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In this paper, we give an estimate of the first eigenvalue of the Laplace operator on a Lagrangian submanifold Mn minimally
immersed in a complex space form. We provide sufficient conditions for a Lagrangian minimal submanifold in a complex
space form with Ricci curvature bound to be isometric to a standard sphere Sn. We also obtain Simons-type inequality for
same ambient space form.

1. Introduction

In the last few years, there has been attentioned to the classi-
fication of Lagrangian submanifolds. Lagrangian submani-
folds give an impression being of foliations in the cotangent
bundle, and Hamilton-Jacobi type leads to the classification
via partial differential equation. In differential geometry of
submanifolds, theorems which connect the intrinsic and
extrinsic curvatures have significant role in physics [1].
Moreover, the notion of second order differential equations
(PDEs) has built essential contribution in the analyze prob-
lems in fluid mechanics, heat conduction in solids, diffusive
transport of chemicals in porous media, and wave propaga-
tion in strings and in mechanics or solids. The eigenvalue
problems are trying to obtain all possible real λ such that
there exists a nontrivial solution φ to the second order partial
differential equation (PDEs) Δφ + λφ = 0 [2, 3]. On the other
hand, the Ricci tensor is involving in the curvature space-
time, which finds the degree where matter will incline to con-
verge or diverge in time (via the Raychaudhuri equation). By
means of the Einstein field equation, it is also correlated to
the matter content of the universe. In Riemannian geometry,
on a Riemannian manifold, lower bounds of the Ricci tensor
grant one to right geometric and topological understanding
with the notion of a constant curvature space form. In Ein-
stein manifold, the Ricci tensor verifies the vacuum Einstein

equation, which have been broadly studied in [4]. In this rela-
tion, the Ricci flow equation supervises the working out of a
given metric to an Einstein metric. Similarly, the eigenvalue
problems are fascinating topics in differential geometry
which has physical background. Therefore, a distinguished
problem in Riemannian geometry is to find isometrics on a
given manifold. One of the most interesting geometries of
Riemannian manifolds is to characterize complex space form
in the framework of Lagrangian submanifold geometry
among the classes of compact, connected Riemannian mani-
folds. Beginning from the originate work of Obata [5], differ-
ential equation has become an influential tool in the
investigation of geometric analysis. Obata [5] tested charac-
terizing theorem for the standard sphere. A complete
manifold ðMn, gÞ yields function φ which is nonconstant
and gratifying the ordinary differential equation

∇2φ + φg = 0, ð1Þ

if and only if ðMn, gÞ is isometric the sphere Sn. A large scale
of observations has been dedicated to this subject, and there-
fore, characterization of spaces, the Euclidean space ℝn, the
Euclidean sphere Sn, and the complex projective space ℂPn

are esteemed fields in differential geometry and are studied
by a number of authors [2, 6–26]. Similarly, Tashiro [27]
has proved that the Euclidean spaceℝn is designated through
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the differential equation ∇2φ = cg, where c is a positive con-
stant. In [28], Lichnerowicz has been classified that the first
nonzero eigenvalue μ1 of the Laplacian on a compact mani-
fold ðMn, gÞ with Ric ≥ n − 1 is not less than n, while μ1 = n
, then ðMn, gÞ is isometric to the sphere Sn. This means that
the Obata’s rigidity theorem could be used to analyze the
equality case of Lichnerowicz’s eigenvalue estimates in [28].
Motivated from previously studied and historical develop-
ment on such characterizations, we give our first result as
the following.

Theorem 1. Let Ψ : Mn ⟶ ~M
nð4cÞ be a minimal immer-

sion of a compact Lagrangian submanifold into complex
space form ~M

nð4cÞ. If the Laplacian of Mn endowed to the
first eigenvalue μ1 corresponding eigenfunction φ, then the
following inequality holds

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV + c

ð
M
∇φj j2dV ≥

ð
M

∇2φ
�� ��2dV , ð2Þ

where j∇2φj2 denotes the norm of the Hessian of φ and fe1,
⋯,eng is frame on Mn which is orthonormal. The equality
holds if and only if μ1 = nc. Besides, if the inequality holds

ð
M

∇2φ
�� ��2dV ≥

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV : ð3Þ

Then, we have μ1 ≥ cðn − 1Þ. In particular, if the following
inequality satisfying

ð
M
∇φj j2dV ≥

nc
μ1

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV : ð4Þ

Then, eigenvalue is satisfied μ1 ≥ cðn − 1Þ.

