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ABSTRACT 

In this paper, diversity-multiplexing tradeoff (DMT) curve for 2×2 Dual-Polarized uncorrelated Rice MIMO channels is 
studied. Exact expressions for statistic information of mutual information exponent are derived. Impacts of channel pa-
rameters such as signal to noise ratio (SNR), k-factor and cross polarization discrimination (XPD) on mutual informa-
tion exponent are analyzed. Compared to conventional single-polarized (SP) Rice MIMO systems, a qualitatively dif-
ferent behavior is observed for DP Rice systems. The work in this paper, allows to identify quantitatively for which 
channels (k-factor) and SNR levels the use of dual polarization becomes beneficial. Gamma or lognormal distribution 
are used to describe mutual information component, and a theoretical formulation for finite-SNR DMT curve in 2×2 DP 
uncorrelated Rice channels is presented for the first time, which is valid in low and medium SNRs when multiplexing 
gain is larger than 0.75. 
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Probablity Approximation 

1. Introduction 

Due to the space-cost of the conventional Single-polar- 
ized (SP) multiple-input multiple-output (MIMO) sys-
tems, dual-polarized (DP) MIMO has been receiving 
much attention as an attractive alternative for realizing 
MIMO architectures in compact devices [1-7]. Compared 
with SP MIMO, DP MIMO exhibits many different 
characteristics. For instance , in [1] it has been clearly 
illustrated that in Rice fading, after some k-factor (de-
fined as the ratio of the power in the fixed exponent to 
the power in the variable exponent), error probability of 
zero-forcing detection method for polarization multi-
plexing starts to decrease with increasing k-factor, while 
SP systems perform the opposite. Moreover, various lit-
eratures, such as in [1-4], an idea has been well devel-
oped that polarization diversity works well only in corre-
lated Rayleigh fading or Rice fading channels with LOS 
components. It is necessary to note that measurements 
have been done to get real parameters of DP channels, 
which helps in getting more accurate polarized channel 
model [6]. To go further, channel correlation and capac-  

ity are discussed in these literatures, proving that such 
dual polarization has de-correlation effect on correlated 
channels from a practical aspect. Nevertheless, this result 
does not extend to diversity systems, such as Almouti 
coded MIMO, where polarization confronts performance 
loss [2]. In conventional MIMO systems, it is known that 
there exists a fundamental tradeoff between achievable 
diversity and multiplexing gains of any transmission over 

t rn n  MIMO channel, i.e., diversity-multiplexing tradeoff 
(DMT), as has been clearly illustrated in [8] for signal to 
noise ratio (SNR) approaching infinity. Moreover, it is 
also pointed out that DMT curve at finite SNR is quite 
different [9-13]. Under realistic propagation conditions, 
since SNR cannot reach infinity, it would be meaningful 
to study DMT behavior at finite SNRs that are practical 
in operating regimes. Up to now there are no literatures 
that investigate finite-SNR DMT for dual-polarized sys-
tems. 

In previous literatures [9-13], DMT curve is discussed 
based on the assumption that, elements of HHH  follow 
Wishart distribution. However, for polarized MIMO, 
because of the asymmetric properties of the generalized 
channel matrix, random matrix theory results for Wishart 
matrices cannot be leveraged. Inspired by the idea pro-
posed in [14], which used gamma, lognormal or weibull 
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distribution to approximate outage capacity for dual- 
polarized MIMO in high SNR regime, by approximating 
mutual information exponent, we get theoretical DMT 
curve for DP in low and medium SNR regimes in 2×2 
uncorrelated Rice channels.  

The rest of this paper is organized as follow. Section2 
describes the channel model developed for a 2×2 
Dual-Polarized uncorrelated Rice fading channels. Sec-
tion 3 discusses statistic characteristic of mutual infor-
mation exponent, outage probability and DMT curve and 
their approximations. Section4 shows the simulation re-
sults. Finally, section5 is the conclusion. 

In this paper,  and  E x  D x  represents the ex-
pectation and variation of random variable x, respectively, 
* stands for the element-wise conjugation, H for conju-
gate transpose,  det A  is the determinant of matrix A. 

