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Abstract 
In this paper, we derive non-classical continuum theory for physics of com-
pressible and incompressible thermoviscous non-classical fluent continua using 
the conservation and balance laws (CBL) by incorporating additional physics 
of internal rotation rates arising from the velocity gradient tensor as well as 
their time varying rates and the rotational inertial effects. In this non-classical 
continuum theory time dependent deformation of fluent continua results in 
time varying rotation rates i.e., angular velocities and angular accelerations at 
material points. Resistance offered to these by deforming fluent continua re-
sults in additional moments, angular momenta and inertial effects due to ro-
tation rates i.e., angular velocities and angular accelerations at the material 
points. Currently, this physics due to internal rotation rates and inertial ef-
fects is neither considered in classical continuum mechanics (CCM) nor in 
non-classical continuum mechanics (NCCM). In this paper, we present a deri-
vation of conservation and balance laws in Eulerian description: conservation 
of mass (CM), balance of linear momenta (BLM), balance of angular momenta 
(BAM), balance of moment of moments (BMM), first and second laws of 
thermodynamics (FLT, SLT) that include: (i) Physics of internal rotation rates 
resulting from the velocity gradient tensor; (ii) New physics resulting due to 
angular velocities and angular accelerations due to spatially varying and time 
dependent rotation rates. The balance laws derived here are compared with 
those that only consider the rotational rates but neglect rotational inertial ef-
fects and angular accelerations to demonstrate the influence of the new phys-
ics. Constitutive variables and their argument tensors are established using 
conjugate pairs in the entropy inequality, additional desired physics and prin-
ciple of equipresence when appropriate. Constitutive theories are derived us-
ing Helmholtz free energy density as well as representation theorem and in-
tegrity (complete basis). It is shown that the mathematical model consisting 
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of the conservation and balance laws and constitutive theories presented in 
this paper has closure. Influence of new physics in the conservation and bal-
ance laws on compressible and incompressible thermoviscous fluent continua 
is demonstrated due to presence of angular velocities and angular accelera-
tions arising from time varying rotation rates when the deforming fluent con-
tinua offer rotational inertial resistance. The fluent continua are considered 
homogeneous and isotropic. Model problem studies are considered in a fol-
low-up paper. 
 

Keywords 
Non-Classical Continuum Mechanics, Internal Rotation Rates, Angular  
Velocities, Angular Accelerations, Rotational Inertia, Balance of Moment  
of Moments, Thermoviscous Fluent Continua 

 

1. Introduction, Literature Review and Scope of Work 

In the spatial or Eulerian mathematical description of deforming continua such 
as fluent continua [1] [2] [3] [4] the velocities v  and the velocity gradient ten-
sor L  are fundamental measures of deformation physics. In general v  and 
L  vary between material points. Polar decomposition of L  at material points 

into stretch rate tensor (left or right) and rotation rate tensor shows that if L  
varies between material points so do the stretch rate and rotation rate tensors. 
Alternatively, we can additively decompose L  at a material point into symme-
tric ( D ) and skew-symmetric (W ) tensors in which the symmetric tensor is the 
first convective time derivative of the Green strain tensor as well as the first 
convected time derivative of the Almansi strain tensor which are shown to be 
basis independent [4]. The skew-symmetric tensor is a measure of pure rotation 
rate, referred to as internal rotation rate tensor or angular velocity tensor. In 
classical continuum mechanics when considering thermoviscous fluent conti-
nua, Cauchy stress tensor σ  is a rate of work conjugate to D  and σ  is basis 
independent when only conjugate to D . In the constitutive theory for Cauchy 
stress tensor we can also consider higher order convected time derivatives of the 
strain tensors in which case Cauchy stress tensor is basis dependent i.e., contra-
variant Cauchy stress tensor ( )0σ  or covariant Cauchy stress tensor ( )0σ . In 
CCM, influence of time varying rotation rates at each material point due to L  
is not considered. Surana et al. [2] [3] [5] have presented conservation and bal-
ance laws for non-classical continuum theory in which additional physics due to 
time varying rotation rates is incorporated into the conservation and balance 
laws. Thus, this non-classical continuum theory incorporates L  in its entirety 
in the conservation and balance laws. In subsequent papers, yang et al. [6] and 
Surana et al. [1] [7] showed that the presence of new physics due to time varying 
rotation rates requires additional balance law “balance of moment of moments” 
(BMM). This balance law was originally proposed by Yang et al. [6] based on 
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static equilibrium considerations for solid continua. Surana et al. [1] [7] showed 
that the derivation of a balance law must be based on rates and presented deriva-
tion of BMM balance law for solid continua [7] as well as fluent continua [1]. 
Ordered rate constitutive theory for thermoviscous fluent continua incorporat-
ing internal rotation rates has been presented by Surana et al. [5]. Prior to the 
work in references [1] [2] [3] [5] [6] [7] a large number of publications have ap-
peared (primarily related to solid continua) under couple stress theories, micro-
theories (micropolar, microstretch, micromorphic) and their application to 
beams, plates and shells. In the following, we present a brief review of some of 
the published works that are pertinent to the work presented in this paper. Su-
rana et al. have clearly distinguished these published works from the works in 
references [1] [2] [3] [5] [7] [8]. 

In a recent paper, Surana et al. [9] presented a comprehensive literature re-
view of published works on non-classical Continuum theories and their applica-
tions for solid and fluent continua. In the literature review presented in this pa-
per, we only reference the works related to the non-classical theories and their 
applications to fluent continua. The works related to micropolar theories, non- 
local theories, couple stress theories of fluent continua and their applications 
can be found in references [10]-[29]. The micropolar theories consider micro- 
deformation of micro-constituents in the continuum and associated homogeni-
zation so that the matter at macro scale is isotropic and homogeneous. The theo-
ries related to the non-local effects are believed to be originated by Eringen [30] 
in which a definition of non-local stress tensor is introduced through an integral 
relationship using the product of macroscopic stress tensor and a distance kernel 
representing non-local effects. The works by Eringen [18] [19] [20] [21] [22] es-
tablish conservation and balance laws, constitutive theories, micromechanics con-
siderations and their use in non-classical theories for fluent continua. Some sta-
bility and boundary considerations for non-classical theories are discussed in 
references [23] [24]. In reference [25] authors present a discussion on a collec-
tion of papers related to the macro-micro mechanics’ aspects of deformation 
physics. In reference [26] a micropolar theory is presented for binary media with 
applications to phase transition of fiber suspensions to show flow during the 
filling state of injection molding of short fiber reinforced thermoplastics. A si-
milarity solution for boundary problem flow of a polar fluid is given in reference 
[27]. In references [28] [29] phenomenological theory of ferrofluids and statis-
tical mechanical theory of polar fluids are presented. 

The motivation for this work is to present a complete NCCT based on internal 
rotation rates for fluent continua in the presence of microconstituents. The rota-
tional inertial properties of the fluent continua due to microconstituents neces-
sitate presence of angular acceleration term in the BAM. This is accomplished by 
extending non-classical theory of references [1] [2] [3] [5] [7] that is based on 
internal rotation rates at a material point due to L  to include additional phys-
ics that may arise due to time varying internal rotation rates (angular velocities) 
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and the associated angular accelerations. In general the internal rotation rates 
vary between a material point and its neighbors and are time dependent. Thus, 
at each material point, in addition to the rotation rates (angular velocities) and 
associated angular accelerations, the resistance offered by the deforming fluent 
continua to these angular velocities and angular accelerations results in mo-
ments, angular momenta and rotational inertial effects. In this paper, we present 
derivation of conservation and balance laws and associated constitutive theories 
for deforming fluent continua in which the internal rotation rates and their ma-
terial derivatives are considered. It is shown that while the conservation of mass 
and the balance of linear momenta in the present derivation remain the same 
as in references [1] [2] [3] [5] [6], the other balance laws require substantial 
modification and/or inclusion of new details due to additional new physics. It is 
shown that the new balance law “balance of moment of moments” introduced 
in reference [1] for non-classical fluent continua considering internal rotation 
rates only is also needed in the present work. This balance law results in addi-
tional three equations in the present work, whereas in the non-classical theo-
ries of reference [1] [2] [3] [5] [6] the balance law only establishes symmetry of 
the Cauchy moment tensor. References [31] [32] also contain some details that 
can be helpful in context of the work presented here. The complete mathe-
matical model consisting of conservation and balance laws and the constitutive 
theories in Eulerian description has closure. The theories are presented for com-
pressible as well as incompressible fluent continua. Influence of the new physics 
on incompressible as well as compressible thermoviscous fluent continua is in-
vestigated. 

2. Notations, Choice of Basis, Various Measures of Stress, 
Moment Tensors and Strain Rates Tensors, Internal  
Rotation Rates and Their Gradients 

2.1. Notations 

The notations used in this paper conform to reference [4] but are different than 
conventional notations used in continuum mechanics writings to provide more 
clarity and transparency. x , A , V, ∂A , V∂  refer to material point coordi-
nates (in a fixed Cartesian frame), area, volume, boundary of A  and the surface 
bounding V, all in the reference or undeformed configuration, whereas x , A , 
V , ∂A , V∂  are their counterparts in the current configuration. ( ), t=Q Q x  
and ( ), t=Q Q x  are Lagrangian and Eulerian descriptions of a quantity Q  at 
a material point x  in the reference configuration with its corresponding loca-
tion x  in the current configuration. 