By considered that compact submanifold Mn immersed
in the Euclidean sphere Sn+p or Euclidean space ℝn+p, Jian-
cheng and Zhang [29] derived the Simons-type [30] inequal-
ities about the first eigenvalue μ1 and the squared norm of
the second fundamental form S without using the condition
that submanifold M is minimal. They also established a
lower bound for S if it is constant. Similar results can be
found in [4, 31]. Simon’s inequalities and its corollary moti-
vate the mathematicians try to improve the estimate the
upper bound of S and study the rigidity of associated subma-
nifolds. As a generalization of Euclidean sphere and Euclid-
ean spaces, we consider a Lagrangian submanifold which
minimally immersed into complex space form with constant
holomorphic sectional curvature 4c; we obtain our next
result as the following.

Theorem 2. Let Ψ : Mn ⟶ ~M
nð4cÞ be a minimal immer-

sion of a compact Lagrangian submanifold into the complex
space form ~M

nð4cÞ. If dimKerh = k, then we have

ð
M
S ∇2φ
�� ��2dV ≥

n − kð Þ nc − 1ð Þ nc − μ1ð Þ
n − k − 1ð Þnc

� �ð
M
∇φj j2dV :

ð5Þ

In circumstantial, if S is constant, then it is equal to

S ≥
n − kð Þ nc − 1ð Þ

nc n − k − 1Þð Þ nc − μ1ð Þ : ð6Þ

A greatly motivated idea of Obata is associated to char-
acterizing sphere SnðcÞ through the second-order differential
equation (1). By using the techniques of conformal vector
field which have prominent appearance in deriving charac-
terizations of spaces but also have high-level geometry in
the theory of relativity and mechanics, Deshmukh and Al-
Solamy [32] proved that an n-dimensional compact con-
nected Riemannian manifold whose Ricci curvature satisfied
the bound 0 < Ric ≤ ðn − 1Þð2 − nc/μ1Þc for a constant c and
μ1 is the first nonzero eigenvalue of the Laplace operator;
then, Mn is isometric to SnðcÞ if Mn admitted a nonzero
conformal gradient vector field. They also proved that if
Mn is Einstein manifold such that Einstein constant μ = ðn
− 1Þc, then Mn is isometric to SnðcÞ with c > 0 if it is admit-
ted conformal gradient vector field. Taking account of Obata
equation (1), Barros et al. [20] shows that a compact gradi-
ent almost Ricci soliton ðMn, g,∇φ, λÞ is isometric to a
Euclidean sphere whose Ricci tensor is Codazzi and has con-
stant sectional curvature. For more terminology of Obata
equation, see [14]. In the sequel, inspired by ideas are devel-
oped in [4, 29, 30]. So we give our result.

Theorem 3. Let Ψ : Mn ⟶ ~M
nð4cÞ be a minimal immer-

sion of a compact Lagrangian submanifold into the complex
space form ~M

nð4cÞ and φ a first eigenfunction associated to
the Laplacian of Mn. Then, we have the following:

(i) If ∇φ on Ker h, then ΨðMnÞ is locally geodesic sphere
Sn, or ΨðMnÞ is isometric to standard sphere Sn

(ii) If RicMnð∇φ,∇φÞ ≥ cðn − 1Þj∇φj2, then ΨðMnÞ is iso-
metric to a sphere Sn

The paper is organize as follows: In Section 2, we recall
some preliminary formulas related to our study. Moreover,
we also prove a proposition in this section which helps to
derive our main results. In Section 3, we give the proofs of
our theorems which we proposed in the first section. Finally,
in Section 4, we provided some consequences of main results.

