
and m denotes the number of voxels in S. In order to measure
the association of the observed intensity values from individ-
ual voxels with the disease status variable, we define the
standardized mean difference between the two groups. Spe-
cifically, for voxel s € S, 8, = (4, — t,,)/0, where i, and ,
are the means of voxel s for groups 1 and 2, respectively,
and o, is the common standard deviation for voxel s across
groups. As an estimate of §,, we use the following statistic:

A[l 1s ABZS
Y =—""—=, 1
N 2 ( )

where ji, . and pi, are sample means of voxel values in the two

groups and 3f is an estimator of the common within-group
variance. This statistic is essentially a two-sample ¢-statistic,
apart from the sample size term. One may consider a calcula-
tion of Y, from the ¢-value provided by software packages
such as Statistical Parametric Mapping (SPM, https://www
fil.ion.ucl.ac.uk/spm/). Let Y = {Y, : s € S} be the vector of
Y, for all m voxels. Of note, the reason for using the stan-
dardized mean difference, rather than test statistics such as
Z-statistics, is that it is a direct interpretation of the effect size
of individual voxels with no dependency on the sample size.

2.1. Hierarchical Mixture Models in a Hidden Markov
Random Field. We assume a hidden Markov random field
model [4] for Y. Let @ ={0®, : s€ S} €{0,1}" be a set of
latent variables, where ®, =0 if the voxel s is null (ie., no
association with disease) and ®, =1 otherwise (i.e., associa-
tion with disease). The dependence structure across
contiguous voxels is modeled assuming that this latent vari-
able @ is generated from the following Ising model with

two parameters y = (y,, yZ)T:

exp {y"H(0)}

SR @

Pr (©=6)=

where H(0) = (¥ s, 0,0, Y .s8.)" and C(y) is the normal-
izing constant. In the vector H(6), the first component
pertains to a summation over all pairs of contiguous voxels,
S;» and the second component to a summation over all
voxels, S.

Given the latent status @ = 6, we assume that the statis-
tics Y, s are mutually independent, such that

Pr(Y=y|@0=6)=]]Pr(Y,=y,0,=0,). (3)

seS

For the component Pr (Y, =y, |©,=0,), we define f, as
the null density function, f,(y,) =Pr (Y,=y,|©,=0), and
f, as the nonnull density function, f,(y,)=Pr (Y,=y,|
®,=1). We assume the distribution of Y, as the mixture
of null and nonnull distributions,
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Pr (Ys:ys):Pr(®s:0)f0( s)+Pr(®s:1)fl( s)’ (4)

Of note, this is an instance of the so-called “two-groups
model” [11] when the hidden Markov random field model is
introduced. When the sample size n is sufficiently large, it is
reasonable to employ asymptotic normality for Y. For the null
voxels, we assume f, to be a normal distribution, N(0, c2),
where ¢, = \/n/nn,. For the nonnull voxels, we assume the
hierarchical structure with two levels:

Y6,0,=1~N(5,c,),
0:~g()-

At the first level, the conditional distribution of Y for
effect size &, is normal with mean &, and variance ¢?, again
based on asymptotic normality for Y. At the second level,
the voxel-specific effect size §; has an effect size distribution
g. From this hierarchical structure, we can express the nonnull
density function as the marginal density function, f,(y,) =
[f(y:16,60,=1)g(5)ds, where f(y,18,0,=1) is a condi-
tional density function in the first level of Equation (5). Note
that Equation (5) is the Brown-Stein model for estimating
effect sizes [9, 12, 13].

If the sample size is not large enough, as occurs in many
exploratory neuroimaging studies, it is reasonable to use the ¢
-distribution rather than the normal distribution. In this case,
the statistic Y, /c, follows a t-distribution with n — 2 degrees
of freedom for the null voxels, and we consider the following
hierarchical model for the nonnull voxels:

(5)

Y
C_S |6s’ ®s =1~ tn—Z,(Ss/cn’

" (6)
0.~ 9()

where t,_, 5, represents a noncentral ¢-distribution with n
— 2 degrees of freedom and noncentrality parameter §/c,,.