2. System Model and Definitions 

Consider a system with one dual-polarized transmit and 
one dual-polarized receive antenna. The channel is as-
sumed frequency-flat over the band of interest. The chan-
nel matrix is given by 

11 21

12 22

h h
H

h h

 
 
 

               (1) 

Assume that both transmitter and receiver employ the 
same polarization scheme, i.e. both of them employ 
horizontal/vertical or slanted polarization. Decomposing 
the channel matrix into the sum of a fixed exponent and a 
variable exponent as 

1

1 1

k
H H

k k
 

 
H           (2) 

The elements of the matrix H do not vary and satisfy 
2 2

11 22 1h h  , 
2 2

12 21 fh h   . The elements  ijh  

of the matrix H  are complex random variables, which 
satisfy 

   2 2 2 2

11 22 12 211,E h E h E h E h                  



 (3) 

           11 12 12 22 12 21 11 220; 0E h h E h h E h h E h h    

(4) 

where 0 1f  , 0

1
, , ; , 1, 2

1 1
~

1
, , ; ,

1 1

ij

f

k
N i j i j

k k
h

k
N i j

k k
 

  
       


        



 1,2i j

   (5) 

In [8], conventional asymptotic definitions of multi-
plexing and diversity gains for a MIMO channel are 
given by: 

  *
log

lim
log

R
r






           (6) 

* log
lim

log
outP

d
 

              (7) 

where  and  represent the asymptotic multiplex-
ing and diversity gain respectively, 

*r *d
  is the average 

SNR per receive antenna, R is the system data rate and 

out  is the outage probability. Assuming that no CSI is 
available at the transmitter,  is defined by 
P

outP

  P 2 R
out P I R P W           (8) 

where I is the mutual information between received and 
transmitted signals over the MIMO channels, and  is 
the mutual information exponent satisfy 

W
logI W .  

The asymptotic DMT is given by the piece-wise linear 
function connecting the points , where   *,i d i   *d i  
is given by [8]: 

     * ,   0,..,min ,r t rd i n i n i i n n    t

n



  (9) 

r , t  are numbers of receive and transmit antennas, 
respectively. Note that the asymptotic DMT describes 
situation where SNR approches infinity. However, for 
practical system design, it is desirable to characterize the 
diversity-multiplexing tradeoff at operational SNRs. The 
finite-SNR definitions for diversity and multiplexing 
gains can provide useful tool to characterize the DMT at 
real environment. The finite-SNR multiplexing gain r is 
defined as the ratio of  to the capacity of an AWGN 
channel at SNR with array gain  [11], 

n n

R
G

 min ,r tG n  

log 1

R
r

G



             (10) 

The finite-SNR outage probability  ,outP r   for a 
given  and r   is given 

1   are related to the XPD for 
the fixed and variable exponent of the channel, respec-
tively. Good discrimination of orthogonal polarizations 
amounts to small values of   and f , and vice versa. 
Clearly, when f 1, 1    the model becomes the 
conventional SP (single polarization) channel. For 2 × 2 
Dual-Polarized uncorrelated Rice MIMO channels ij  
are complex Gaussian random variables whose parame-
ters are: 

h

    1P , 2
rG

out r P W          (11) 

The finite SNR diversity gain  ,d r   is defined by 
the negative slope of the plot  ,P rout   versus log  : 

 
 ,

,
out

out

P r
d

P r


 


 


       (12) 
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3. Computation of DP finite-SNR DMT 

In this section, the DMT for 2×2 Dual-polarized Rice  
channels is examined. First, we derive an exact expres-
sion for the mean and variation of mutual information 
exponent, based on which some discussions on channel 
parameters are proposed to have a deeper insight into 
dual-polarization system. Second, using the expressions 
of statistic information derived in the first step, approxi-
mation equations of outage probability are presented. 
Finally, DMT for both asymptotic and finite-SNR in 2×
2 Dual-polarized Rice channels at are investigated. 

3.1. Statistic Information of Mutual Information 
Exponent 

Consider that channel state information (CSI) is perfectly 
known at the receiver. The MIMO mutual information I 
conditioned on the channel realization is given by 

 
 

1

log det

  log 1

r

H

H
n

rank HH

ii
t

I I HH

N

 


 


  

 


         (13) 

where  
1

1
Hrank HH

ii
t

W
n

 


 
  

 
 ,  

and i  denotes the eigenvalues of HHH . For the case 
of  or  MIMO, mean and variances of W 
as a function of k-factor and 

2tn  2 rn
,f   are expressed be-

low: 

 
2

1 i iE W E E
n n

            
    

        (14) 

   
2 4
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              2 ,
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WD W D D
n n

R
n

 
i 

  

             

         

 

 
 (15) 

where  ,  and  min ,r tn n n  iE  ,   iD  , 

 iE  ,  ,iR i    are given in the Appendix 1,  

for the sake of space saving. 
The distribution of the mutual information exponent 

provides information about the available diversity in the 
system.  describes the ergodic mutual informa-
tion exponent, which can be used to get upper bound of 
mutual information I. And  presents some in-
formation about outage probability, i.e., the smaller the 
variance, the lower the probability of the outage error is 
when transmitting at a fixed rate [8].  