2. Preliminaries and Notations

Let ~Mð4cÞ be a complex space form of constant holomorphic
sectional curvature 4c and of complex dimension m. Then,
the curvature tensor R of ~M

mð4cÞ can be expressed as:

2 Advances in Mathematical Physics



R U , Vð ÞZ = c g U , Zð ÞV − g V , Zð ÞU + g U , JZð ÞJVð
− g V , JZð ÞU + 2g U , JVð ÞJZÞ, ð7Þ

for any U ,V , Z ∈ ΓðT ~MÞ [7, 33]. An n-dimensional Rie-
mannian submanifold Mn of ~Mð4cÞ is classified as totally
real if the standard complex structure J of ~Mð4cÞ maps any
tangent space of Mn into the corresponding normal space
[34]. In particular, a totally real submanifold is said to be a
Lagrangian submanifold if n =m (maximum dimension).
Let fe1,⋯,en+pg becoming an orthogonal frame to Mn; the
second fundamental from h to Mn is given by

h ei, ej
� �

= 〠
n

α=1
σα
ijeα, ð8Þ

where σαij = hAαei
, eji and Aα denote the shape operator. The

Gauss equation for Lagrangian submanifold Mn in a com-
plex space form ~M

n+pð4cÞ in the form of local coordinates
is given by

Ri
jkl = δiiδjj − δijδji

� �
c + 〠

n

α=1
σαikσ

α
jl − σαilσ

α
jk

� �
: ð9Þ

Then, for Ricci curvature

Ri
jij = δiiδjj − δijδji

� �
c + 〠

p

α=1
σαiiσ

α
jj − σαijσ

α
ji

� �
: ð10Þ

As we assumed that Ψ is an immersion which is mini-
mal, (10) yields

Ric ei, ej
� �

= n − 1ð Þcδij − 〠
n

α=1
σα
ikσ

α
jk: ð11Þ

Let a function φ : Mn ⟶ R established on a Riemann-
ian manifold, then the Bochner formula (see, e.g., [2]) given
as:

1
2
Δ ∇φj j2 = ∇2φ

�� ��2 + RicMn ∇φ,∇φð Þ + g ∇φ,∇ Δφð Þð Þ, ð12Þ

where Hessian is denoted by ∇2φ and Ric denotes the Ricci
curvature of Mn.

Now, we prove a proposition which authorizes to con-
struct the proof of Theorems 1 and 2, that is the following:

Proposition 4. Let Ψ : Mn ⟶ ~M
nð4cÞ be an immersion of a

compact Lagrangian submanifold into the complex space
form ~M

n+pð4cÞ. Let φ be a first eigenfunction endowed to
the Laplacian of Mn and Φ is minimal, then

nc − μ1ð Þ
ð
M
∇φj j2dV =

ð
M
〠
n

i=1
B ∇φ, eið Þj j2dV

+ c
ð
M
∇φj j2dV −

ð
M

∇2φ
�� ��2dV :

ð13Þ

For exceptional, we have

ð
M
〠
n

i=1
B ∇φ, eið Þj j2dV =

ð
M

∇2φ +
μ1
n
φI

��� ���2dV
+

n − 1ð Þ nc − μ1ð Þ
n

� �ð
M
∇φj j2dV ,

ð14Þ

for any orthonormal frame fe1,⋯,eng tangent to Mn.

Proof. If the identity operator on TM is denoted by I, then
we have

∇2φ − tφI
�� ��2 = ∇2φ

�� ��2 − 2tφΔφ + nt2φ2: ð15Þ

Therefore, if Δφ + μφ = 0, we obtain for any t ∈ℝ. The
norm of an operator which is given by jIj2 = trðII∗Þ. Taking
integration in the above equation (15) and from Stokes the-
orem, we have

ð
M

∇2φ − tφI
�� ��2dV =

ð
M

∇2φ
�� ��2dV + 2t +

n
μ1

t2
	 
ð

M
∇φj j2dV :

ð16Þ

We setting t = −μ1/n in (16), we get

ð
M

∇2φ
�� ��2dV =

ð
M

∇2φ +
μ1
n
φI

��� ���2dV +
μ1
n

ð
M
∇φj j2dV :

ð17Þ

On other hand, (11) yields

Ric φiei, φjej
� �

= n − 1ð Þcδijφiφj − 〠
p

α=1
〠
n

k=1
σαikσ

α
jkφiφj: ð18Þ

Tracing the above equation, we obtain

Ric ∇φ,∇φð Þ = c n − 1ð Þ ∇φj j2 − 〠
n

i=1
B ∇φ, eið Þj j2: ð19Þ

Let us assume that Δφ = −μ1φ. Taking integration in
Bochner formula and using Stokes theorem, we get