2.2. Nonparametric Effect Size Distribution. We can consider
both parametric and nonparametric specifications for the
effect size distribution g. However, the information regarding
the parametric form of g is generally limited because of the
exploratory nature of disease-association studies that observe
neuroimaging data with a large number of voxels (see Section
4 for discussion of the technical difficulty of specifying
parametric mixture models for the effect size distribution).
We therefore consider a nonparametric specification and
estimate it based on presumed parallel association structures
across a large number of voxels. For this estimation, we pro-
pose to perform the smoothing-by-roughening method [14];
in the same way, this method has been used for analyzing
genomic data [15]. We approximate that g has discrete prob-
abilities p = (p,, ---, p) at each mass point t = (¢, ---, t5),
g(tyip)=py b=1,-B )
where B is a sufficiently large number of mass points and dis-
crete probability p, satisfies p, +--- + p, = L. In practice, we

set B =200, following the guideline by Shen and Louis [14].
The mass point t may be specified to cover a possible range
of Y and t, # 0 for any b.

When asymptotic normality is assumed, then based on
Equations (5) and (7), the marginal nonnull distribution of
Y,, f,> can be expressed as a mixture of normal distributions,

Lb50) =) pd(yst ) (8)
=1

where ¢(-;u, 0%) represents the density function of normal
distribution, N(y, 02). If the sample size is not large enough,
the noncentral t-distribution, ¢,(y/c,;n—2,t,/c,), is
substituted for the normal distribution, ¢(y; t,, ¢2), in Equa-
tion (8), where ¢,(+;v, 8) represents the density function of
the noncentral ¢-distribution ¢, 5. In this case, the marginal
nonnull distribution of Y, f}, is a mixture of noncentral ¢
-distributions.

The parameter set specifying the above hierarchical

model is p. We use the vector ¢ = (y7, pT)T to represent the
set of all parameters, including those in the Ising model.
The parameter set @ is estimated by a generalized EM algo-
rithm. Details of the algorithm are provided in Appendix A.
Another approach to estimating the effect size distribution
g is a nonparametric Bayes estimation with a Dirichlet pro-
cess (DP) prior [16]. Assuming a DP prior for the discretized
version of g, Equation (5) forms a DP mixture model that is
equivalent to an infinite mixture model. It is pointed out that
the estimated nonparametric distribution based on the
smoothing-by-roughening algorithm with initial distribution
G behaves similarly to the one based on DP hyper-prior
with mean G*), where the number of repetitions in the
smoothing-by-roughening algorithm is related to prior preci-
sion of the DP [15].

2.3. FDR Estimation. In our framework, multiple testing
methods can be derived based on the estimated model. We
employ the LIS [5] to estimate the FDR to incorporate the
spatial dependency between voxels. As a function of the
parameter @, the LIS is defined as the posterior probability
that the voxel is null given all Y s,

LIS,(y)=Pr (©,=0|Y =y; @). 9)

Note that the LIS corresponds to the local FDR [17] when
independence across voxels is assumed. Multiple testing is
based on the LIS. Let LISy (y) < --- < LIS, (y) represent a
series of ordered LISs across voxels, and let H (i) be the null
hypothesis (representing no association with disease) on the
voxel corresponding to LIS ; (). A LIS-based, oracle LIS pro-
cedure was proposed for minimizing the false-negative rate
subject to a constraint on FDR under hidden Markov chain
dependence [5]; this procedure was then extended under a
hidden Markov random field for analyzing neuroimaging
data [4]. The oracle LIS procedure determines rejected voxels
using the following rule:



let k = max { z LIS

then reject allH(l.), i=1,- k.

e

This procedure controls the FDR level at a. Since the
parameter @ is unknown, a plug-in estimator, LIS, (y) = Pr
(©,=0]y; @), is used. This probability, LIS (y) = Pr (O,
=0|y; @), can be calculated using the Gibbs sampler from
the distribution of @ | Y [4],

r (@=0|Y=y;@)xexp

Vi ) 060,+ ) {7, ~log fy(y,) +log f,(y::P)}0,

(s,t)€S; seS
(11)

In applying the aforementioned FDR estimation proce-
dure to neuroimaging data, it is generally reasonable to divide
all voxels into neurologically defined subregions with distinct
functional or structural features, such as Automated
Anatomical Labeling (AAL, [18]) (thus resulting in plausible
heterogeneity in effect size and dependence structure across
subregions). We apply the pooled LIS [19] and fit the model
separately for each subregion, thereby obtaining LIS values
within subregion. We then determine rejected voxels by
Equation (10), where LIS;)(y)<-- <LIS,,(y) is the
ordered LIS for a pool of all subregions.