A tetrahedron in the undeformed configuration (volume V) with its oblique 
plane constituting a part of surface V∂  bounding V deforms and rotates in the 
current configuration. Equilibrium considerations associated with conservation 
and balance laws require measures of stress, strain rates, etc. associated with the 
deformed tetrahedron. Two obvious choices are covariant and contravariant 
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bases. If the edges of a tetrahedron in the undeformed configuration represent 
material lines, then upon finite deformation the material lines will become 
curved. The tangent vectors to these deformed lines at a material point (a point 
from which the material lines emanate) forming the edges of the deformed tetra-
hedron are called contravariant base vectors ( ig ). The vectors orthogonal to the 
faces of the deformed tetrahedron (formed by the covariant base vectors) are called 
contravariant base vectors ( ig ). Hence, ( ig ) and ( ig ) form non-orthogonal cova-
riant and contravariant bases that are reciprocal to each other. Since the cova-
riant basis is tangent to the deformed material lines, the convected time deriva-
tives of the covariant strain tensor ia a physical measure of the strain rate tensor. 
Likewise, the contravariant directions normal to the faces of the tetrahedron is 
a natural way to define stress tensor. Thus, we define ( )0σ  as contravariant 
Cauchy stress tensor, ( )1γ  as the first convected time derivative of the Green’s 
strain tensor. These measures are physical as these are related to the faces and 
edges of the true deformed tetrahedron. Since ( ig ) and ( ig ) form reciprocal 
bases, we could use covariant directions for stress measure and contravariant 
directions for strain rate measures, i.e., ( )0σ  and ( )1γ , covariant Cauchy stress 
tensor and contravariant strain rate tensor. Mathematically this is justified, 
however in terms of physics, this description requires ( ig ) to be normal to the 
tetrahedron faces and ( ig ) to be the material lines tangent vectors. In other 
words, this description requires a new configuration of the actual deformed 
tetrahedron that is non-physical. When strain rates are small, the two measures 
are the same as the deformed and undeformed tetrahedron are virtually the 
same. 

2.2. Internal Rotation Rates and Their Gradients 

The velocities v  and the velocity gradients ( i
ij

j

v
L

x
∂

=
∂

) are fundamental measures 

of deformation physics in fluent continua in Eulerian description, hence these in 
their entirety must form a basis for a complete thermodynamic framework. De-
composition of L  into symmetric tensor D  and skew-symmetric tensor W . 
The physics of D  and W  exists in all deforming fluent continua. The cur-
rently used thermodynamic framework (classical continuum mechanics, CCM) 
only considers D . Hence, W  containing internal rotation rates is not consi-
dered at all. Incorporating entirety of L  in the conservation and balance laws 
implies that we incorporate the additional physics due to internal rotation rates 
in the existing thermodynamic framework for fluent continua as the physics due 
to D  is already present in CCM. The internal rotation rates can be visualized as 
the rotation rates about the axes of a triad located at a material point (a location) 
whose axes are parallel to the axes of the fixed Cartesian x-frame. The velocity 
gradient tensor L    can be decomposed into pure rotation rate tensor tR    
and the right and left stretch rates t

rS    and t
lS   . Then, tR    is ortho-

gonal and t
rS    and t

lS    are symmetric and positive-definite. 
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t t t t
r lL R S S R         = =                            (1) 

Let { }( ),t
i iλ φ ; 1,2,3i =  be the eigenpairs of 

T
L L        in which  

{ } { }T
iji jφ φ δ= , then 

2T Tt t
rL L Sλ          = Φ Φ =                           (2) 

The columns of  Φ   are eigenvectors of { }iφ  and tλ    is a diagonal ma-
trix of the eigenvalues t

iλ ; 1, 2,3i = . If we choose 
Tt t

rS λ      = Φ Φ       
                     (3) 

then (2) holds, hence definition of t
rS    in (3) is valid. tR    can now be de-

fined using (1). 
1t t

rR L S
−

    =                             (4) 

Furthermore, using 
2T t

lL L S     =                             (5) 

and following a similar procedure we can establish 
Tt t

lS λ      = Φ Φ       
                     (6) 

1t t
lR S L

−
     =                             (7) 

where tR    defined by (4) and (7) is unique. We note that in this approach 
tR    is a rotation rate transformation matrix, hence does not contain rotation 

angle rates. Alternatively, we can consider decomposition of L    into symme-
tric ( D   ) and skew-symmetric ( W   ) tensors. 

{ }
{ }
v

L D W
x

 ∂
     = = +      ∂  

                   (8) 

( ) ( )T T1 1;
2 2

D L L W L L           = + = −                       (9) 

or 

( ) ( ), , , ,
1 1;
2 2ij i j j i ij i j j iD v v W v v= + = −               (10) 

We define positive rotation rates t
iΘ  using 

j j
i j ijk k

i i

v v
x x

∂ ∂
× = × =

∂ ∂
v e e e∇                  (11) 

or 

3 32 1 2 1
1 2 3

2 3 3 1 1 2

v vv v v v
x x x x x x

     ∂ ∂∂ ∂ ∂ ∂
× = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂    

v e e e∇        (12) 

or 

( ) ( ) ( )1 2 31 2 3
t t t
i x i x i x× = Θ + Θ + Θv e e e∇               (13) 

We note that 
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{ } { } ( ) { }and =t t
i i i i i i

D a
Dt

ω ω ωΘ = = Θ =

 
in which iω  are angular velocities and i a  are angular accelerations using the 
rotation rates in (13). We can write the expanded form of W    

( ) ( )

( ) ( )

( ) ( )

3 2

3 1

2 1

1 10
2 2

1 10
2 2
1 1 0
2 2

t t
i x i x

t t
i x i x

t t
i x i x

W

 − Θ Θ 
 
 = Θ − Θ    
 
 − Θ Θ
  

           (14) 

where 
1

t
i xΘ , 

2

t
i xΘ , 

3

t
i xΘ  are rotation rates related to total 90 degree angle and 

are positive counterclockwise and W    contains half of the total rotation rate, 
i.e., related to half of the rate of change of 90 degree angle. It is obvious that W  
is a tensor of rank two, whereas the rotation rates defined in (13) are clearly a 
tensor of rank one. In other words, rotation rates in (13) constitute a tensor of 
rank one, but the components of this tensor arranged in the form in which they 
appear in W    constitute a tensor of rank two. We determine gradients of the 
rotation rate tensor (13). Let 

{ } 1 2 3

T
, ,t t t t

i i x i x i x Θ = Θ Θ Θ                    (15) 

be a vector representation of (13), then the gradient of t
iΘ  can be defined by 

{ }
{ }

( )
or

t t
i i

t t
i i j

jk
k

J J
x x

Θ Θ
 ∂ Θ ∂ Θ   = =

  ∂ ∂  
             (16) 

The gradient tensor 
t
i JΘ 
 

 of the internal rotation rates defined by (16) can be 
decomposed into symmetric and antisymmetric tensors 

t
i
s JΘ 

 
 and 

t
i
a JΘ 

 
. 

t t t
i i i

s aJ J JΘ Θ Θ     = +     
                    (17) 

T

T

1
2
1
2

t t t
i i i

t t t
i i i

s

a

J J J

J J J

Θ Θ Θ

Θ Θ Θ

      = +       
      = −       

                  (18) 

when the velocity gradient tensor varies between the neighboring material points 
so do the internal rotation rates t

iΘ  (or W   ), their rates as well as their gra-
dients and their rates. Varying t

iΘ  and 
t
i Θ J , when resisted by deforming flu-

ent continua, results in moments, angular momenta and angular inertial effects 
as a consequence. Thus, on the oblique plane of the tetrahedron defining part of 

( )V t∂  or defining a part of the bounding surface due to cut principle of cauchy, 
resultant moment can exist. 

2.3. Stress, Moment and Strain Rate Tensors 

Consider a volume of matter V


 in the reference configuration with closed 
boundary V∂



. Volume V is isolated from V


 by a hypothetical surface V∂  as 
in the cut principle of Cauchy. Consider a tetrahedron 1T  such that its oblique 
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plane is part of V∂  and its other three planes are orthogonal to each other pa-
rallel to the planes of the x-frame. Upon deformation, V



 and V∂


 occupy V


 
and V∂



 and likewise V and V∂  deform into V  and V∂ . The tetrahedron 

1T  deforms into 1T  whose edges (under finite deformation) are non-orthogonal 
covariant base vectors ig . The planes of the tetrahedron formed by the cova-
riant base vectors are flat but obviously non-orthogonal to each other. We as-
sume the tetrahedron to be the small neighborhood of material point o  so that 
the assumption of the oblique plane ABC  being flat but still part of V∂  is va-
lid. When the deformed tetrahedron is isolated from volume V  it must be in 
equilibrium under the action of disturbance on surface ABC  from the volume 
surrounding V  and the internal fields that act on the flat faces which equili-
brium with the mating faces in volume V  when the tetrahedron 1T  is 4 the 
volume V . 

Consider the deformed tetrahedron 1T . Let P  be the average stress per unit 
area on plane ABC , M  be the average moment per unit area on plane ABC  
(henceforth referred to as moment for short), and n  be the unit exterior nor-
mal to the face ABC . P , M , and n  all have different directions when the 
deformation is finite. The edges of the deformation tetrahedron are covariant 
base vectors ig  that are tangent to the deformed curvilinear material lines. 

;k i
i k ij

i j

x x
J

x x
∂ ∂

= =
∂ ∂

g e                     (19) 

Columns of J  are covariant base vectors ig  that form non-orthogonal co-
variant basis. Contravariant base vectors of jg  are normal to the faces of the 
tetrahedron formed by the covariant base vectors 

;jj i
l ij

l j

x x
J

x x
∂ ∂

= =
∂ ∂

g e                     (20) 

The rows of J  are contravariant base vectors jg . These form a non-orthogonal 
contravariant basis. Covariant and contravariant bases are reciprocal to each 
other [4]. If ( )0



σ  or ( )0



σ  is the contravariant stress tensor with components 
( )0
ijσ


 or ( )0
ijσ


 with dyads i j⊗g g  , then using dyads i j⊗g g   or contravariant 
laws of transformation we can define contravariant Cauchy stress tensors ( )0σ  
in Lagrangian description 

( ) ( )0 0
i j ijσ= ⊗g g 



σ                       (21) 

using (19)-(21), we can write 
( ) ( ) ( ) ( )( )0 0 0 0;i j ij ij ik kl jlJ Jσ σ σ= ⊗ =e e



σ               (22) 

or 
( ) [ ] ( ) [ ]T0 0J Jσ σ   =   



                    (23) 

where ( )0σ  is Eulerian description of ( )0σ  which is obtained from (23) by re-
placing [ ]J  with 

1
J

−
    and ( )0σ  with ( )0σ . Since dyads of ( )0σ  and ( )0σ  

are i j⊗e e , Cauchy principle holds between P  and ( )0σ . 
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( )( )T0= ⋅P nσ                        (24) 

Similarly we can define covariant Cauchy stress tensors ( )0σ  or ( )0σ  and 
Cauchy principle between ( )0σ  and P . 

