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ABSTRACT 
In gene prediction, the Fisher discriminant analysis (FDA) is used to separate protein coding region (exon) from non- 
coding regions (intron). Usually, the positive data set and the negative data set are of the same size if the number of the 
data is big enough. But for some situations the data are not sufficient or not equal, the threshold used in FDA may have 
important influence on prediction results. This paper presents a study on the selection of the threshold. The eigen value 
of each exon/intron sequence is computed using the Z-curve method with 69 variables. The experiments results suggest 
that the size and the standard deviation of the data sets and the threshold are the three key elements to be taken into 
consideration to improve the prediction results. 
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1. Introduction 
Protein coding region and non-coding region of a DNA 
sequence are also called exon and intron respectively. 
Gene prediction of eukaryotes is still one of the most 
important research domains of bioinformatics for the 
prediction accuracy is needed to be improved [1]. Fisher 
Discriminant analysis/algorithm (FDA) is widely used in 
solving binary classification problems like fault classifi-
cation [2], gene expression data classification [3], image 
categorization [4], integrating heterogeneous data sets [5] 
and DNA sequence classification [6,7], and it has at-
tracted more and more attention. Kernel FDA (KFDA) 
may present out performance in both simulation time 
consume and classification precision than support vector 
machine (SVM) for it does not need to solve any quadratic 
problem [8,9]. For maximizing the uniformity of class- 
pair separabilities and class separability in kernel space 
simultaneously, a novel kernel FDA kernel parameters 
optimization criterion is presented [10]. A novel dimen-
sionality reduction algorithm based on FDA is proposed 
for ranking applications such as visual search re-ranking 
[11]. 

Usually, the size of the training and test data sets are 
selected equal and the threshold is determined by making 
the false negative rate and the false positive rate equal [6]; 
but for some real situations, the threshold could not be 
obtained by the method because the sizes of the positive  

and negative data sets are unbalanced. In the latter situa-
tion, there are five possible thresholds for making the 
coding/non-coding decision. Using the exon and intron 
data sets downloaded from the website: 
http://www.fruitfly.org/seq_tools/datasets/Human/, the FDA  
based experiments show that the size and the standard 
deviation of the data sets are the two key elements to be 
taken into consideration to improve the prediction re- 
sults. 

2. Data Sets and Methods 
2.1. The Data Sets 
The Data sets used in this paper were downloaded from 
the above net address. The Data were separated into 7 
parts in the website, and each part consists of an exon 
sub-set and an intron sub-set. There are 301 DNA frag-
ments at least and 448 at most in each sub-set as detailed 
in Table 1. 

The difference values between the numbers of exons 
and introns in each part are all 66 from the Table 1. 

 
Table 1. The details of each part of the data sets. 

 Part0 Part1 Part2 Part3 Part4 Part5 Part6 
Exon 367 448 447 389 399 402 391 
Intron 301 382 381 323 333 336 325 
Total 668 830 828 712 732 738 716 
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2.2. The Z Curve Methods 
The Z curve method is a powerful tool to visualize and 
analyze DNA sequences. It is also one of the most widely 
used mapping methods which maps a DNA sequence 
into three digital sequences. According to [6], the predic-
tion results of the Z curve method with 69 variables are 
almost the same with that of 169 variables ones. So, the 
Z curve method with 69 variables is applied in this paper. 
The 69 variables are composed with 9 Z curve parame-
ters for frequencies of phase-specific mononucleotides, 
12 Z curve parameters for frequencies of phase indepen-
dent di-nucleotides and 48 Z curve parameters for fre-
quencies of phase independent tri-nucleotides. These Z 
curve parameters are defined below. 

Let A, T, C and G represent base adenine, thymine, 
cytosine and guanine respectively. The bases A, T, C, G 
are occurring in a DNA fragment at positions 1, 4, 7, …; 
2, 5, 8, …; and 3, 6, 9, …, with frequencies

1
a , 1t , 1c ,

1g ; 2a , 2t , 2c , 2g ; 3a , 3t , 3c , 3g  respectively. 
Then by using the Z-transform defined by Equation (1), a 
fragment of DNA sequence is transformed into the 9 Z 
curve parameters for frequencies of phase-specific mo-
nonucleotides. 

( ) ( )

( ) ( )

( ) ( )
, , [ 1, 1 ], 1, 2, 3

i i i i i

i i i i i

i i i i i

i i i

x a g c t
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z a t g c
x y z i

= + − +


= + − +
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∈ − =
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Let ( )p XY  be the frequency of the di-nucleotides 
XY ( , C G TX Y A= , , , ), the 12 variables for frequen-
cies of phase independent di-nucleotides are given by 
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The last 48 Z curve parameters for frequencies of 
phase independent tri-nucleotides can be obtained using 
the similar notations by  
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. (3) 

Next, the 69 variables of each exon/intron are  
9 9 9 12 12 12 48 48 48
1 2 9 1 2 12 1 2 48, , , , , , , , , , ,u u u u u u u u u   . They are 

defined by Equations (4) to (8). These  
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2.3. The Fisher Discriminant Analysis/Algorithm 
Let N MR ×∈X  be the data matrix, where N and M are 
the number of data/samples and the dimension of each 
data respectively. The M is also the number of the best 
FDA coefficients, which are 1 2, , , Mu u u . In this paper 
the dimension of the data is 69, that is 69M = . Each 
exon/Intron is described by a point or row vector x in a 
69-dimensional (69-D) space spanned by  