2.4. Effect Size Estimation. As mentioned in Section 1, estima-
tion of effect sizes for selected voxels is important for evalu-
ating their biological or clinical significance. Of note, the
naive estimator given by &, = Y, generally overestimates the
true effect size (absolute §,) for the selected “top” voxels with
the highest statistical significance. This estimation bias
reflects the selection bias, caused by random variation, that
is inherent in selecting voxels with the largest absolute Y.
We consider shrinkage estimation for selected voxels. Specif-
ically, we extend posterior indices originally developed in the
case of independent Y s [10] to the case of dependent Y s.
The posterior mean of §, for a nonnull voxel s is given by

£, 1y, 0,=159]= | 8f(61y,0,=13p)d5, (12
where f(8 |y, 0, =1;p) is the posterior probability,

$(r:30,¢,)9(3;p)
Hissp)

f((slys’es:l;p)z > (13)

when the normal approximation is employed for the sam-
pling distribution of Y. Since the effect size under the null
hypothesis is zero, the posterior mean of the effect size of
the voxel s is given by

E[S,|y; @] =E[5, | y,, O,

1;9]Pr (O,=1y;@). (14)
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Based on these formulas, we can then estimate the effect
size using the following posterior indices:

8, =d., (15)
where d; and £, are plug-in estimators, d, = E[6, |y, ©,=1;
@] and & =Pr (©,=1|y;®)=1-LIS,(y). Based on
Equations (12) and (13), we have the following form for the
estimator d:

B

d,= z taPpP (V5 s € z

b=1

$(sticy)- (16)

This posterior mean d, is the shrinkage estimate of effect
sizes, given that the voxel is nonnull. The probability £,

depends on the multiple testing index ﬁ§s (), which incorpo-
rates spatial dependency and is calculated using the Gibbs
sampler from the distribution of @ | Y, presented in Equation
(11). These two posterior indices adjust for two different
errors. The first is overestimation of effect sizes, and the
shrinkage estimate d; is used to adjust this bias. The second
is incorrect selection of the null voxel, and £, is used to correct
for this error. Again, if the sample size is not large enough, the
t-distribution ¢,(y/c, ;n—2,t,/c,) is substituted for the
normal distribution ¢(y; t;, c2).

2.5. Incorporating Additional Covariates. We shall now
address adjustment for additional subject-level covariates
(other than the disease status) by employing general linear
models. For each voxel, we first standardize all the intensity
values across subjects based on the common within-group
variance (3?) such that the within-group variance equal to
1. Let x;, be the standardized intensity value of voxel s on
subject i (s€S,i=1,--,n). We then assume a general linear
model for x; as the observed intensity values for voxel s,

xzs:ﬁo,s+ﬁ1,swi,l+"'+ﬁp,swi,p+8i,s’ i=1-mn, (17)

where w;, is the binary variable on disease status, w;,, -+,
w; , represents the additional covariates on subject 7, and ¢;
is an error term. As an estimate of the effect size for voxel s

(with adjustment for the additional covariates), we use Y 4;

= ELS with the variance @(BLS) (in the first level of the
hierarchical model). When p =1 (no additional covariates),
Y, .4 may reduce to Y in Equation (1). We approximate that

s,adj
the distribution of Y, is normal, N (ﬁl’s,(WTW)éz}),
where W (wl,---,w;f)T and w;= (L, w;y, - w;,), and

(WTw),. {22} represents the (2, 2) entry of the inverse matrix
WTW. If the sample size is not large enough, we assume

SadJ/(W W){22} ~t,5 where v=n-p-1 and §=4,/
(wt W){zz}
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3. Results