( ) ( )( ) ( )( ) ( )( ) ( )( )0 0 0 0 0;i j
i j ki ljij ij ij kl

J Jσ σ σ σ= ⊗ = ⊗ = 

 

g g e eσ     (25) 

or 

( ) ( )
T

0 0J Jσ σ   =          


                    (26) 

and 

( )( )T

0= ⋅P nσ                         (27) 

We define the contravariant and covariant Cauchy moment tensor in similar 
fashion and the corresponding Cauchy principle 

( ) ( ) ( ) ( ) ( )( )0 0 0 0 0;i j ij i j ij ij ik kl jlm m m J m J= ⊗ = ⊗ = 

 

m g g e e         (28) 

or 

( ) [ ] ( ) [ ] ( ) ( )
T1 1T0 0 0 0;m J m J m J m J

− −        = =                
 

      (29) 

( )( )T0= ⋅M m n                        (30) 

and 

( ) ( )( ) ( )( ) ( )( ) ( )( )0 0 0 0 0;i j i j ki ljij ij ij kl
m m m J m J= ⊗ = ⊗ = 

 

m g g e e     (31) 

or 

( ) ( ) ( ) [ ] ( ) [ ]
TT 1 1

0 0 0 0;m J m J m J m J− −        = =              
 

       (32) 

and 

( )( )T

0= ⋅M m n                        (33) 

At this state ( )0σ , ( )0σ , ( )0σ , ( )0σ , ( )0m , ( )0m , ( )0m , and ( )0m  are all 
nonsymmetric tensors of rank two. Thus, we note that the Cauchy stress tensors 
and the Cauchy moment tensors are basis dependent. It has been shown that [4] 
for finite strain rates the contravariant measures are meritorious. However, in de-
riving conservation and balance laws and the constitutive theories either measure 
yields a covariant mathematical model. We introduce stress measure ( )0 σ  that 
could represent ( )0σ  or ( )0σ  and the moment tensor ( )0 m  that could represent 

( )0m  or ( )0m  depending upon our choice. We present derivation of the balance 
laws and constitutive theories using ( )0 σ  and ( )0 m , thus making the deriva-
tions basis independent. Basis dependent mathematical model is recoverable 
from the derivation by specific choice of ( )0 σ  and ( )0 m . 

3. Conservation and Balance Laws 

In the following we present conservation and balance laws in Eulerian descrip-
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tion for non-classical fluent continua incorporating internal rotation rates and 
their spatial and temporal gradients. The fluent continua is assumed homoge-
neous and isotropic. 

3.1. Conservation of Mass: CM 

The continuity equation resulting from the principle of conservation of mass 
remains the same in the non-classical continuum theory considered here as in 
case of classical continuum mechanics. The differential form of the continuity 
equation in Eulerian description for compressible matter is given by 

( )
t
ρ ρ∂
+ ⋅

∂
v∇   (CM)                   (34) 

or 

( )div 0D
Dt
ρ ρ+ =v                       (35) 

For incompressible matter 0ρ ρ= ; hence (34) or (35) reduce to 

( )div 0=v                          (36) 

3.2. Balance of Linear Momenta: BLM 

For a deforming volume of matter, the rate of change of linear momentum must 
be equal to the sum of all other forces acting on it. This is Newton’s second law 
applied to a volume of matter. The derivation of the balance laws is exactly same 
as in case of CCM [4] and we can write the following (Using ( )0 σ  as Cauchy 
stress measure) in Eulerian description. 

( )( )0 0bD
Dt

ρ ρ− − ⋅ =
v F σ∇   (BLM)             (37) 

or 

( )( )0

0
jibi i

j i
j j

v v
v F

t x x

σ
ρ ρ ρ

∂∂ ∂
+ − − =

∂ ∂ ∂
              (38) 

in which bF  is body force per unit mass. 

3.3. Balance of Angular Momenta: BAM 

The principle of balance of angular momenta for non-classical continuum me-
chanics (NCCM) incorporating internal rotation rates, their spatial and tempor-
al derivatives and inertial effects can be stated as: The time rate of change of 
moment of moments is equal to the sum of moments of the forces and the mo-
ments in the current configuration at any time t. Let Iθ  be the rotational iner-
tia per unit mass of the deforming fluent continua then ( )diI Vθ ρ ω  is the 
angular momenta per unit mass of the fluent continua for the elemental volume 
dV  due to Iθ  and angular velocity iω . The moment of linear momenta for 
the same volume dV  is dv Vρ×x . Then, according to this balance law: 
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( )
rate of change of angular momenta

moments due to moments of the body forces acting on d .bP M Vρ= + + F
 

Thus, for the deformed volume V  bounded by V∂  we can write: 

( )( ) ( ) ( )d d db
iV V V

D I V A V
Dt

θ ρ ρ ρ
∂

+ × = × + + ×∫ ∫ ∫x v x P M x Fω   (39) 

We consider each term of (39) 

( ) ( )

( )( )

( )( )

0

0

d d

d

d

i iV V

iV

iV

D DI V I V
Dt Dt

D I V
Dt
D I V
Dt

θ θ

θ

θ

ρ ρ

ρ

ρ

=

=

=

∫ ∫

∫

∫

ω ω

ω

ω

             (40) 

if Iθ  is constant, then (40) reduces to 

( ) ( )d di iV V

D DI V I V
Dt Dt

θ θρ ρ=∫ ∫ω ω               (41) 

and 

( )

0

d d

d

d

d

ijk i jV V

ijk i jV

ijk i jV

j
ijk i j iV

D DV x v V
Dt Dt

D x v V
Dt

D x v V
Dt

Dv
v v x V

Dt

ρ ρ

ρ

ρ

ρ

× =

=

=

 
= + 

 

∫ ∫

∫

∫

∫

x v 







            (42) 

since 0ijk i jv v = , (42) reduces to 

d dj
ijk iV V

DvD V x V
Dt Dt

ρ× =∫ ∫x v                  (43) 

and 

( ) ( ) ( )( )
( )( ) ( )( )

0 0T T

0 0

d d

d

V V

ijk i mj m mj mV

A A

x n m n Aσ

∂ ∂

∂

× + = × ⋅ + ⋅

= +

∫ ∫

∫

x P M x n m n



σ
       (44) 

using Divergence Theorem 

( ) ( )( )( ) ( )( )0 0

,,
d dijk i mj mjV V mm

V x m Vσ
∂

 × + = + 
 ∫ ∫x P M        (45) 

we note the following 

( )( )( ) ( ) ( )( )0 0 0
,

,
ijk i mj ijk im mj i mj m

m
x xσ δ σ σ= +             (46) 

using (46) in (45) we can write 

( ) ( )( )( ) ( )( )0 0

,,
d dijk i mj mjV V mm

V x m Vσ
∂

 × + = + 
 ∫ ∫x P M        (47) 

and 
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d db b
ijk i jV V

V x F Vρ× =∫ ∫x F                    (48) 

substituting from (41), (43), (47) and (48) in (39) and rearranging terms, we ob-
tain 

( ) ( )

( ) ( )( )

0
,

0 0
,

d d

d 0

j b
i k ijk i mj m jV V

ijk ij mk mV

DvDI V x F V
Dt Dt

m V

θ ρ ω ρ σ ρ

σ

 
+ − − 

 

− + =

∫ ∫

∫





      (49) 

The coefficient of ijk ix  in the second term in (49) is zero due to balance of 
linear momenta, hence (49) reduces to 

( ) ( ) ( )0 0
, d 0i k ijk ij mk mV

DI m V
Dt

θ ρ ω σ − − = 
 ∫             (50) 

For isotropic homogeneous matter V  is arbitrary hence we can obtain diffe-
rential form of (50) 

( ) ( ) ( )0 0
, 0i k ijk ij mk m

DI m
Dt

θ ρ ω σ− − =    (BAM)        (51) 

Remarks 
1. If we set the first and the last term in (51) to zero, then we recover balance 

of angular momenta for classical continuum mechanics in Eulerian description. 
2. If we set the first term in (51) to zero but retain second and third order 

terms, then we have balance of angular momenta for NCCM incorporating in-
ternal rotation rates without the rotational inertial physics. 

3. Appearance of the first term in (51) is due to consideration of time varying 
rotation rates and rotational inertia Iθ . This is new physics considered in the 
present work that neither appears in CCM nor NCCM published works. 

4. Equation (51) is the final form of balance of angular momenta. 

3.4. Balance of Moment of Moments: BMM 

This is a new balance law originally proposed by Yang et al. [6] for NCCM. This 
balance law was derived based on static considerations (hence cannot be referred 
to as a balance law). Later, Surana et al. explained the rationale for this balance 
law and pointed out that a balance law must be derived using rate considera-
tions. In references [1] [7] [33] they presented derivation of the “balance of 
moment of moments” balance law for NCCM for fluent and solid continua in 
the presence of internal rotation rates and internal rotations. In the work pre-
sented in this paper, the physics considered is different than in reference [1], 
hence a rederivation of this balance law is necessary. According to this balance 
law the rate of change of moment of angular momenta due to rotation rates in a 
deformed volume V  must be equal to the sum of the moment of moments due 
to the antisymmetric components of the Cauchy stress tensor over the same de-
formed volume V  and the moment of M  acting on boundary V∂  of V . 