9 9 9 12 12 12 48 48 48
1 2 9 1 2 12 1 2 48

1 2 69

( , , , , , , , , , , , )

( , , , )

T

T

u u u u u u u u u

x x x

=

=

x   



, 

(9) 
There are two groups of samples in the training data 

set used in FDA. One contains positive samples which 
belong to sample space pw , and another contains the 
negative samples which belong to sample space nw . The 
positive samples are DNA fragments from real exons and 
the negative samples are from the real introns. All the 
sequences longer than 2000 bases were cut down to 2000 
bases. The numbers of positive and negative samples are 

pN  and nN  respectively, and p nN N N= + . The mean 
vector of the positive/negative samples in input space is 
defined by 

n

1 1, , ,M M
p n p n

p n
R R

N N∈ ∈

= = ∈ ∈∑ ∑
px w x w

u x u x u u . (10) 

The best FDA coefficients consists a column vector u . 
Using the divergence matrix WS , the vector u is defined 
as the best projecting direction (BPD) and is given by 

( ) ( ) ( )1
1 2, , , ,T M

p nM Wu u u R−= = − ∈u S u u u , (11) 

where “T” indicates the transpose of a matrix, and the 
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divergence matrix
W

S is defined as 

( )( )
2

, j

T
W i j i j

j p n i N= ∈

= − −∑ ∑S x u x u .     (12) 

Once the u  and the threshold c are obtained, the dis-
crimination of exon/intron for each DNA fragment in the 
test set is carried out by 0 0T Tc c• − > • − <u x u x . 

2.4. The Threshold Selection of FDA 

For situations where numbers of positive and negative 
samples are not equal, in other words p nN N≠ , there are 
five different thresholds ( 1c ,  , 5c ) to be selected, 
which are represented by Equations (13) to (17). 
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where pσ  and nσ  are the average variances of the 
positive and negative samples respectively. 

( )
5

T
n p p n

p n
c

σ σ

σ σ

+
=

+

u u u 

 

.           (17) 

For situation where p nN N= , the threshold is uniquely 
determined by letting the false negative rate (FNR) be 
equal to the false positive rate (FPR) [6,7]. The details 
will be given in the next section of this paper. 

2.5. The Z Curve Mark of the DNA Sequence 

The best projecting direction u can be interpreted as the 
weight vector corresponds to the 69 Z curve values of 
each test sample. The Z curve score (ZCS) of each DNA 
sequence is defined as ZCM = ×u x , where the “×” is 
the multiplication cross symbol, “ u ”and “ x ” are the best 
project direction and row vector of a DNA sequence. The 
ZCS is too small to be display directly, so a transform 
named remainder and multiple (RM) is carried out. The 
RM transform is defined as  

( ) ( 1000, )

( ) ( 1000 / )

R ZCS MOD ZCS M

M ZCS floor ZCS M

= ×

= ×
,      (18) 

where “MOD” and “floor” are two MATLAB function 
names. Function “mod(x, y)” returns the modulus of “x” 
after it is devided by “y”, and function “floor(x)” rounds 

the elements of “x” to the nearest integers. In this work, 
the “M” in the RM transform is set to 3. Thus, the ZCS 
of a DNA sequence can be displayed in a two dimen-
sional surface with the rounds ( ( )M ZCS ) and the mod-
ulus ( ( )R ZCS ) are the two coordinate axis. 

3. Results and Discussion 
3.1. The Prediction Accuracy Measures 
To measure the prediction accuracy, the sensitivity and 
the specificity are applied. They are defined by Equations 
(19) and (20) respectively. 

/ ( ) 100%nS TP TP FN= + ×        (19) 

/ ( ) 100%pS TN TN FP= + ×        (20) 

where TP TN  is the number of true exons/introns which 
were predicted as exons/introns, and the FP/FN is the 
number of true introns/exons which were predicted as 
exons/introns [12]. The prediction average accuracy is 
defined as ( )n pa S S= + . The FPR and the FNR are de-
fined by Equations (20) and (21) respectively. 

1 / ( )pFPR S FP TN FP= − = +         (21) 

1 / ( )nFNR S FN TP FN= − = +         (22)  

Let FPR FNR= , we have ( ) ( )FP TN FP FN TP FN+ = + . 
For the situation pN  equals to nN , the expressions 

nN TN FP= +  and pN TP FN= +  are satisfied. Then we 
have FP FN= , and the threshold can be expressed as  

( ) ( )0 / / 2T T
p p n n p nc N N N= + = +u u u u u u .  (23) 

The Statistics of the ZCS of Data Sets. 
To clear the relationship between the data sets and the 

prediction results, the statistics nature of the 7 data parts 
are presented in Tables 2 and 3. These statistics nature 
include mean and standard deviation of the Z curve value. 
Figure 1 gives the ZCS scatter diagram of the Part0 to 
Part6 with the RM transform is applied to the ZCS of 
each sequence. 