 E W

 D W

From the analytical expression of  and  E W  D W  
given in (14)-(15), we find that both of them are influ-
enced by k-factor and SNR. With the existences of po-

larization indicators f  and  , the influence are dif-
ferent. Let  SPE W ,  WDP  be mean of information 
exponent of SP and DP, we get 

E

  
 

 2
2 n

1

1
SPE W Ak Bk C

k
 


DPE W    (16) 

Then k-factor for   E DPE W W SP  is divered: 

2 4

2

B B AC
k

A

  
            (17) 

where 

   

   

 2
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 

21 2 2 1

2

1 2 1

2

f f f

f

A
n

B
n

C
n



f

  

  

 



  



   

 
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

       (18) 

In suburban area, where XPD is measured to be 
8-15dB range, let =0.4, 0.3f   . We find that in SP, 
mean of mutual information exponent decrease fast with 
the increase in k-factor, while for DP, declension is less. 
At 0dB  , required k-factor to fill the gap between 
DP and SP is k= -0.5754 or -2.4376; 10dB  , required 
k = 11.3118 or -0.4546; when   , k = 4.0184 or 
-0.4266. 

3.2. Approximating of Outage Probability 

Motivated by the work [14], in this section, we derive the 
approximation curve for outage probability at finite SNR 
for 2×2 dual-polarized uncorrelated Rice channels. 

The steps begin with the approximation of statistical 
information of mutual information exponent W. 

If we assume gamma distribution for W, i.e. 

 
 

/w

p






1 , 0W p

e
f w wpw         (19) 



   
 

 
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 
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 

 
 

2 2

,
,

,

,
,

,

D W DW k
k

E W EW k
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p k

D W DW k


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






 

       

  (20) 

Then outage probablity at given multiplexing gain and 
SNR is 

 

 

 

1
,p


,

r

out

G

P r
p







 
 
 
         (21) 

where  is the incomplete gamma 
function. 

  1

0

,
x

k tk x t e dt   
If we assume lognormal distribution for W, i.e. 

Copyright © 2013 SciRes.                                                                                   CN 



Y. P. HUANG, G. L. REN 322 

 
  2

2

ln

2

2

1
,

2

w u

Wf w e w
w








  0      (22) 

   
 2

1
ln ln ln 1

2

DW
u E W EW

EW

 
    
 
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   (23) 

 
 

2
2

ln ln 1
DW

D W
EW


 
  

 




       (24) 

Then 

   ln 11 1
P ,

2 2 2
out

r G u
r erf






  
  





   (25) 

where both  and  are given in section2. 
Note that format parameters of W are directly related to 
polarization parameters 

 E W  D W

,f 


 as well as k-factor, SNR. 
Corollary: When , for outage probability of 

DP, 
k

 P 0,0 min ,out r tr N   N          (26) 

In contrast, outage probability in SP is given by [12]  

0 1
P

1, 1out

r

r


  

               (27) 

Proof: As , for conventional SP, the Rice fad-
ing channel approaches a rank-one AWGN channel, such 
that the outage probability is 1 for , and 0 for 

; However, for DP Rice fading channels, as 
, thanks to polarization orthogonality, channel 

matrix remains full rank. Thus, as k increases, channel 
approach two rank-one AWGN channels. Therefore as 

, outage probability  for both 

k 

1r 

0

1r 
k 

k  DPPout  1r   
and . 1r 

3.3. Asymptotic DMT for Rice Dual  
Polarized Channels 

Theorem: The asymptotic DMT curve for dual-polarized 
channels is independent of  , f , which is identical to 
conventional asymptotic DMT in SP channels as de-
scribed in (9) [8]. 

Proof: The proof is given in appendix 2. 

3.4. Diversity and Multiplexing Trade-off at  
Finite SNR 

Simulated by the method in [11], we get finite-SNR 
DMT using (11). 