( ) ( )( )0d : d diV V V

D I V V A
Dt

θ ρ
∂

× = × + ×∫ ∫ ∫x x x Mω σ       (52) 
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we expand each term of (52) in the following 

( ) ( )

( )

( )( )

0

d d

d

d

i jkl j i kV V

jkl j i kV

jkl j i kV

D DI V I x V
Dt Dt

D I x V
Dt

D I x V
Dt

θ θ

θ

θ

ρ ω ρ

ω ρ

ω ρ

× =

=

=

∫ ∫

∫

∫

x 





ω

         (53) 

Assuming Iθ  to be constant 

( ) ( ) ( )d di jkl j i k j i kV V

D DI V I v x V
Dt Dt

θ θρ ω ω ρ × = + 
 ∫ ∫x ω      (54) 

d djkl j kV V
A x M A

∂ ∂
× =∫ ∫x M                    (55) 

using Cauchy principle for M  
( )( )0d djkl j mk mV V

A x m n A
∂ ∂

× =∫ ∫x M                (56) 

using Divergence Theorem 
( )( )( )
( ) ( )( )( )

( ) ( )( )

0

,

0 0
,

0 0
,

d d

d

d

jkl j mkV V m

jkl jm mk j mk mV

jkl jk j mk mV

A x m V

m x m V

m x m V

δ

∂
× =

= +

= +

∫ ∫

∫

∫

x M 





         (57) 

substituting from (54) and (57) in (52) 

( ) ( )

( ) ( ) ( )( )( )0 0 0
,

d

: d d

i k
jkl j i k jV

jkl jk j mk mV V

D
I v x V

Dt

V m x m V

θ ω
ρ ω

 
+  

 

= × + +

∫

∫ ∫x



σ

         (58) 

we note that 
( ) ( )

( )( )( ) ( )

( ) ( )

0 0
,

0 0
,

mk m

jkl j mk m

i k i
jkl

m

x m

D D
I I

Dt Dt
θ θω ω
ρ ρ

= ⋅

= × ⋅

= ×

m

x m

x





∇

∇                 (59) 

using (59) in (58) and regrouping terms 

( ) ( ) ( ) ( )

( )

0 0

0

d : d

d

i
jkl j i kV V

jkl jkV

D
I v V I V

Dt

m V

θ θρ ω ρ
 

+ × − − ⋅  
 

=

∫ ∫

∫

x m



ω
σ ∇

   (60) 

using balance of angular momenta (51) in (60), we obtain 

( ) ( )( )0 d 0jkl j i k jkV
I v m Vθ ρ ω − =∫                 (61) 

For homogeneous, isotropic continua, V  is arbitrary, hence we obtain the 
following from (61) 

( ) ( )( )0 0jkl j i k jkI v mθ ρ ω − =    (BMM)          (62) 
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Equation (62) is the final form resulting from the balance of moment of mo-
ments balance law. 

Remarks 
1. We note that in the absence of rotational inertia Iθ  (new physics consi-

dered in this paper), i.e., when 0Iθ = , (62) reduces to 
( )0 0jkl jkm =                         (63) 

This is same as the BMM balance law introduced in references [1] [6] [7]. 
2. When Iθ  is not zero, (62) yields three equations defining antisymmetric 

parts of the Cauchy moment tensor ( )0 m  in terms of velocities and the rotation 
rates (angular velocities) and the properties ρ  and Iθ  of the continua. 

3.5. First Law of Thermodynamics: FLT  

The sum of work and heat added to a volume of matter must result in increase of 
the energy of the volume. This can be expressed as a rate equation in Eulerian 
description. 

tDE DQ DW
Dt dt Dt

= +                       (64) 

where tE , Q  and W  are total energy, heat added and work done. Their rates 
can be written as 

( )1 1 d
2 2

bt
i iV

DE D e I V
Dt Dt

θρ  = + ⋅ + ⋅ − ⋅ 
 ∫ v v F vω ω         (65) 

d
V

DQ A
Dt ∂

= − ⋅∫ q n                       (66) 

( )dt
iV

DW A
Dt ∂

= ⋅ + ⋅∫ P v M Θ                   (67) 

where e  is specific internal energy, bF  are body forces per unit mass and g  
is heat vector. The second term in the integrand is due to additional rate of work 
due to rotation rates. We expand integrals in (65)-(67). Following reference [4] 
we can show 

( )

( )

1 1 d
2 2

d

bt
i iV

bi
iV

DE D e I V
Dt Dt

DDe D I V
Dt Dt Dt

θ

θ

ρ

ρ ρ ρ ρ

 = + ⋅ + ⋅ − ⋅ 
 

 = + + ⋅ − ⋅ 
 

∫

∫

v v F v

vv F v

ω ω

ωω

      (68) 

using Divergence Theorem (66) can be written as 

d d
V V

DQ A V
Dt ∂

= − ⋅ = ⋅∫ ∫q n q∇                  (69) 

using Cauchy principle for P  and M  we can show that 

( )
( )( ) ( )( )
( )( ) ( )( )

T0 0

T0 0

d

d

d

t
iV

t
iV

t
iV

DW A
Dt

A

∂

∂

∂

= ⋅ + ⋅

 = ⋅ ⋅ + ⋅ ⋅ 
 
 = ⋅ + ⋅ 
 

∫

∫

∫

P v M

v n m n

v m A

σ

σ

Θ

Θ

Θ

            (70) 

https://doi.org/10.4236/am.2022.136030


K. S. Surana, J. K. Kendall 
 

 

DOI: 10.4236/am.2022.136030 467 Applied Mathematics 
 

using Divergence Theorem 

( )( ) ( )( )T T0 0 dt
iV

DW V
Dt

    = ⋅ ⋅ + ⋅ ⋅        ∫ v mσ∇ ∇ Θ          (71) 

following reference [4], we can show 

( )( ) ( )( ) ( )T0 0 0 : ⋅ ⋅ = ⋅ ⋅ + 
 

v v Lσ σ σ∇ ∇               (72) 

( )( ) ( )( ) ( )T0 0 0 :
t
it t

i i
Θ ⋅ ⋅ = ⋅ ⋅ + 

 
m m m J∇ Θ Θ ∇            (73) 

substituting from (72) and (73) in (71) 

( )( ) ( ) ( )( ) ( )( )0 0 0 0: : d
t
it

iV

DW V
Dt

Θ= ⋅ ⋅ + + ⋅ ⋅ +∫ v L m m Jσ σ∇ Θ ∇     (74) 

Substituting from (65), (66) and (74) in (64) 

( ) ( )

( ) ( )( ) ( )

0 0

0 0

d :

: d 0
t
i

b
V V

t i
i i

D DeV
Dt Dt

D
I V

Dt
θ

ρ ρ ρ

ρΘ

  ⋅ − − ⋅ + +∇ ⋅ −  
  

 − − ⋅ ⋅ + ⋅ = 
 

∫ ∫
vv F q L

m J m

σ σ

ω
ω

∇

Θ ∇

     (75) 

Using balance of linear momenta (37) in (75) and grouping last two terms in 
the integrand we obtain (noting that t

i i= ωΘ ) 

( ) ( )

( ) ( )( )

0 0

0

: :

d 0

t
i

V

i
i

De
Dt

D
I V

Dt
θ

ρ

ρ

Θ + ⋅ − −


 + ⋅ −∇ ⋅ = 
 

∫ q L m J

m

σ

ω
ω

∇

             (76) 

For isotropic, homogenous continua, V  is arbitrary, hence we can set the 
integrand in (76) to zero. 

( ) ( ) ( ) ( )( )0 0 0: : 0
t
i i

i
DDe I

Dt Dt
θρ ρΘ  + ⋅ − − + ⋅ −∇ ⋅ = 

 
q L m J m

ω
σ ω∇   (77) 

From balance of angular momenta 

( ) ( )( ) ( )( )0 0:iD
I

Dt
θρ − ⋅ =m m

ω
∇                 (78) 

Substituting from (78) into (77) 

( ) ( ) ( )( )0 0 0: : : 0
t
i

i
De
Dt

ρ Θ+∇ ⋅ − − + ⋅ =q L m Jσ ω σ         (79) 

Let 
( ) ( )0 0: =σ τ                         (80) 

in which ( )0 τ  is a vector, containing three components, and noting that 
( ) ( )0 0

i i⋅ = ⋅ω τ τ ω                       (81) 

using (80) and (81) in (79) we obtain 

( ) ( ) ( )0 0 0: : 0
t
i

i
De
Dt

ρ Θ+ ⋅ − − + ⋅ =q L m Jσ τ ω∇           (82) 
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the energy Equation (82) resulting from the first law of thermodynamics can be 
further simplified (shown below). We note the following, 

= +L D W                          (83) 
t t t
i i i

s a
Θ Θ Θ= +J J J                        (84) 

We consider decomposition of ( )0 σ  and ( )0 m  into symmetric and anti-
symmetric parts 

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

s a

s a

= +

= +m m m

σ σ σ
                      (85) 

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

: : :

: : :
t t t
i i i

s a

s s a a
Θ Θ Θ

= +

= +

L D W

m J m J m J

σ σ σ
                (86) 

Substituting (85)-(88) in (83) we can obtain 

( ) ( ) ( ) ( ) ( )0 0 0 0 0: : : : 0
t t
i i

s a s s a a i
De
Dt

ρ Θ Θ+ ⋅ − − − − + ⋅ =q D W m J m Jσ σ τ ω∇   (87) 

We can show that 
( ) ( )0 0 :i a⋅ = Wτ ω σ                       (88) 

using (89) in (88) 

( ) ( ) ( )0 0 0: : : 0
t t
i i

s s s a a
De
Dt

ρ Θ Θ+ ⋅ − − − =q D m J m Jσ∇   (FLT)     (89) 

This is the final form of the energy equation resulting from the first law of 
thermodynamics. 

3.6. Second Law of Thermodynamics: SLT 

If η  is the entropy density in the volume V , h  is the entropy flux between 
V  and the volume of matter surrounding it and s  is the source of entropy in 
V  due to non contacting sources (bodies), then the rate of increase of entropy 
in volume V  is at least equal to that applied to V  from all contacting and 
non-contacting sources [4]. Thus 

d d d
V V V

D V h A s V
Dt

ηρ ρ
∂

≥ +∫ ∫ ∫                 (90) 

using Cauchy’s postulate for h  

h = − ⋅nψ                          (91) 

using (91) in (90) 

d d d
V V V

D V A s V
Dt

ηρ ρ
∂

≥ − ⋅ +∫ ∫ ∫nψ               (92) 

using Gauss’ Divergence Theorem for the terms over V∂  gives (noting that ψ  
is a tensor of rank one) 

d d d
V V V

D V V s V
Dt

ηρ ρ
∂

≥ − ⋅ +∫ ∫ ∫ψ∇               (93) 
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we note that 

( ) 0 0d d d d
V V V V

D D D DV V V V
Dt Dt Dt Dt

η ηη ρ ηρ ρ ρ= = =∫ ∫ ∫ ∫       (94) 

using (94) in (93) we obtain 

d 0
V

D s V
Dt
ηρ ρ + ⋅ − ≥ 

 ∫ ψ∇                  (95) 

For homogeneous. isotropic matter volume V  is arbitrary hence we can 
write the following from (95) 

0D s
Dt
ηρ ρ+ ⋅ − ≥ψ∇                      (96) 