ð
M

∇2φ
�� ��2dV +

ð
M
Ric ∇φ,∇φð ÞdV = μ1

ð
M
∇φj j2dV : ð20Þ
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From (19), we conclude

cn − μ1ð Þ
ð
M
∇φj j2dV =

ð
M
〠
n

i=1
B ∇φ, eið Þj j2dV

+ c
ð
M
∇φj j2dV −

ð
M

∇2φ
�� ��2dV :

ð21Þ

This is the first result of the proposition. On the other
hand, using (17) in the last equality, we obtain

cn − μ1ð Þ
ð
M
∇φj j2dV

=
ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV + c

ð
M
∇φj j2dV

−
ð
M

∇2φ +
μ1
n
φI

��� ���2dV −
μ1
n

ð
M
∇φj j2dV :

ð22Þ

After some computation, we get

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV =

ð
M

∇2φ +
μ1
n
φI

��� ���2dV
+

n − 1ð Þ nc − μ1ð Þ
n

� �ð
M
∇φj j2dV :

ð23Þ

Now, we have reached the proof of the proposition.

Recall the following lemma which set up to eliminate the
proof of Theorem 2.

Lemma 5 [4]. Let a valid symmetric linear operator T : V
⟶V which trace-less defined over a finite dimensional vec-
tor space V . If it is diagonalized T , i.e., Tei = μiei and
dimKerT = k, they for any j we have

μ2j ≤
n − k − 1ð Þ Tj j2

n − kð Þ , ð24Þ

for any integer k and for an orthonormal basis fe1,⋯,eng.

3. Proof of Main Theorems

We are in the position to prove our main results.

3.1. Proof of Theorem 1. Let us consider

nc ≥ μ1: ð25Þ

Then, we noticed that left-hand side of (13) of Proposi-
tion 4 is different from negative. Therefore, the other side
also non-negative, we get

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV + c

ð
M
∇φj j2dV ≥

ð
M

∇2 f
�� ��2dV : ð26Þ

Additionally, the equality holds if and only if the follow-
ing holds

μ1 = nc: ð27Þ

Moreover, we expressed the first equation of Proposition
4 in a new form

ð
M

∇2φ
�� ��2dV −

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV

= μ1 − c n − 1ð Þf g
ð
M
∇φj j2dV :

ð28Þ

If we consider the following

ð
M

∇2φ
�� ��2dV ≥

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV : ð29Þ

Then, equation (28) implies that

μ1 − c n − 1ð Þf g ≥ 0: ð30Þ

If we notice that

ð
M
∇φj j2dV ≥

nc
μ1

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV : ð31Þ

This implies that

ð
M

∇2φ
�� ��2dV ≥

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV : ð32Þ

This completes the proof of Theorem 1.

3.2. Proof of Theorem 2. Let the second fundamental form T
which diagonalized via an orthogonal frame fe1,⋯,eng, i.e.,
Tei = kiei, and the angle is denoted by θi between ∇φ and
ei. Thus, we find that

h ∇φ, eið Þj j2 = g T∇φ, eið Þ2 = g ∇φ,ð Teii2 = k2i cos
2θi ∇φj j2:

ð33Þ

From the virtue of (13) of Proposition 4, we construct

ð
M

〠
n

i=1
k2i cos

2θi

 !
∇φj j2dV

=
ð
M

∇2φ
�� ��2dV + n − 1ð Þc − μ1f g

ð
M
∇φj j2dV :

ð34Þ

Implementation Lemma 5 to the previous equation to
establish
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n − k − 1
n − k

	 
ð
M
S ∇φj j2dV

≥
ð
M

∇2φ
�� ��2dV + n − 1ð Þc − μ1f g

ð
M
∇φj j2dV :

ð35Þ

Let us assume the following inequality

ð
M

∇2φ
�� ��2dV ≥

μ1
nc

ð
M
∇φj j2dV : ð36Þ

Plugging above equation into (35), we arrive at

n − k − 1
n − k

	 
ð
M
S ∇φj j2dV

≥
n2c2 − ncμ1 − nc2 + μ1

nc

	 
ð
M
∇φj j2dV :

ð37Þ

After some computations, finally, we get

ð
M
S ∇2φ
�� ��2dV ≥

n − kð Þ nc − 1ð Þ nc − μ1ð Þ
n − k − 1ð Þnc

� �ð
M
∇φj j2dV :

ð38Þ

This completes the proof of Theorem 2.