   
 

   

1
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1 2

P ,
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               , ,
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 
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 
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where for gamma approximation, 
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A r f w k dw

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 





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




k

    (30) 

For lognormal approximation, calculation step is 
similiar, which is omitted for the sake of space. 

4. Simulation 

4.1. Impact of k-factor and SNR on Mutual  
Information Exponent 

As it has been known that DP and SP systems perform 
rather diffident in Rice channels. In order to study how 
such a difference occurs, Figure 1 plots  E W  and 
 D W  as a function of the k-factor at 0dB   and 

10dB  . Assume that for DP, 0.4  , 0.3f  , and 
without loss of generality ,take 1ijh   for , 1,i j 2 . 

The theory curves are identical to the ones by Monte 
Carlo simulations, which validate the derived expression 
of  E W  and  D W  in section 2. As expected, a 
quantitatively different behavior is observed for DP Rice 
system. Although either in SP or DP case, expectation 
and standard deviation of the mutual information expo-
nent drop dramatically with increasing k-factor, espe-
cially in low k-factor regime, where k-factor manifests 
the variation of W. It is clear that in DP, the drop is far 
less than that in SP both for  and  E W  D W

dB

, since 
polarization can reduce the channel correlation brought 
by LOS component. Moreover, at 0  , no cross 
points for    W kSP DP  at  are found. But 
at 

E W E 0
10dB  , 11k  , a cross point appears ,matching 

the previous results from (17). Such a phenomenon can  
 

 

Figure 1. Comparison of mean and variation of W for SP 
and DP. 
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be explained by the effect of eigenvalue of HHH . At 
medium SNR, minimum eigenvalue begins to affect 
channel information exponent. For conventional SP 2×2 
Rice systems, when k-factor increases, channel matrix 
tends to be a rank-deficient matrix, leading the minimum 
eigenvalue to be smaller even approaching zero. In con-
trast, eigenvalues of DP systems nearly stays constant, 
without being hugely affected by varying k-factor. Hence, 
channel matrix does not become ill conditioned, i.e., not 
badly affected by LOS component. Thus, in seminars 
with strong LOS component, we suggested DP be used.  
To illustrate the different eigenvalues we can see Figure 
2. 

4.2. Impact of XPD on Mutual Information  
Exponent 

As a final parameter dependency study, we examine on 
mutual information exponent as a function of the XPD in 
LOS component. Using the analytical formation in sec-
tion2, Figure 3 plots plots  and  as a 
function of the 

 E W  D W

f  at 0dB   and 10dB  , with 
fixed , 10k  0.4  . 
 

 

Figure 2. Eigenvalues of SP and DP for 2×2 uncorrelated 
Rice fading. 
 

 

Figure 3. XPD influence on mutual information exponent in 
2×2 Rice uncorrelated channels with k=10. 

From Figure 3, it is clear that at low SNRs  in-
creases with 

EW

f . However, at moderate SNR,  
starts to drop with improving 

EW

f . Conclusions can be 
made that XPD and SNR have impacts on the mutual 
information at the same time. It is then meaningful to 
find the optimal SNRs for different DP systems for opti-
mal code design. 

4.3. Outage Probability in Finite SNR 

In this part, we study some plots of outage probability 
versus SNR in uncorrelated Rice fading with r tn n   

2G  .  
In Figure 4, given a fixed multiplexing gain 1r  , 

outage probability versus SNR curves are plotted for SP 
and DP at 5,12k  . It is seen that contrary to SP, outage 
probability of DP always drops as k-factor improves. At 
some SNR, negative gap of outage probability between 
SP and DP turns into positive, coinciding with previous 
analysis. 

In Figure 5, gamma or lognormal approximation are  
 

 

Figure 4. Outage probability SP VS DP for k =5 and k =12. 
 

 

Figure 5. Outage probability approximation for different 
multiplexing gains and k-factor DP. 
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plotted as well as results of Monte Carlo simulation for 
outage probability in various multiplexing gain. The dash 
curves represent the approximation value, while the cir-
cle, square symbol represent the DP systems for 

 respectively. When  ( in the 
plot), the gamma approximation matches the simulation 
well. At  ( ), we can use the lognormal 
distribution instead, which works well in medium SNR 
0-15dB. Note that the higher multiplexing gain, the more 
accuracy of the gamma approximation. By using this 
approximation method, it becomes simple to estimate the 
outage probability of DP Rice channels at  or me-
dium SNRs without time-cost simulation. 