Equation (96) is the most fundamental form of the SLT or entropy inequality 
(Clausius Duhem inequality). We note that entropy inequality is strictly a state-
ment that contains entropy terms, hence contains no information regarding re-
versible deformation physics. In this form (96) the entropy inequality provides 
no mechanism(s) for deriving constitutive theories. Only when the mechanical 
rate of work that results in rate of entropy production is introduced in the en-
tropy inequality, will the entropy inequality contain information regarding con-
jugate pairs resulting in rate of entropy production. We also note entropy in-
equality (96) does not provide any information regarding constitutive theory for 
heat vector q . In the following we derive another form of the entropy inequali-
ty using a relationship between ψ  and q  and relationship between Φ , e  
and η . Since the energy equation has all possible mechanisms that result in 
energy storage and dissipation, the form of entropy inequality derived using 
energy equation is expected to be helpful in the derivation of the constitutive 
theories. Using 

, rs
θ θ

= =
qψ                        (97) 

where θ  is absolute temperature and r  is a suitable potential 

, ,
, 2 2=i i i i

i i

q qθ
ψ

θ θθ θ
⋅ ⋅

⋅ = = − −
q q gψ ∇

∇               (98) 

substituting from (98) into (96) and multiplying through by θ  

( ) 0D r
Dt
ηρθ ρ

θ
⋅

+ ⋅ − − ≥
q gq∇                  (99) 

From energy Equation (89) (after including s ρ ) term) 

( ) ( ) ( )0 0 0: : :
t t
i i

s s s a a
Des
Dt

ρ ρ Θ Θ⋅ − = − + + +q D m J m Jσ∇        (100) 

substituting (100) into (99) and using e ηθΦ = −  and regrouping terms 

( ) ( ) ( )0 0 0: : : 0
t t
i i

s s s a a
D D
Dt Dt

θρ η
θ

Θ Θ Φ ⋅
+ + − − − ≤ 

 

q g D m J m Jσ  (SLT)   (101) 

Equation (101) is the final form of the entropy inequality resulting from the 
second law of thermodynamics. 
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4. Complete Mathematical Model Resulting from CBL of 
NCCM 

The system of partial differential equations and algebraic equations resulting 
from the conservation and balance laws of NCCM incorporating internal rota-
tion rates and their material derivatives and rotational inertial effects are given 
by: conservation of mass (CM), balance of linear momenta (BLM), balance of 
angular momenta (BAM), balance of moment of moments (BMM), first law of 
thermodynamics (FLT) and the second law of thermodynamics (SLT). These are 
listed in the following using: 

( ) ( ) ( )
, ,i k i kt t t

i k i i k i

D DD
Dt Dt Dt
ω ω

ω = = Θ = Θ Θ          (102) 

( )div 0D
Dt
ρ ρ+ =v          (CM) (103) 

( ) ( )0 0b

t
ρ ρ ρ∂

+ ⋅ − − ⋅ =
∂
v v v F σ∇ ∇      (BLM) (104) 

( ) ( ) ( )0 0
, 0i k ijk ij mk m

DI m
Dt

θ ρ ω σ− − =      (BAM) (105) 

( ) ( )( )0 0jkl j i k jkI v mθ ρ ω − =        (BMM) (106) 

( ) ( ) ( )0 0 0: : : 0
t t
i i

s s s a a
De
Dt

ρ Θ Θ+ ⋅ − − − =q D m J m Jσ∇   (FLT) (107) 

( ) ( ) ( )0 0 0: : : 0
t t
i i

s s s a a
D D
Dt Dt

θρ η
θ

Θ Θ Φ ⋅
+ + − − − ≤ 

 

q g D m J m Jσ  (SLT) (108) 

Remarks 
1. The mathematical model consists of eleven equations: CM (1), BLM (3), 

BAM (3), BMM(3), FLT (1) in twenty six dependent variables: ρ  (1), v  (3), 
( )0 σ  (9), ( )0 m  (9), q  (3), θ  (1), thus we need additional fifteen equations 
for the mathematical model to have closure. These additional equations are ob-
tained from the constitutive theories. 

2. We shall see that Φ , η  and e  are not dependent variables in the ma-
thematical model as these can be expressed in terms of other dependent va-
riables in remark (1). 

3. From entropy inequality we can conclude the following.  

(a) From the term 
θ
⋅q g

, we conclude that ,q g  is a conjugate pair. 

(b) The term ( )0 :s Dσ , suggests that ( )0
sσ  and D  are rate of work (mechan-

ical) conjugate pair. This is obviously due to classical continuum mechanics. 
(c) The term ( )0 :

t
i

s s
Θm J  suggests that ( )0

s m  and 
t
i

s
ΘJ  are also rate of work 

(mechanical) conjugate pair. This is the contribution of non-classical continuum 
mechanics incorporating internal rotation rates. 

(d) From the term ( )0 :
t
i

a a
Θm J  it can be concluded that ( )0

a m , 
t
i
a
ΘJ  are a rate 

of work (mechanical) conjugate pair. However, based on Surana et al. [1] in 
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non-classical continuum mechanics the constitutive theory for ( )0
a m  (when 

( )0
a m  is a possible choice of constitutive variable) leads to deformation physics 

that is non-physical. In reference [1] authors present constitutive theory for 
( )0

a m  (in the absence of BMM balance law) as well as for ( )0
s m  and model 

problem studies to substantiate this issue. Based on reference [1], ( )0
a m  and 

t
i
a
ΘJ  are not a conjugate pair, therefore ( )0

a m  is not a constitutive tensor. Thus, 
( )0 : 0

t
i

a a
Θ =m J  must be used as a constraint equation in the mathematical mod-

el. 
4. From remark (3) we can conclude that it is possible to obtain the following 

additional equations through constitutive theories 
(a) Constitutive theory for ( )0

sσ  (6); 
(b) Constitutive theory for ( )0

s m  (6); 
(c) Constitutive theory for q  (3). 
This provides us with additional fifteen equations needed to provide closure 

to the mathematical model consisting of Equations (103)-(107). 
5. In this paper, we consider compressible as well as incompressible thermo-

viscous fluent continua. 
6. In a recent paper Surana et al. [9] presented non-classical continuum theory 

for thermoelastic solid continua (small deformation, small strain physics for 
homogeneous and isotropic) incorporating internal rotations with rotational in-
ertial effects. Authors showed the existence of rotational waves similar to trans-
lational waves due to BAM when rotational inertial effects are considered. In this 
derivation the kinetic energy due to iω  was not considered i.e., the term  

0
1
2 i iIθ ⋅ω ω  (no sum over i) was neglected in the consideration of total energy  

per unit mass. A consequence of this was appearance of additional term 
( )0 0 i iIθ ρ ⋅ω ω  in the energy equation and in the entropy inequality (see ref [9] 

Equations (75) and (76)). Thus, to satisfy SLT in the presence of this term, we 
must set ( )0 0 0i iIθ ρ ⋅ =ω ω  as additional constraint equation in the mathe-
matical model. 

7. In the derivation presented here for fluent continua, the kinetic energy due 
to angular velocities is accounted for in the total energy per unit mass (Equation 
(65)). This is obviously more complete physics describing kinetic energy. A con-
sequence of this is the absence of the term ( )i iIθ ρ ⋅ω ω  (no sum over i) in the 
energy equation and the entropy inequality. This adjustment is beneficial in 
terms of more complete physics and is suggested and can be easily made in the 
works of reference [9] by simply neglecting the ( )0 0 i iIθ ρ ⋅ω ω  (no sum over i) 
term in the energy equation and the entropy inequality. 

5. Constitutive Theories 

The conjugate pairs in the entropy inequality (101) expressed in terms of Helm-
holtz free energy density are instrumental in determining the constitutive va-
riables, their argument tensors as well as derivation of some constitutive theo-
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ries. Choice of Φ , η , ( )0
sσ , ( )0

s m  and q  as constitutive variables based on 
axioms of constitutive theories [4] [34], entropy inequality as well as the other 
balance laws is straightforward. The choice of some argument tensors of ( )0

sσ , 
( )0

s m  and q  can be made based on conjugate pairs in the SLT. Additionally, 
temperature θ  is also required to be an argument tensor of all constitutive va-
riables due to non-isothermal physics. 

For compressible continua, density varies during evolution. Based on conser-
vation of mass in Lagrangian description, changing density is defined by chang-
ing [ ]J , deformation gradient tensor. 

( )
0

,
J

t
ρ

ρ
=

x  
Thus, J  or ( )0 , tρ ρ x  or ( )1 , tρ x  must be argument tensor of the con-

stitutive variables in Lagrangian description. In Eulerian description choice of 
( )1 , tρ x  is replaced by ( )1 , tρ x  hence at the onset we begin with 

( ) ( )0 0 1 , ,s s θ
ρ

 
=  

 
Dσ σ                     (109) 

( ) ( )0 0 1 , ,
t
i

s s s θ
ρ

Θ 
=  

 
m m J                    (110) 

1 , ,θ
ρ

 
=  

 
q q g                       (111) 

The argument tensors of Φ  and η  at this stage can be chosen using prin-
ciple of equipresence [4] [34], we remark that principle of equipresence is not 
used in (110)-(112) as the conjugate pairs in entropy inequality specifically dic-
tate the choice of argument tensors used and additionally 1 ρ  and θ . 