3.1. Simulation Experiments. We conducted simulation
experiments to evaluate the performance of effect size esti-
mation in the proposed method. We simulated the values
of the summary statistic Y, according to the hierarchical mix-
ture model in a hidden Markov random field, as given in Sec-
tion 2.1. With this simulation, we supposed implementation
of appropriate preprocessing normalization procedures for
various neuroimaging analysis platforms and devices to
obtain normally distributed intensity data across subjects
for individual voxels. We considered a simple situation where
disease and normal control subjects were compared with no
additional covariates. The numbers of disease and normal
control subjects, n; and n,, were set as n, =n, =n/2. We
specified the total number of subjects n as 50, 100, or 200.
Further, we specified the number of voxels m as 3375 (= 15
x 15 % 15), which was the number of voxels per subregion
defined based on brain parcellation in effect size estimation
within subregion (see the application in Section 3.2). We gen-
erated the true latent variables 0 from an Ising model with
parameter values y = (y,,y,)'. We considered that the
parameter values y; = 0.05,0.15, and 0.25 represented weak,
intermediate, and strong degrees of dependency across vox-
els, respectively. Another parameter, y,, was determined such
that the proportion of disease-associated voxels accounted
for 10%, 20%, and 50% of all the voxels. When 0, =0 (i.e.,
the voxel s was not associated with the disease status), the
true effect size was set as §, = 0; otherwise, the true effect size
was set as 8, # 0 and generated from N(0.3,0.1%). Here, it is
reasonable to assume positive effects only (i.e., one-sided
detection) when studying the loss of neurological function
after disease onset. The statistics Y, were generated from a ¢
-distribution, Y /c, [, ~t, 54 -

For simulated data for m voxels, we applied a counterpart
of the proposed estimation method with normal approxima-
tion for the sampling distribution of Y (given the true effect
size for voxel s), and also a method assuming a ¢-distribution
without normal approximation for the sampling distribution
of Y, (see Section 2). To reduce the computational burden
when performing the proposed methods, we assumed that
the parameters in the Ising model were constant. We ascer-
tained similar simulation results for a small number of simu-
lation repetitions when the parameters in the Ising model
were estimated (results not shown). Following the guideline
on the smoothing-by-roughening method [14], we used B
=200 in these simulation experiments. We also ascertained
similar results in estimating effect sizes of individual voxels
when we used a smaller number B =20 (results not shown),
indicating that the estimation is relatively insensitive to the
selection of B.

In evaluating the proposed method’s performance
regarding effect size estimation, estimation biases for voxels
with the greatest statistical significance (i.e., greatest values
of Y,) were compared between the naive estimator &, = Y,
and the proposed estimators. We conducted 100 simulations
for each configuration of the parameter values in the Ising
model and the total sample size. Figure 1 plots average bias

values, each defined as the estimate minus the true value of
effect size, over 100 simulations at each voxel ranking for
the naive estimator and the two counterparts of the proposed
posterior mean in Equation (15), for the case in which the
proportion of disease-associated voxels was 20% of all the
voxels. Note that the top-ranked voxels differed across the
100 simulated datasets, but the three estimates pertained to
the same voxels (based on the ranking based on Ys) for each
simulated dataset. We also note that we had similar results
for the other proportions of disease-associated voxels, i.e.,
10% and 50% (see Appendix B).

From Figure 1, we can see that naive estimators suffered
from serious overestimation. The proposed estimators were
generally less biased. Moreover, we can see that the counter-
part of the proposed method, based on a ¢-distribution, gen-
erally gave less biased estimates for n = 50 and 100 compared
with the method based on normal distribution.

We also evaluated the performance in effect size estima-
tion for two scenarios where the model was misspecified.
Specifically, for Scenario 1, the true latent variables 0 were
generated independently across voxels as in Brown et al.
[6], but the true effect sizes were smoothed with a Gaussian
kernel after initial effect sizes were independently generated
from N(0.3,0.1%) across voxels. For Scenario 2, the true effect
sizes were smoothed with a Gaussian kernel as in Scenario 1,
but the true latent variables 6 were generated from an Ising
model to reflect spatial dependency. We ascertained similar
performance in effect size estimation for these two scenarios
where the model was misspecified.