5, 10k k 

r 

1r  1.5r 

1r 

1 0.75r 

4.4. Diversity Gain at Finite SNR 

Figure 6 is a plot of diversity and multiplexing gain 
tradeoff in finite SNR for DP Rice channels, 10k   and 

. [0.75,2]r
Obviously, the approximation curve agrees with the 

Monte Carlo simulation. For , as it has been indi-
cated in [11], the diversity gain in SP Rice fading chan-
nels approaches zero rapidly since the rank-one LOS  
matrix limits the effective degrees of freedom in the 
channels. However, for DP Rice fading, a relatively high 
diversity gain can still be observed in . At 

1r 

1r 
10dB  , , diversity gain can be as high as one. 

Explanations can be found from minimum eigenvalue of 
DP systems, that thanks to the de-correlation effect, 
minimum eigenvalue of DP do not approach zero despite 
of the exists of strong LOS component. 

10k 

For very high k-factor, the channel matrix only de-
pends on the Rice exponent. As , the channels 
tend to be AWGN, and the capacity increases only with 
SNR. For DP, asymptotic diversity gain becomes infi-
nite. 

k 

 

 

Figure 6. Finite-SNR DMT for DP Rice channels. 

5. Conclusions 

In this paper, outage probablity and DMT for asymotic 
and finite-SNR are studied in 2×2 dual-polarized uncor-
related Rice fading channels. Exact expression mean and 
varition of mutual information in DP Rice channels are 
derived, based on which how channel paremeters as 
k-factors, SNR or XPD influence channel infromation 
exponent are discussed. Results show that in subran en-
vironments where 0.4  , 0.3f  , at 10dB  , a 

11k   is required to fill the gap between erogotic mean 
of mutual information exponent of SP and DP. Outage 
probablity as well as asympotic and finite-SNR DMT are 
compared between of SP and DP. Using the gamma or 
lognormal distribution, their appromaxition curves for 
2×2 dual-polarized uncorrelated Rice channels at 10k   
are given. The result in this paper, helps in finding the 
inner difference between DP and SP channels. And the 
appromaxiton approach for DMT in this paper, alough 
not so accurate in low multiplexing gain, can provide 
references in pratical code design in dual-polarized Rice 
systems, expecially in systems with large amouts of an-
tennas. 

REFERENCES 

[1] C. Degen and W. Keusgen, “Performance of Polarisation 
Multiplexing in Mobile Radio Systems,” Electronics Let-
ters, Vol. 38, No. 25, 2002, pp. 1730-1732. 
doi:10.1049/el:20021118 

[2]  R. U. Nabar, H. Bolskei, V. Erceg, D. Gesbert and A. J. 
Paulraj, “Performance of Multiantenna Signaling Tech-
nique  in the Presence of Polarization Diversity,” IEEE 
Trans. Signal Process., Vol. 50, No. 10, 2002, pp. 
2553-2562. doi:10.1109/TSP.2002.803322  

[3] Y. Deng, A. Burr and G. White, “Performance of MIMO 
Systems with Combined Polarization Multiplexing and 
Transmit Diversity,” in proc.2005 Conf. Vehicular Tech-
nol. VTC 2005-Spring. IEEE 61st, Vol. 2, pp. 869 -873.  

[4] Mathini Sellathurai, Paul Guinand, and John Lodge 
“Space-Time Coding in Mobile Satellite Communications 
Using Dual-Polarized Channels”, IEEE Trans, vol. 55, 
NO. 1, Jan 2006 

[5] Claude Oestges, Bruno Clerckx, Maxime Guillaud, and 
M´erouane Debbah, “Dual-Polarized Wireless Commu-
nications:From Propagation Models to System Perform-
ance Evaluation”, IEEE Trans. Wireless, vol. 7, no. 10, 
oct, 2008  

[6] M. Shafi, M. Zhang, A. Moustakas, P. Smith, A. Molisch,  
F. Tufvesson, and S. Simon, “Polarized MIMO channels 
in 3-D: Models, measurements and mutual information,” 
IEEE Journal on Seleted  Areas Commun. , vol. 24,no. 3, 
pp. 514–527, Mar. 2006. doi:10.1109/JSAC.2005.862398 

[7] Y. B. Li, H. Q. Wang and X.-G. Xia, “On 
Quasi-Orthogonal Space-Time Block Codes for 
Dual-Polarized MIMO Channels,” IEEE Transactions, 

Copyright © 2013 SciRes.                                                                                   CN 

http://dx.doi.org/10.1049/el:20021118
http://dx.doi.org/10.1109/TSP.2002.803322
http://dx.doi.org/10.1109/JSAC.2005.862398


Y. P. HUANG, G. L. REN 

Copyright © 2013 SciRes.                                                                                   CN 

325

Wireless Commun., Vol. 11, No. 1, 2012. 