1 , , , ,
t
i

s θ
ρ

Θ 
Φ = Φ 

 
D J g                    (112) 

1 , , , ,
t
i

sη η θ
ρ

Θ 
=  

 
D J g                    (113) 

The argument tensors of ( )0
sσ  can be enhanced to permit more comprehensive 

physics. Let ( )iγ ; 1,2, ,i n= 
 be the convected time derivatives of the Green’s 

strain tensor ( )0ε  (covariant basis) up to order n and let ( )iγ ; 1,2, ,i n= 
 be 

the convected time derivatives of the Almansi strain tensor [ ]0ε  (contravariant 
basis) up to order n (see reference [4] for details). Then, we find that 

( )
( )1

1 = = Dγ γ                        (114) 

i.e., D  is basis independent, however ( )iγ ; 2,3, ,i n= 
 and ( )iγ ; 

2,3, ,i n= 
 are in covariant and in contravariant basis. Thus, we note that the 

first convected time derivative of [ ]0ε , i.e. D  or ( )1γ , is argument tensor of 
( )0

sσ . The first convected time derivative of [ ]0ε  i.e., ( )1γ  is also equal to D . 
This suggests that perhaps a constitutive theory that considers convected time 
derivatives of [ ]0ε  or [ ]0ε  up to order n is worthy of consideration. Thus D  
can also be replaced by ( )iγ ; 1,2, ,i n= 

 or ( )iγ ; 1,2, ,i n= 
. The choice of 
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( )iγ ; 1,2, ,i n= 
 (covariant basis) or ( )iγ ; 1,2, ,i n= 

 (contravariant basis) 
depends upon whether ( )0

sσ  is chosen to be ( )0
sσ  (contravariant measure) or 

( )0sσ  (covariant measure). To make the derivation basis independent we re-
place D  by ( )i γ ; 1,2, ,i n= 

 convected time derivative of the desired strain 
tensor. More specifically when 

( ) ( ) ( )
( )

0 0 ; ; 1, 2, ,i
s s i i n= = = σ σ γ γ               (115) 

and when 
( )

( )
( ) ( )0

0 ; ; 1, 2, ,i i
s s i n= = = σ σ γ γ              (116) 

when we replace D  in (110), (113) and (114) by ( )i γ ; 1,2, ,i n= 
 the re-

sulting constitutive theory for ( )0
sσ  is referred to as ordered rate constitutive 

theory of order n. Thus now we have 

( ) ( ) ( )0 0 1 , , ; 1, 2, ,i
s s i nθ

ρ
 

= = 
 

σ σ γ               (117) 

( ) ( )0 0 1 , ,
t
i

s s s θ
ρ

Θ 
=  

 
m m J                    (118) 

1 , ,θ
ρ

 
=  

 
q q g                       (119) 

( )1 , , , , ; 1, 2, ,
t
ij

s j nθ
ρ

Θ 
Φ = Φ = 

 
J g γ             (120) 

( )1 , , , , ; 1, 2, ,
t
ij

s j nη η θ
ρ

Θ 
= = 

 
J g γ             (121) 

In (117)-(121) we have the final choice of argument tensors of the constitutive 
variables. We can now obtain the material derivative of Φ  using (120) 

( ) ( )( )
( )( )

( ) ( )
2

1

1 :
1

:
t
i

t
i

n
j

j
j

s

s

D
Dt

ρ
ρ ρ

θ
θ

=

Θ

Θ

Φ ∂Φ − ∂Φ
= Φ = +

∂ ∂

∂Φ ∂Φ ∂Φ
+ + ⋅ +

∂ ∂∂

∑

J g
gJ











γ
γ

          (122) 

From continuity Equation (35) 

:kk kl lkD Dρ ρ ρ ρ δ ρ= − ⋅ = − = − = −v D δ∇            (123) 

Substituting from (123) in (122) 

( ) ( )( )
( )( )

( ) ( )
1

: :
1

:
t
i

t
i

n
j

j
j

s

s

D
Dt ρ

θ
θ

=

Θ

Θ

Φ ∂Φ ∂Φ
= +
∂ ∂

∂Φ ∂Φ ∂Φ
+ + ⋅ +

∂ ∂∂

∑D

J g
gJ







δ γ
γ

            (124) 

we note that 

( ) ( )2

1

1
ρρ

ρ
ρ

ρ

 
∂Φ  ∂Φ  = −

∂ 
∂  
 

                  (125) 
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we can also make substitution from (125) in (124). After this substitution 
( ),ρΦ = Φ   and so are the remaining constitutive variables. 

( )( )
( )( ) ( ) ( )2

1
: : :

t
i

t
i

n
j

sj
j

s

D
Dt

ρ
ρ

θ
θ

Θ

Θ=

Φ ∂Φ ∂Φ ∂Φ
= − + +

∂ ∂ ∂

∂Φ ∂Φ
+ ⋅ +
∂ ∂

∑D J
J

g
g









δ γ
γ

     (126) 

Substituting (126) in the entropy inequality (108) and regrouping terms 

( )
( )( )

( )( ) ( ) ( )
( )

02

1

0

: : :

: 0

t
i

t
i

t
i

n
j

s sj
j

s

s s

ρ ρ
ρ

θ ρ η θ
θ θ θ

Θ

Θ=

Θ

 ∂Φ ∂Φ ∂Φ
− − + + ∂ ∂  ∂

 ∂Φ ∂Φ ∂Φ ⋅
+ ⋅ + + + − + ≤ ∂ ∂ ∂ 

∑D J
J

q gg m J
g





 



δ σ γ
γ

    (127) 

For arbitrary but admissible ( )j
γ ; 1,2, ,j n= 

, 
t
i

s
ΘJ , g  and θ  the en-

tropy inequality (128) is satisfied if the following hold (i.e. their coefficients are 
set to zero). 

( )( ) ( )( )
( )( )

0 0

; 1,2, ,

j j

j j n

ρ ∂Φ ∂Φ
= ⇒ =

∂ ∂

⇒ Φ ≠ Φ = 

γ γ

γ

                (128) 

( ) ( ) ( )0 0
t
i

t t
i i

s

s s

ρ Θ

Θ Θ

∂Φ Φ
= ⇒ = ⇒Φ ≠ Φ

∂ ∂
J

J J
          (129) 

( )0 0ρ ∂Φ ∂Φ
= ⇒ = ⇒Φ ≠ Φ

∂ ∂
g

g g
               (130) 

0 0ρ η η η
θ θ θ

 ∂Φ ∂Φ ∂Φ
+ = ⇒ + = ⇒ = − ∂ ∂ ∂ 

           (131) 

From (128)-(130) we can conclude that ρ  and θ  are the only argument 
tensors of Φ . From (131) we conclude that η  is not a constitutive variable as 
it is deterministic using θ∂Φ ∂ . Using (128)-(131) the entropy inequality (127) 
reduces to 

( ) ( )0 02 : : 0
t
i

s s sρ
ρ θ

Θ ∂Φ ⋅
− − − + ≤ ∂ 

q gD m Jδ σ           (132) 

We remark that setting coefficient of D  in (132) to zero and obtaining 

( )02 0sρ
ρ

∂Φ
− − =

∂
δ σ                     (133) 

( )0 : 0
t
i

s s θ
Θ ⋅

− + ≤
q gm J                    (134) 

are inappropriate due to the fact that (133) implies that ( )0
sσ  is not a function 

of ( )j γ ; 1,2, ,j n= 

 as Φ  is not a function of these which is invalid based 
on (117). Thus, at this stage, we must maintain entropy inequality in the form 
stated in (132). In order to proceed further, we consider decomposition of 
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Cauchy stress tensor ( )0
sσ  into equilibrium ( )0

esσ  and deviatoric tensor ( )0
dsσ  

where ( )0
esσ  causes change of volume without distortion and ( )0

dsσ  causes dis-
tortion of volume without change of volume. 

( ) ( ) ( )0 0 0
s es ds= +σ σ σ                       (135) 

Thus, we consider 
( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )

0 0

0 0

0 0

,0,

, , ; 1, 2, ,

and ,0, 0

es es

j
ds ds

ds ds

j n

ρ θ

ρ θ

ρ θ

=

= =

= =



σ σ

σ σ γ

σ σ

              (136) 

The remaining constitutive variables and their argument tensors remain the 
same 

( ) ( )0 0 1 , ,
t
i

s s s θ
ρ

Θ 
=  

 
m m J                    (137) 

1 , ,θ
ρ

 
=  

 
q q g                       (138) 

( ),ρ θΦ = Φ                        (139) 

5.1. Constitutive Theory for ( )
esσ
0 : Compressible Continua 

Substituting (136) in entropy inequality and regrouping terms 

( ) ( ) ( )0 0 02 : : : 0
t
i

es ds s sρ
ρ θ

Θ ∂Φ ⋅
− − − − + ≤ ∂ 

q gD D m Jδ σ σ        (140) 

Since Φ  is a function of ρ  and θ  so is ( )0
esσ . Thus ( )0

esσ  can be deter-
mined by setting the coefficient of klD  in the first term of (140) to zero 

( ) ( ) ( )[ ]0 02 or ,es es p Iρ σ ρ θ
ρ

∂Φ  = − = ∂
σ δ            (141) 

in which 

( ) 2,p ρ θ ρ
ρ

∂Φ
= −

∂
                     (142) 

where ( ),p ρ θ  is thermodynamic pressure for compressible fluent continua 
and is defined by equation of state. The entropy inequality (140) reduces to 

( ) ( )0 0: : 0
t
i

ds s s θ
Θ ⋅

− − + ≤
q gD m Jσ                 (143) 

Entropy inequality (143) is satisfied if 
( )0 : 0ds ≥Dσ                         (144) 

( )0 : 0
t
i

s s
Θ ≥m J                        (145) 

and 

0
θ
⋅

≤
q g

                         (146) 
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Inequalities (144) and (145) require that rate of work due to ( )0
dsσ  and ( )0

s m  
be positive and (146) serves as restriction on the constitutive theory for q . 

5.2. Constitutive Theory for ( )
esσ
0 : Incompressible Continua 

For incompressible matter 0ρ ρ= , constant, hence 0
ρ

∂Φ
=

∂
. Thus the Constitutive  

theory for ( )0
esσ  cannot be derived using (141). The incompressibility condition 

must be enforced in the derivation of the constitutive theory for ( )0
esσ  by incor-

porating it in the entropy inequality. The incompressibility condition is given by 
continuity equation. 

( )tr : 0kk kl lkD D δ⋅ = = = = =v D Dδ∇              (147) 

Thus, we can add the following to the entropy inequality (140) 

( ) : 0p θ =Dδ                       (148) 

( ) ( )( ) ( ) ( )0 0 0: : : 0
t
i

es ds s sp θ
θ

Θ ⋅
− − − + ≤

q gD D m Jδ σ σ         (149) 

Setting the coefficient of D  to zero in the first term of (149) 
( ) ( ) ( ) ( )[ ]0 0ores esp p Iθ σ θ = = σ δ              (150) 

where ( )p θ  is mechanical pressure. Since ( )p θ  is an arbitrary Lagrange 
multiplier, it is independent of the deformation field. The entropy inequality 
(149) reduces to (143) with conditions (144)-(146) that must be satisfied by the 
constitutive theories for ( )0

dsσ , ( )0
s m  and q . 