3.3. Proof of Theorem 3. As recognize a theorem as a result of
Obata in [5], a differentiable function φ on Riemannian
manifold Mn is satisfied the following ordinary differential
equation

∇2φ = −φ, ð39Þ

if and only if Mn is isometric to a unit sphere Sn, where ∇2φ
is two time derivatives of φ and is called Hessian of φ. As we
assumed that

∇φ ∈ ker hh ∇φ, eið Þ = 0, 1 ≤ i ≤ n: ð40Þ

Then, using equation (14), we get

n − 1ð Þ μ1 − ncð Þ
n

ð
M
∇φj j2dV =

ð
M

∇2φ +
μ1
n
φ

��� ���2dV : ð41Þ

The left-hand side of this previous equation is not
negative; we summarize that

μ1 = nc: ð42Þ

Therefore, we have

∇2φ = −φ: ð43Þ

Now using Obata theorem [5], we conclude that ΨðMnÞ
is isometric to a unit sphere Sn. This completes the proof of
first part of Theorem 3.

On the other case, if we consider that

Ric ∇φ,∇φð Þ ≥ c n − 1ð Þ ∇φj j2: ð44Þ

Follows the equation (19), we find that

ð
M

n − 1ð Þc ∇φj j2dV ≥ 〠
n

i=1
h ∇φ, eið Þj j2dV

+ n − 1ð Þc
ð
M
∇φj j2dV ,

ð45Þ

which implies that

〠
n

i=1
h ∇φ, eið Þj j2dV ≤ 0: ð46Þ

From where we conclude that hð∇φ, eiÞ = 0, this means
that ∇φ ∈ ker B. Now, we invoke the first case (i) of Theorem
3 we get required result. The proof of Theorem 3 is
completed.

4. Some Applications

It is renowned that the complex Euclidean space ℂn, the
complex projective n-space ℂPnð4Þ, and complex hyperbolic
n-space ℂHnð−4Þ are special cases of a complex space form
~M

nð4cÞ with c = 0, 1 and c = −1, respectively. Therefore, we
define following corollaries for complex projective spaces
as consequences of Theorems 1, 2, and 3.

Corollary 6. Let Ψ : Mn ⟶ℂPnð4Þ be an immersion of a
compact Lagrangian submanifold into complex projective
space ℂPnð4Þ. If the Laplacian of Mn endowed to the first
eigenvalue μ1 corresponding eigenfunction φ and Ψ is mini-
mal, then the following inequality holds

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV +

ð
M
∇φj j2dV ≥

ð
M

∇2φ
�� ��2dV : ð47Þ

The equality holds if and only if μ1 = n. Furthermore, if
the following inequality holds

ð
M

∇2φ
�� ��2dV ≥

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV : ð48Þ

Then, we have μ1 ≥ ðn − 1Þ. In particular, if the following
inequality satisfying

ð
M
∇φj j2dV ≥

n
μ1

ð
M
〠
n

i=1
h ∇φ, eið Þj j2dV : ð49Þ

Then, eigenvalue is satisfied μ1 ≥ ðn − 1Þ:

Corollary 7. Let Ψ : Mn ⟶ℂPnð4Þ be an immersion of a
compact Lagrangian submanifold into the complex projective
space ℂPnð4Þ. If Ψ is minimal and dimKerh = k, then we have
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ð
M
S ∇2φ
�� ��2dV ≥

n − μ1ð Þ n − 1ð Þ n − kð Þ
n − k − 1ð Þn

� �ð
M
∇φj j2dV :

ð50Þ

In especial case, if S is constant, then we define

S ≥
n − 1ð Þ n − kð Þ

n n − μ1ð Þ n − k − 1ð Þ : ð51Þ

From Theorem 3, we have the following:

Corollary 8. Let Ψ : Mn ⟶ℂPnð4Þ be an immersion of a
compact Lagrangian submanifold into the complex projective
space ℂPnð4Þ. Assuming that Ψ is minimal and φ be a first
eigenfunction endowed to the Laplacian of Mn. Then, we get
following:

(i) If ∇φ on Kerh, then ΨðMnÞ is locally geodesic sphere
Sn, or ΨðMnÞ is isometric to standard sphere Sn

(ii) If RicMnð∇φ,∇φÞ ≥ ðn − 1Þj∇φj2, then ΨðMnÞ is iso-
metric to sphere Sn
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