3.2. Application. Alzheimer’s disease (AD) is one of the most
common neurodegenerative disorders responsible for
dementia with brain atrophy. We illustrated our method
using a dataset on T1-weighted MRI images from the Open
Access Series of Imaging Studies (OASIS), including longitu-
dinal MRI measurements from 150 subjects aged 60 to 96
years (website: https://www.oasis-brains.org/; dataset:
“OASIS-2”) [20]. Each subject underwent MRI scans using
the same scanner with identical sequences at two or more
visits with intervals of at least one year. At each subject visit,
three or four individual T1-weighted MRI images were
obtained during a single imaging session, and the Clinical
Dementia Rating (CDR) scale was administered. Here, we
evaluated whether assessment of brain subregions at the first
visit (baseline) could be used for early diagnosis of AD, by
associating the baseline MRI measurements with the conver-
sion from mild cognitive impairment (MCI) at baseline to
AD at the second visit, where MCI was defined as CDR =
0.5 and AD was defined as CDR >1. Specifically, in the orig-
inal dataset, we identified n=51 MCI subjects (with CDR
=0.5) at baseline; of those 51, at the second visit there were
n, =38 nonconverters with CDR=0.5 and n,=13 con-
verters with CDR >1. Of note, n, =13 converters were
diagnosed as CDR =1 at the second visit within 2 years after
the baseline visit. We thus compared baseline MRI data
between the nonconverter and converter groups.

The baseline MRI data were obtained as follows. In order
to make the subject-specific MRI data comparable in asses-
sing brain atrophy at each coordinate across subjects, we
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FIGURE 1: Average bias in estimating effect sizes for each of the top 500 voxels across 100 simulations when the sample size n is 50 (left), 100
(center), and 200 (right). Panels (a), (b), and (c) represent scenarios with various degrees of dependency among contiguous voxels specified by
the parameter y of the Ising model when the proportion of disease-associated voxels is 20%.
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Rejected voxels

a

Estimated effect size

- 1.0

FIGURE 2: Application to Alzheimer’s disease. Panel (a) displays rejected voxels for the nominal FDR level of 0.05. Panel (b) displays positive

effect size estimates.

utilized the SPM software (https://www fil.ion.ucl.ac.uk/spm/)
to obtain a 91 x 109 x 91 voxel image grid with 2-mm cubic
voxels for each subject. Specifically, three or four individual
scan images were obtained during single imaging sessions at
baseline for each subject and were then coregistered (to make
them comparable across each subject’s scan images), and
image intensity values at respective coordinates were averaged
across scan images. The software was then used to achieve the
following: segmenting the images into different tissue classes,
coregistration of segmented gray and white matter (to make
the averaged images comparable among subjects) using the
algorithm Diffeomorphic Anatomical Registration using
Exponentiated Lie algebra (DARTEL, [21]), normalization to
a standard brain space (MNI-space, developed by Montreal
Neurological Institute), modulation of the transformation of
intensity values of gray and white matter images into the tissue
volume for each coordinate, and smoothing across contiguous
voxels based on an 8-mm cube of full-width at half maximum
of the Gaussian blurring kernel. After the processing by SPM,
gray matter intensity normalization was performed based on
white matter intensity using R package WhiteStripe [22] to
obtain comparable images across subjects. See Appendix F
for more details of the aforementioned processes used to
transform the original raw data to normalized data eligible
for association analysis using the proposed method.

In the association analysis after the preprocessing of MRI

data, the summary statistic Y, 4 in Section 2.5 was calculated

from a t-statistic for testing B, =0 in the general linear
model in Equation (17) with the gray matter intensity as
the dependent variable and sex, age, and total intracranial
volume as covariates. Owing to plausible heterogeneity in
voxel intensity across brain regions, we divided the whole
brain image into 116 subregions based on the AAL, and fit
the model for each subregion separately. Of note, we can con-
sider brain subregions other than those based on AAL. We

then obtained the effect size estimate gs in Equation (15)

and the LIS statistic flgs(y) in Section 2.4 for individual vox-
els based on the estimated model within each subregion. We
used B =200 as the number of mass points used to estimate
the effect size distribution g. We also used a smaller number,
B =20, for some subregions with small sizes, but obtained

similar results for SS and fI\SS (). We detected disease-
associated voxels at FDR =5% by applying the pooled LIS
procedure [19], where all the LIS values were pooled across
subregions and ordered to determine rejection of voxels
based on the criterion in Equation (10).