5.3. Constitutive Theory for ( )
dsσ
0  

We consider (136) 
( ) ( ) ( )( )0 0 , , ; 1, 2, ,j
ds ds j nρ θ= = σ σ γ               (151) 

Pairs in (144) from entropy inequality confirm that ( )0
dsσ  and ( )j γ ; 

1,2, ,j n= 

 are rate of work conjugate. We derive constitutive theory for ( )0
dsσ  

using representation theorem [35]-[51]. Let iσG


; 1,2, ,i Nσ=   be the com-
bined generators of the argument tensors of ( )0

dsσ  that are symmetric tensors of 
rank two, then ( )0

dsσ  can be expressed using linear combination of I  and 
( )j γ ; 1,2, ,i Nσ=   in the current configuration. 

( ) ( )0 0

1

N
i i

ds
i

σ
σ σ σα α

=

= +∑I G


σ                   (152) 

In the linear combination (152), coefficients iσα ; 0,1, ,i Nσ=   are func-
tions of the combined invariants jIσ



; 1, 2, ,j Mσ=   of the same argument 
tensors of ( )0

dsσ  in (151), ρ  and θ . 

( ), , ; 1, 2, , ; 0,1, ,i i jI j M i Nσ σ σ
σ σα α ρ θ= = = 



        (153) 

The material coefficients in the constitutive theory for ( )0
dsσ  given by (151) 
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are determined by considering Taylor series expansion of iσα ; 0,1, ,i Nσ=   
in jIσ



; 1,2, ,j Mσ=   about a known configuration Ω  and retaining only 
up to linear terms in jIσ



; 1,2, ,j Mσ=   (for simplicity). Taylor series expan-
sion in θ  is not considered as the influence of thermal field on stress tensor 
has already been considered in the constitutive theory for ( )0

esσ  stress tensor. 

( ) ( )
1

; 0,1, ,
iM

i i j j
j

j
I I i N

I

σ σ
σ σ σ σ

σσ

αα α
Ω Ω

=
Ω

∂
= + − =

∂
∑ 

 



      (154) 

Substituting iσα ; 0,1, ,i Nσ=   into (152) and collecting coefficients of the 
terms defined in the current configuration and introducing new notations for 
the coefficients. 

( ) ( ) ( ) ( ) ( )0 0

1 1 =1 =1

M N N M
j i j i

ds j i ij
j i i j

I b c I
σ σ σ σ

σ σ σ σ σ σ σσ α
Ω = =

= + + +∑ ∑ ∑∑I I G G
      

σ   (155) 

Coefficients jaσ



, ibσ  and ijcσ



; 1,2, ,i Nσ=  , 1,2, ,j Mσ=   and func-

tions of ρ
Ω

, jIσ

Ω


 and θ
Ω

; 1, 2, ,j Mσ=  . These are material coefficients. 

Remarks 
1. This constitutive theory for ( )0

dsσ  given by (155) contains ( )N M NM+ +  
material coefficients. This is non-linear ordered rate constitutive theory of order 
n for ( )0

dsσ  and is based on integrity. 
2. A simple linear constitutive theory in which products of jIσ



, iσG


 and 
(θ θ

Ω
− ) are neglected is given by 

( ) ( ) ( )0 0

1 1
2 :

n n
i i

ds i i
i i

σ µ λ
Ω

= =

= + +∑ ∑I I


σ γ γ              (156) 

iµ  and iλ  are material coefficients for convected time derivative ( )i γ  of 
the corresponding strain tensor. The constitutive theory (156) is also ordered 
rate constitutive theory of order n, but is linear in the components of iγ   ; 

1,2, ,i n= 
. 

3. From (157) we can obtain the most simplified constitutive theory for ( )0
dsσ  

if we choose 1n =  (rate constitutive theory of order one) 
( ) ( ) ( )0 1 10

1 12 :ds σ µ λ
Ω

= + +I I


σ γ γ                 (157) 

The constitutive theory (157) is Newton’s law of viscosity for thermoviscous 
compressible fluids. We note that ( )1 = Dγ , symmetric part of the velocity gra-
dient tensor. ( ) [ ]0 Iσ  initial stress field and the last term is due to thermal expan-
sion or contraction. 1µ  and 1λ  are first and second viscosities. For incompres-
sible fluent continua for ( )1 0=γ , due to continuity, hence the third term in 
(157) becomes zero. 

5.4. Constitutive Theory for ( )
s m0  

We consider (138) 
( ) ( ) ( )0 0 , ,

t
i

s s sρ θΘ=m m J                     (158) 

https://doi.org/10.4236/am.2022.136030


K. S. Surana, J. K. Kendall 
 

 

DOI: 10.4236/am.2022.136030 478 Applied Mathematics 
 

Let m iG


; 1,2, , mi N=   be the combined generators of the argument tensors 
of ( )0 m  in (158) that are symmetric tensors of rank two. Then, based on repre-
sentation theorem [35]-[51] we can express ( )0

s m  as a linear combination of I  
and m iG



; 1,2, , mi N=   in the current configuration. 

( )0 0

1

mN
m m i m i

s
i

α α
=

= +∑m I G


                  (159) 

The coefficients in the linear combination (159) are functions of ρ , θ  and 
m jI


; 1,2, , mj M=  , the combined invariants of the same argument tensors of 
( )0

s m  in (159). 
In this particular case 2mN =  and 3mM =  

1 2 2;
t t
i im m

s s
Θ Θ= =G J G J

 

                  (160) 

and 
1 2 3, ,t t t

i i is s s

m m m

J J J
I I I II I III

Θ Θ Θ     
     
     

= = =
  

           (161) 

The material coefficients in the constitutive theory (159) for ( )0
s m  are deter-

mined by considering Taylor series expansion of m iα ; 0,1, , mi N=   in m jI


; 
1,2, , mj M=   about a known configuration Ω  and retaining only up to linear 

terms in m jI


; 1,2, , mj M=  . 

( )
( )1

; 0,1, ,
m t t

i i
t
i

m iM
m i m i

s s m
j

s

J J i N
J

α
α α Θ Θ

Ω Θ Ω=

Ω

∂  = + − = 
 ∂

∑       (162) 

Substituting (162) in (159) and collecting coefficients of the terms defined in 
the current configuration and introducing new notation for the coefficients, we 
can write 

( ) ( ) ( ) ( )0 0

1 1 1 1

m m m mM N N M
m m j m m i m m j m i

s j i ij
j i i j

m I b c Iα
Ω

= = = =

= + + +∑ ∑ ∑∑m I I G G
      

  (163) 

Coefficients m
jα


, m
ib


 and m
ijc


 are ( )N M NM+ +  material coefficients. 
These can be function of ρ

Ω
, m jI


 and θ
Ω

; 1,2, , mj M=  . 
Remarks 
1. This constitutive theory (163) is obviously a non-linear constitutive theory 

based on integrity. 
2. Since 2mN =  and 3mM = , this constitutive theory requires eleven ma-

terial coefficients. 
3. This constitutive theory contains up to fifth degree terms of the compo-

nents of 
t
i

s
ΘJ . 

4. A linear constitutive theory in the components of 
t
i

s
ΘJ  in which products 

of m jI


 and m iG


 are neglected is given by 
( ) ( ) ( )0 0 1 1 1m m j m m

s m I b Gα
Ω

= + +m I I
   

             (164) 

Since 

( )1 tr 0
t
im

sI Θ= =J


                     (165) 
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the constitutive theory (163) reduces to 
( ) ( )0 0 1 t

im
s sm b

Ω

Θ= +m I J
 

                  (166) 

A further simplified theory in which first term in (166) is neglected is given by 
(defining m

m ibµ =


) 
( )0 t

i
s m sµ Θ=m J                        (167) 

in which 

, , , ,t t t
i i is s s

m m
J J J

I II IIIµ µ ρ θ
Θ Θ Θ     Ω Ω     

     Ω Ω Ω

 
 =   
 

         (168) 

5.5. Constitutive Theory for q  

We consider ( ),θ=q q g  and use representation theorem [35]-[51]. The com-
bined generators of the argument tensors g  and θ  that are tensors of rank 
one is just g  and the combined invariant is ⋅g g  (or qI ). Thus, the constitu-
tive theory for q  in the current configuration can be written as 

qα= −q g                         (169) 

in which 

( ), ,q q qIα α ρ θ=                      (170) 

The material coefficients in the constitutive theory for q  given by (169) are 
obtained by considering Taylor series expansion qα  in qI  and θ  in a known 
configuration Ω  and retaining up to linear terms in qI  and θ  

( ) ( ) ( ) ( )
qq

q q q q
q

I I
I

ααα α θ θ
θ ΩΩ Ω

Ω Ω

∂∂
= + − + −

∂∂
        (171) 

Substituting (171) in (169) and collecting coefficients of the terms defined in 
current configuration gives the following (after introducing new coefficients) 

( ) ( )1 2k k k θ θ
Ω Ω Ω Ω

= − − ⋅ − −q g g g g g            (172) 

the materials coefficients k , 1k  and 2k  can be functions of ρ
Ω

, qI
Ω

 and 
θ

Ω
 This constitutive theory (172) based on integrity is non-linear constitutive 

theory in temperature gradient (contains up to cubic terms of temperature gra-
dients). A linear constitutive theory for q  is given by 

k
Ω

=q g                          (173) 

This is Fourier heat conduction law in which ( ), ,qk k Iρ θ
Ω ΩΩ

=  still holds. 

6. Significance and Influence of Internal Rotation Rates and 
Rotational Inertial Effects 

In this section, we discuss the influence of internal rotation rates and rotational 
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inertial effects on the deformation physics of thermoviscous incompressible and 
compressible fluent continua. In thermoviscous fluent continua (both incom-
pressible and compressible) fluid particles experience motion (displacements) 
but strains are negligible, hence such fluids are considered to have no elasticity. 
Thus, thermoviscous fluent continua cannot support propagation of waves of 
deviatoric Cauchy stress tensor in a similar fashion as solid continua does as this 
physics requires elasticity and mass ( E ρ  is the wave speed in solids, E is 
elastic modulus and ρ  is mass density). We discuss details of the deformation 
physics in the following for incompressible and compressible fluent continua in 
view of the present work. 