[8] L. Zheng and D. Tse, “Diversity and Multiplexing: A Fun-
Damental Tradeoff in Multiple Antenna Channels,” IEEE 
Trans Info. Theory, Vol. 49, No. 5, 2003, pp. 1073-1096. 

[9] H. Yao and Wornell and W. Gregory, “Structured 
Space-Time Block Codes With Optimal Diver-
sity-Multiplexing Tradeoff and Minimum Delay,” in proc. 
Conf. Global Telecommunications (GLOBECOM), 2003, 
Vol. 4, pp. 1941-1945.  

[10] R. Narasimhan, A. Ekbal and J. Cioffi, “Finite-SNR Di-
versity-Multiplexing Tradeoff of Space-time Codes,” in 
Proc. 2005 , Int. Conf. Commun., 2005, pp. 458-462. 

[11] R. Narasimhan, “Finite-SNRdiversity-multiplexing Trade-
off for Correlated Rayleigh and Rician MIMO Channels,” 
IEEE Trans. Inf. Theory, Vol. 52, No. 9, pp. 3965-3979, 

2006. doi:10.1109/TIT.2006.880057 

[12] W.-Y. Shin, S.-Y. Chung and Y. H. Lee, “Diver-
sity-Multiplexing Tradeoff and Outage Performance for 
Rician MIMO Channels,” IEEE Transactions Informa-
tions Theory, Vol. 54, 2008, pp. 1186-1196. 
doi:10.1109/TIT.2007.915884  

[13] C. Ammar El, Falou, W. Hamouda, C. Langlais, C. Abdel 
Nour and C. Douillard, “Finite-SNR Diver-
sity-Multiplexing Tradeoff for Rayleigh MIMO,” IEEE, 
Communications Letters,  Vol. 17, 2013, pp. 753-756. 
doi:10.1109/LCOMM.2013.022213.130007 

[14] F. Talebi and T. G. Pratt, “Approximating the Outage 
Capacity of Asymmetric 2×2 Dual-polarized MIMO at 
High SNR,” in proce Int. Conf. (ICNC), 2013, pp. 290 
-294. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 1 

 

    ,i i

i i i

R

E E E

 

i  

 
 
 
        
   

 

  

According to the distribution of channel elements (5), an 
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which follows non-central chi-square distribution. Mean  
we get and variance of i  can be derived as : 
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As for i ， by  
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 iE   and  i D   calculated as in [14] section 

3 (11)-(14). 
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Finally, using (15), exact expression of  D W  is 
given. 

According to (14), is derived. For , as  E W  D W

Appendix 2 

Using the method prosed in [9] we derive the proof for 
asymptotic DMT curve in dual-polarized uncorrelated 
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Rice channels.The proof begins with Rayleigh fading 
cases. 

According to [9], let  2logR  . Firstly ,we de-
compose H as: 

11 12 11 12
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r r r r
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Since   2

11 :,1r H , and  is approximated as 2
11r
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11 4r 2 , similarly， 2 2

12 2r  ， 2
22 2r 2 .Thus, for 

，keep quadratic term 1 r  2 2  and neglect the other  

lower terms, we have 
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As  is a variable with a higher order than , and 
that small  is mainly due to small , i.e., the 
main event that causes 
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occurring. 
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When , diversity gain is derived as 
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And when , neglecting the constant term, we  0 r 

get 
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Here, main events are 
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So that for 0 r   the diversity gain is derived as 
 ,d r   3r  4 ，without any relationship with  . 

Eventually, as LOS component do not affect the 
high-SNR diversity gain [12], the asymptotic DMT 
analysis here hold on for Rice channels. Therefore, as-
ymptotic DMT curve for DP Rice channels at infinite 
SNR is the same as the conventional conclusion(9) in 
[8]. 
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