Since the total sample size n = 51 was relatively small, we
provide the estimation results based on the proposed method
with ¢-distribution for the sampling distribution of Y, (see
Appendix D for results based on the proposed method with
normal sampling distribution). Figures 2(a) and 2(b) display
significant voxels at FDR = 5% by the pooled LIS procedure

and all positive effect size estimates &, in Equation (15),

S
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TaBLE 1: List of the top 10 atlases with the greatest effect size estimates.
Index Name Number of voxels Number of rejected voxels Proportion rejected Aver? ge of propgsed effect size
estimate for rejected voxels
88 TPOmid.R 581 577 99.3% 0.540
84 TPOsup.R 743 502 67.6% 0.464
45 CUN.L 939 158 16.8% 0.450
56 FFG.R 2327 708 30.4% 0.443
40 PHG.R 1097 719 65.5% 0.415
42 AMYG.R 248 242 97.6% 0.371
86 MTG.R 2964 1723 58.1% 0.340
67 PCUN.L 2380 1217 51.1% 0.340
90 ITG.R 2368 1597 67.4% 0.339
64 SMG.R 1326 201 15.2% 0.335

based on the region-specific estimated models. We note that
there were few voxels with negative effects; this is reasonable
because brain atrophy should be linked to positive effects. In
comparison with Figures 2(a) and 2(b) on effect size estima-
tion apparently provides more information about the varia-
tion in the strength in disease association. As a reference,
we also fit the counterpart of the proposed method based
on normal distribution, but similar results were obtained
(Appendix D).

For each subregion, we then calculated average effect
sizes for significant voxels based on the proposed method
with t-distribution. Table 1 shows 10 subregions with the
greatest average effect sizes. As expected, the effect size esti-
mates based on proposed method were generally smaller
than those based on the naive estimation method for top vox-
els. See Appendix E for the differences in effect size estimates
for top voxels within subregion between the proposed and
naive methods. The top subregion, corresponding to the right
middle temporal pole (TPOmid.R), has been reported by a
connectivity analysis to be a region in which converters
exhibited a decreased short-range degree of functional con-
nectivity [23]. The other regions have already been associ-
ated with conversion to Alzheimer’s disease. For example,
the left medial occipital lobe including the left cuneus
(CUN.L) has been reported to be associated with MCI con-
version [24], and the fusiform gyrus (including FFG.R) and
parahippocampal gyrus (including PHG.R) have been
reported as the regions with reduced volume in converters
[25]. The right anterior portion of the parahippocampal
gyrus (part of PHG.R) and left precuneus (PCUN.L) have
been used to predict conversion [26]. The amygdala (includ-
ing AMYG.R) has been used as a predictor of conversion
from MCI to AD in many studies [27-29]. The middle
and inferior temporal gyri (including MTG.R and ITG.R)
have been reported as the regions with reduced volume in
converters [30]. Hypometabolism in the inferior parietal
lobe (including SMG.R) has been used as a predictor of cog-
nitive decline from MCI to AD dementia [31]. Although the
right superior temporal pole (TPOsup.R) has not been
examined in association studies based on the AAL, the tem-
poral pole has been reported to be associated with disease
conversion [32].