6.1. Incompressible Thermoviscous Fluent Continua 

It is well known that speed of sound in incompressible classical thermoviscous 
fluent continua (CCM) is infinity. In such fluids equilibrium Cauchy stress is 
mechanical pressure and/or thermal pressure field (is Lagrange multiplier) that 
cannot be determined from the deformation but its presence influences the flow 
physics. Deviatoric Cauchy stress tensor causes distortion of the volume of fluid 
as well as dissipation (as ( )0 σ  is conjugate with D ) that results in entropy 
production which in term influences thermal field. 

Surana et al. [2] [3] have shown when CBL of NCCM with internal rotation 
rate physics (but without rotational internal effects) are employed, the presence 
of Cauchy moment tensor (symmetric based on BMM balance law) that is con-
jugate with the symmetric part of the gradients of rotation rate tensor results in 
added resistance to flow and additional entropy production that alters the ther-
mal field due to the CBL of CCM. In the presence of internal rotations and iner-
tial physics considered in this paper a part of the applied rate of work gets con-
verted into kinetic energy due to angular velocities, thus effecting the rate of 
production of entropy which influences thermal field. Thus, rate of entropy 
production differs in the absence and in the presence of rotational inertial effects 
when using CBL of NNCM based on internal rotation rates. Model problem stu-
dies are in progress to compare with the results reported by Surana et al. (in the 
absence of rotational inertial effects) with those obtained using CBL of NCCM 
with rotational inertial effects considered in this paper. 

Thus, in incompressible thermoviscous fluent continua we do not have trans-
lational or rotational waves due to Cauchy deviatoric stress tensor and Cauchy 
moment tensor (as in elastic solid continua [9]), instead the entropy production 
is affected by the additional rotational inertial physics. The entropy production 
due to CBL of NCCM is expected to be different depending upon the considera-
tion of absence of rotational inertial effects. Interdependence of the different 
sources of entropy production and final total entropy productions will be re-
ported in the model problem studies in a follow up paper. 

6.2. Compressible Thermoviscous Fluent Continua 

In compressible thermoviscous fluent continua (CCM) we also decompose sym-
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metric Cauchy stress tensor ( )0 σ  into equilibrium Cauchy stress tensor ( )0
esσ  

and deviatoric Cauchy stress tensor ( )0
dsσ . Equilibrium stress tensor ( )0

esσ  is ther-
modynamic pressure ( ),p ρ θ , the equation of state that is known for a given 
compressible fluid. The physics of change in volume i.e., compressibility, is due 
to ( )0

esσ  whereas the change in shape or distortion of the fluid volume and dis-
sipation mechanism resulting in entropy production is due to ( )0

dsσ . In this 
physics ( )0

dsσ  and D  are conjugate pairs. That is ( )0 :ds Dσ  is rate of work that 
causes change of shape and entropy production. 

When a disturbance is applied to a compressible thermoviscous fluent conti-
nua, due to compressibility of the fluid, local compression of the medium occurs 
resulting in localized higher density. In other words, a localized compression 
wave is generated purely due to ( )0

esσ  or ( ),p ρ θ . The deviatoric stress merely 
causes localized entropy production. If the disturbance is weak, the resulting 
compression wave or pressure wave is also weak (small pressure disturbance) 
resulting in insignificant changes in local density. Thus, the compression wave 
behind the current compression wave, although moving in a slightly compressed 
medium, will move almost at the same speed as the wave ahead of it due to in-
significant changes in density in the weak compression wave. In other words, in 
this physics progressively generated compression waves propagate at almost the 
same speed, hence no “piling up” of the compression waves occurs. This physics 
of compressible thermoviscous medium is generally referred to as sound waves. 
Since sound waves are weak compression waves that exist and move only be-
cause of compressibility of the medium their weak nature suggests that density 
changes and the entropy production are almost insignificant. In this physics, 
CBL of CCM are sufficient and there is hardly any need for CBL of NCCM with 
or without rotational inertial effects as in this physics entropy production is not 
significant to consider. 

If the disturbance applied to a thermoviscous compressible fluent continua 
(CCM) is of significant strength such as the two compartments of a shock tube 
containing compressed gases with higher pressure ratio [52] separated by a di-
aphragm or high Mach number external flows, then the physics of evolution is 
quite different from sound waves and may require different considerations. We 
use this shock tube as an example to illustrate the significance of CBL of NCCM 
with internal rotation rate physics with or without rotational inertia. Let the 
shock tube be divided in two compartments of equal length by a diaphragm in 
the middle. Let 1 1 1, ,pρ θ  and 2 2 2, ,pρ θ  be the state of the gas in the left and 
the right compartments and let 2 1p p  and 2 1ρ ρ . We can assume  

1 2 0θ θ= =  i.e., both compartments at the same temperature at time 0t = . 
When the diaphragm is ruptured at time 0t = , a compression wave (pressure 
wave) is created to the left of the diaphragm with pressure values of 1p  and 2p  
across the pressure wave. The base of the pressure wave is the order of viscosity 
of the medium ( ( )610O −  meters for air). A consequence of this is the density 
wave with values of 1ρ  and 2ρ  with the same base as the pressure wave. The 
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compression wave behind this wave when it reaches the compression zone will 
travel at a faster speed, hence will “pile up” on the waves ahead of it. This 
process of compression waves “piling up” on the waves ahead of them eventually 
creates a steady wave that no longer changes in time and propagates to the left of 
the diaphragm. This is a shock wave. In the compressed zone high velocity gra-
dients D  and ( )0

dσ  (in CCM) results in entropy production which stabilizes 
once the shock wave is fully formed and remains constant during propagation. 
Reflection of the shock waves from the impermeable boundaries and the details 
of the physics can be found in reference [52]. The purpose of describing this 
problem in detail is to point out that this problem contains high pressure, high 
temperature physics with large changes in density in which determination of 
correct entropy production during the entire evolution is extremely important as 
it allows us to determine if the shocks are sustaining (entropy production re-
maining constant) or diffusing, indicated by diminishing entropy production. 
Secondly, rate of entropy production controls the evolution and formation of the 
shock wave. 

When we consider CBL of NCCM with internal rotation physics we have ad-
ditional mechanism of rate of entropy production due to ( ( )0 :

t
i

s
Θm J ) which un-

doubtedly will influence the flow physics in the entire spatial domain over time. 
The physics of compression waves, hence the shock waves are expected to be in-
fluenced the most as the entropy production is most significant in the compres-
sion zone. Consideration of rotational inertial physics in conjunction with CBL 
of NCCM (as presented in this paper) will further influence rate of entropy pro-
duction. This problem illustrates that in high pressure, high temperature compres-
sible physics in thermoviscous fluent continua such as high Mach number flows, 
the use of CBL of NCCM with internal rotation rates with and without rotational 
inertial physics may be more realistic for describing the deformation physics 
compared to CBL of CCM used currently. Model problem studies in progress 
will be presented in a follow up paper.  

7. Summary and Conclusions 

In this paper conservation and balance laws of non-classical continuum me-
chanics with internal rotation rate physics [2] [3] and the constitutive theories 
for thermoviscous fluent continua are rederived by incorporating rotational in-
ertia effects. In the evolution of deforming fluent continua, when the time vary-
ing rotation rates (angular velocities) and angular accelerations are resisted by 
the deforming continua, moments, angular momentum and angular inertial ef-
fects are realized. 

The paper presents complete derivation of CBL and the constitutive theories 
in the presence of internal rotation rates due to L  and the rotational inertial 
effects. The paper considers homogeneous and isotropic thermoviscous fluent 
continua. We summarize the work and draw some conclusions in the following. 

1. As in most non-classical continuum theories, the Cauchy stress tensor is 
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not symmetric in this work also. 
2. In the non-classical continuum theories for fluent continua incorporating 

internal rotation rates [2] [3], the Cauchy moment tensor is symmetric as a con-
sequence of the balance of moment of moments balance law [1]. In the present 
work BMM balance law does not establish symmetry of the Cauchy moment 
tensor, but yields three additional equations in ( )0

a m . 
3. In the CBL presented here for NCCM with internal rotation rates and rota-

tional inertial effects, BAM balance law is not just a relationship between the 
gradients of the Cauchy moment tensor and the skew symmetric Cauchy stress 
tensor, but additional contains rotational inertial effects. 

4. Constitutive variables are established using SLT (in conjunction with other 
balance laws) and their argument tensors are determined using the conjugate 
pairs in the entropy inequality and the principle of equipresence. 

5. It is shown that the constitutive theories are needed only for ( ) ( ) ( )0 0 0, ,e d s mσ σ  
and q . Based on Surana et al. [1] there cannot be a constitutive theory for 
( )0

a m . Thus, ( )0 : 0
t
i

a a
Θ =m J  must serve as a constrain equation in the mathe-

matical model consisting of CBL and the constitutive theories to satisfy the en-
tropy inequality for all arbitrary but admissible 

t
i
a
ΘJ . 

6. Constitutive theory for ( )0
eσ , the equilibrium Cauchy stress tensor is de-

rived using Helmholtz free energy density Φ  for compressible thermoviscous 
fluent continua. The constitutive theories for ( )0

dσ  and ( )0
s m  are derived using 

representation theorem. It is shown that the constitutive theory for q  based on 
integrity is cubic in the temperature gradient g . 

7. Unlike non-classical solid continua, in fluent continua translational stress 
waves and rotational moment waves [1] can not exist as the fluent continua has 
no elasticity (translational or rotational). Thus, in fluent continua only the pres-
sure waves can be realized. 

8. It is shown that NCCM with internal rotation rate physics also results in 
rate of entropy production due to ( )0 :

t
i

s s
Θm J  that differs in the absence and 

presence of rotational inertial effects. We also have rate of entropy production 
due to ( )0 :ds Dσ . Both mechanisms of entropy production exist in compressible 
as well as incompressible fluent continua. In high pressure, high temperature 
compressible flow physics (with or without shocks) accurate determination of 
rate of entropy production is important as it controls shock formation, shock 
structure and shock relations (in general, isolated high gradient physics of de-
pendent variables). 

9. The NCCM work proposed here with internal rotation rates and rotational 
inertial physics may be more realistic approach to describing the flow physics at 
high pressures and high temperatures that may result in a severe change in state 
of matter that is critically influenced by the rate of entropy production. 
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