 
Table 2. The ZCS statistics nature of the exon sequences. 

Data sets Part0 Part1 Part2 Part3 Part4 Part5 Part6 

mean 0.0053 0.0039 0.0043 0.0035 0.0043 0.0053 0.0043 

SDa 0.0053 0.0043 0.0039 0.0043 0.0044 0.0045 0.0041 

 
Table 3. The ZCS statistics nature of the intron sequences. 

Data 
sets Part0 Part1 Part2 Part3 Part4 Part5 Part6 

mean −0.0103 −0.0086 −0.0055 −0.0078 −0.0075 −0.0065 −0.0064 

SDa 0.0041 0.0034 0.0028 0.0036 0.0034 0.0033 0.0035 
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Figure 1. The ZCS scatter diagram of the data set. 

3.2. Test with Different Training/Testing Sets 
To study the relationship between size of the training 
samples and the prediction results, two experiments were 
carried out. In the first experiment, let part0 be the train-
ing data set (TRDS) and the rest 6 parts together (NPart0) 
be the test data set (TEDS) at first. Then let part1 be the 
training set and the rest 6 parts together (NPart1) be the 
test set, and so on. Table 4 gives the prediction results. 
Table 5 shows the mean prediction results obtained with 
the different training and testing sets (according to Table 
4) for the five thresholds. It is clear that the fifth thre-
shold (c5) is the best choice in this experiment situation, 
c3 is the next choice except c5, and the c1 is the third 
choice. 

From the mean prediction accuracies listed in the Ta-
ble 5, the third and the fifth thresholds present a little 
better prediction than the three others. 

In the second experiment, let the part0 be the training 
set (1Parts) at first, and then let the part0 and the part1 
(2Parts)be the training set, and so on. In this experiment, 
the testing set includes all the seven parts. Table 6 gives 
the prediction result using the c5 as the threshold. Figure 
2 shows the BPD obtained with training sets as men-
tioned like 1Parts, 2Parts, etc. The BPDs changed greatly 
as the size of training data set increased, which is con-
firmed by the prediction accuracy listed in Table 6. The 
mean and standard deviation of the Z curve value in 
Tables 2 and 3 also show the same correlation. 

 
Table 4. Prediction results with different training sets. 

Threshold 

TRDS Part0 Part1 Part2 Part3 Part4 Part5 Part6 

TEDS NPart0 NPart1 NPart2 NPart3 NPart4 NPart5 NPart6 

NS 4556 4394 4396 4512 4492 4486 4508 

c1 

Sn (%) 86.19 85.51 87.90 89.28 88.22 85.70 89.07 

Sp (%) 97.89 97.94 97.95 95.93 97.82 97.89 96.51 

a (%) 91.99 91.68 92.85 92.38 92.94 91.75 92.61 

c2 

Sn (%) 83.00 82.38 85.60 87.49 85.88 83.08 86.87 

Sp (%) 98.61 98.40 98.61 96.93 98.73 98.69 97.48 

a (%) 90.80 90.39 92.08 92.09 92.28 90.88 92.10 

c3 

Sn (%) 88.65 87.68 89.40 91.2 90.38 87.67 90.62 

Sp (%) 96.74 97.13 97.19 94.35 96.89 96.75 95.12 

a (%) 92.55 92.29 93.15 92.34 93.46 92.07 92.54 

c4 

Sn (%) 82.27 81.88 83.01 87.61 84.98 80.58 87.07 

Sp (%) 98.69 98.54 98.76 96.76 98.81 99.14 97.44 

a (%) 90.49 90.21 90.88 92.06 91.88 89.88 92.17 

c5 

Sn (%) 89.22 88.68 90.82 91.04 90.96 89.27 90.54 

Sp (%) 96.25 96.81 96.33 94.42 96.61 95.61 95.24 

a (%) 92.54 92.59 93.33 92.31 93.57 92.19 92.57 
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Table 5. The mean prediction results over the different 
training sets. 

Thresholds c1 c2 c3 c4 c5 

mean 
Snm (%) 87.41 84.90 89.37 83.91 90.08 
Spm (%) 97.42 98.21 96.31 98.31 95.90 
am (%) 92.31 91.52 92.63 91.08 92.73 

 
Table 6. Prediction result with increased training set. 

TRDS Part0 Part0- 
Part1 

Part0- 
Part2 

Part0- 
Part3 

Part0- 
Part4 

Part0- 
Part5 

Part0- 
Part6 

Sn (%) 90.08 66.87 72.99 65.04 72.92 58.85 59.80 
Sp (%) 96.57 75.98 85.43 74.02 91.85 71.96 74.73 
a (%) 93.13 70.81 79.06 68.89 82.59 65.73 67.82 

 

 
Figure 2. The best projecting directions obtained in the 
second experiment. 

4. Concluding Remarks 
In this work, some studies on the relationships between 
the prediction accuracy and some parameters alike have 
been carried out. The experiments based on FDA show 
that the mean, the standard deviation of the testing/training 
data sets and the threshold are the three key elements to 
improve the classification accuracy. 
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