4. Discussion

This research was motivated by the growing recognition of
the importance of effect size estimation for detected brain
areas in disease-association studies using neuroimaging data
[7, 8]. In order to permit flexible modelling of effect size dis-
tribution across a large number of voxels, while also incorpo-
rating the inherent spatial structure among voxels in
neuroimaging data, we have integrated the frameworks of
semiparametric hierarchical mixture modelling and hidden
Markov random field modelling. The integrated framework
allows for more accurate effect size estimation for individual
voxels and also facilitates the accurate estimation of false dis-
covery rates when detecting disease-associated voxels
through multiple testing. With this framework, we could
assess both voxel-level effect sizes and false discovery rates
based on the integrated model without needing additional
independent datasets. As shown in Figure 2(b), voxel-level
effect size estimates can provide detailed and unbiased infor-
mation about the association between detected brain areas
and the disease, which may be helpful for biological or clini-
cal analysis of the identified areas. We stress that the effect
size index in Equation (1) allows for evaluation without
dependency on sample size. This feature may be particularly
useful for comparing effect size estimates across different
studies with distinct sample sizes. Note that our proposed
framework is generally applicable to many neuroimaging
analyses where general linear models have been employed.
Although we have supposed a particular effect size statis-
tic, i.e., the standardized mean difference between two groups
as in Equation (1), and its sampling distributions, i.e., the
normal or ¢-distributions as in Equations (5) and (6), we
can consider another effect size statistic and its sampling
distribution. With specification of the appropriate effect size
statistic and its sampling distribution, our method is widely
applicable to many neuroimaging association studies where
general linear models have been employed, such as those
with fMRI/sMRI, DTI, and so forth. Related to this point,
we can accommodate unequal variances between diseased
and healthy brain images, rather than equal variance repre-
sented in Equation (1). Specifically, we may define the fold
change, i, -, as the effect size estimate, and assume
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asymptotic normality with fixed variances specified using
reasonable estimators of the group-specific variances,
although in our original formulation equal variance could
be achieved by an adjustment for appropriate covariates in
the framework of general linear models (see Section 2.5).
Similarly, in fMRI analyses, an absolute effect size such as
percent signal change can be evaluated, and asymptotic
normality is assumed for the sampling distribution (see
Desmond and Glover [33] for the specification of the asymp-
totic variance).

We have proposed two counterparts of the proposed
method: one uses normal approximation, and the other is
based on t-distribution for the sampling distribution of the
voxel-level summary statistic Y, (or Y,,4), for both null
and nonnull voxels (see Section 2.1). Our simulation experi-
ments demonstrated that the proposed method with normal
approximation could substantially overestimate voxel-level
effect sizes when the sample size was small (n = 50), due to
the erroneous assumption of a smaller dispersion of the sam-
pling distribution of the statistic Y (or Y,4) for both null
and nonnull voxels, such that greater mass probabilities
would be assigned for large effect sizes in estimating the effect
size distribution g. However, this problem disappears as the
sample size becomes large, as demonstrated in our simula-
tions. One advantage of the proposed method with normal
approximation is shorter computational time for model esti-
mation, compared with the counterpart with ¢-distribution
and heavier tails. We recommend using the proposed
method with normal approximation if the sample size is
sufficiently large (say, # > 100); otherwise, use the its counter-
part with ¢-distribution.

As for the specification of the null distribution f,(y,) in
Equation (4), we have specified the theoretical null, repre-
sented by N(0,c2) or central ¢-distribution, with the Ising
model to incorporate spatial dependency in the association
status across voxels. To accommodate residual dependency,
we could assume the empirical null, say N(y, 7?), and esti-
mate the null parameters using the central matching
method that fits an estimated curve h(y,) for the frequency
distribution of y, such that we obtain an estimate p =
argmax{h(y,)} [34]. However, for many neuroimaging data,
the central peak may not pertain to a “null” distribution,
rather a “nonnull” distribution, because moderate to large
nonnull effects can dominate over small null effects, espe-
cially when the estimation is performed within subregion,
as seen in our application example in Section 3.2.

With respect to specification of the effect size distribution
g> we have employed a flexible, nonparametric specification
because the information about the distributional form of g
is generally limited in exploratory disease-association studies.
Other flexible specifications may include the use of a para-
metric effect size distribution with several components, such
as finite normal mixture models. When this type of model is
assumed, the marginal distribution of Y may also have a
finite normal mixture form when the sampling distribution
of Y, is normal, as in Equation (5). In this case, the model
parameters can be estimated using the method described by
Shu et al. [4], where a penalized likelihood is used to avoid
an unbounded likelihood function (or nonidentifiability of

the variances of the individual normal components) and
Bayesian information criteria are used for selecting the num-
ber of components. However, a fundamental problem with
this approach is that it lacks a natural constraint preventing
the variance of the particular normal component in the mar-
ginal distribution of Y from becoming no smaller than the
variance of the sampling distribution of Y, (ie, ¢ in
Equation (5)). By contrast, the nonparametric specification
incorporates this constraint in principle; each of a large num-
ber of mass points corresponds to a “component”, as seen in
Equation (8), and the variance of the marginal distribution
corresponding to each component is specified as the variance
of the sampling distribution (c?). In addition, the nonpara-
metric specification does not need a penalized likelihood
maximization or repeated model fitting to select the number
of components based on a model selection criterion, and
thus, the computational burden is much lower.

Our method with a nonparametric effect size distribu-
tion, in principle, can capture any forms of the effect size dis-
tribution, and voxel-level effect sizes will be estimated based
on the fitted effect size distribution. In practice, however, it
is reasonable to consider estimation within subregions (e.g.,
those based on the AAL in Section 3.2) to take account of a
large heterogeneity in the effect size distribution across sub-
regions or to avoid influence of the heterogeneity on the esti-
mation of voxel-level effect sizes in a particular subregion.
Although our model could be extended to incorporate the
heterogeneity, e.g., by introducing a hidden structure on the
effect size distribution across subregions, estimation results
may become difficult to interpret. We therefore simply rec-
ommend subregion analysis based on biologically relevant
and interpretable brain parcellations in which effect sizes
within subregion are deemed relatively homogeneous.

One inherent feature of the Ising model is that there is a
critical value for the spatial interaction term y,, beyond
which the model has a so-called phase transition, in which
almost all binary (null or nonnull) indicators will have the
same value. Thus, the algorithm for estimating y does not
converge, while the parameters p in the hierarchical mixture

model converge since the plug-in estimate fI\SS (y) assumes
values close to 0 or 1 in such a situation. In implementing
our algorithm, for the samples of ® under candidate new
values of y, we reject the values of y if all the samples of ®
are equal. Details of the algorithm and its implementation,
including specification of the number of iterations, are pro-
vided in Appendix A.

It is interesting to discuss different approaches to model-
ling the association status (null/nonnull) and effect size dis-
tribution. Brown et al. [6] considered a parametric model
where the association status and effect size follow a Bernoulli
distribution and a conditional normal distribution, respec-
tively, independently across voxels, but the mean of the con-
ditional distribution is a weighted mean or smoothed across
adjacent voxels, like the misspecified model investigated in
our simulation (see Appendix C). On the other hand, our
proposed model incorporates spatial dependency in the asso-
ciation status, but not the effect size, using the Ising model.
Further, for effect sizes, a nonparametric marginal distribu-
tion is specified as in Equations (4) or (5). Even under the
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absence of the specification of dependence in effect sizes
across voxels, our method worked well under various simula-
tion models in Section 3.1. This could be explained by the
feature of our method that it can yield similar effect size esti-
mates for similar values of the observed association statistic Y
from relatively adjacent voxels. However, integration of
different modelling approaches for more efficient estimation
is an interesting area for future study.

Lastly, another important aspect of the proposed frame-
work for disease-association studies with neuroimaging data
is that it can provide a flexible statistical model for the distri-
bution of all neuroimaging data with a large number of
voxels. Based on such a whole-brain, voxel-based model, it
is appropriate to make a formal inference for a particular
group of brain areas or contiguous voxels. In addition, power
and sample size calculations of disease-association studies
involving neuroimaging are another important direction
based on whole-brain modelling.

5. Conclusions

The proposed method allows for accurate estimation of
voxel-level effect sizes, as well as detection of significant vox-
els with disease association, based on the flexible, hierarchical
semiparametric model incorporating spatial dependency
across voxels. Our method can be generally applicable for
many neuroimaging disease-association studies where gen-
eral linear models can be assumed for voxel-level intensity
values.
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Appendix A (referenced in Section 2.2) shows details of
generalized EM algorithm for parameter estimation.
Appendices B and C (referenced in Section 3.1) show the
simulation results for other simulation settings. Appendices
D and E (referenced in Section 3.2) show the results of the
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proposed method with normal approximation. Appendix F
(referenced in Section 3.2) shows the details of the
preprocess conducted in application of proposed method.
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