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In the current study, an analytical treatment is studied starting from the (2 + 1)-dimensional generalized Hirota-Satsuma-Ito
(HSI) equation. Based on the equation, we first establish the evolution equation and obtain rational function solutions by
means of the bilinear form with the help of the Hirota bilinear operator. Then, by the suggested method, the periodic, cross-
kink wave solutions are also obtained. Also, the semi-inverse variational principle (SIVP) will be utilized for the generalized
HSI equation. Two major cases were investigated from two different techniques. Moreover, the improved tan (y(£)) method
on the generalized Hirota-Satsuma-Ito equation is probed. The 3D, density, and contour graphs illustrating some instances of
got solutions have been demonstrated from a selection of some suitable parameters. The existing conditions are handled to
discuss the available got solutions. The current work is extensively utilized to report plenty of attractive physical phenomena in

the areas of shallow water waves and so on.

1. Introduction

Nonlinear partial differential equations containing time vari-
ables are generally referred to as nonlinear evolution equations
(NLEEs) which can describe the state or process changing
along with times in physics, dynamics, and other nature sci-
ences. For the past decades, a variety of methods have sprung
up to obtain exact solutions of NLEEs such as the homoge-
neous balance method [1], the generalized auxiliary equation
technique [2], the inverse scattering method [3], the homo-
topy perturbation method [4], the optimal Galerkin-
homotopy asymptotic method [5, 6], the tan (¢/2)-expan-
sion method [7], new Kudryashov’s method [8], the function
expansion method [9], the standard truncated Painlevé expan-

sion method [10], Hirota’s bilinear method [11-15], He’s var-
iational principle [16, 17], binary Darboux transformation
[18], Lie group analysis [19, 20], Bicklund transformation
method [21], and the multiple Exp-function method [22].
Based on the above methods, plenty of exact solutions includ-
ing soliton solution [23], lump solution [24], interaction solu-
tion [25], and rational solution [26] have been derived. In [27],
some novel exact analytical solutions, such as soliton wave,
periodic wave, and singular, and kink-singular wave solutions
to the fractional Whitham-Broer-Kaup and generalized
Hirota-Satsuma coupled KdV equations were investigated.

In this paper, we consider the (3 + 1)-dimensional gen-
eralized Hirota-Satsuma-Ito (HSI) shallow water wave equa-
tion which will be read [28] as


https://orcid.org/0000-0002-8690-4742
https://orcid.org/0000-0001-7201-6667
https://orcid.org/0000-0003-3083-9133
https://orcid.org/0000-0002-2358-0699
https://orcid.org/0000-0001-6323-6959
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1164838

'Pxxxt + 3(]lept)x + allpyt + 62‘Pxx

+03¥,, +0,¥,, +0:¥,, =0,
by using the following bilinear transformation
¥ =2(n f),. 2)

Equation (1) is transformed to the bilinear form as
below:

(Df’th +8,D,D, +6,D% +8,D,D, +8,D,D, + 65Dj> ff=0,
(3)

in which

Dthf~f: 2 ﬁxt - fxft)’

4

Dnyf'fzz(ﬁxy_fxfy)’ ( )

(
Dithf: Z(ﬁxxxt - ftfxxx - 3fxrxxt + 3fxxfxt)‘

Firstly, Hirota and Satsuma introduced the (1+1)
-dimensional Hirota-Satsuma shallow water wave equation
as a model equation describing the unidirectional propaga-
tion of shallow water waves [29], where we can write as

(oe]
¥, -W, -3V, + 3‘PXJ Vdx+ ¥,
x ()

=0= (DD, - D;D, + D})f.f=0,

by applying the bilinear transformation ¥ =2(In f) . Also,
by introducing the Hirota bilinear method in integrability
of nonlinear systems, the (2+ 1)-dimensional Hirota-
Satsuma shallow water wave equation [30] was studied as

'Pxxxt + 3(‘lept)x + ]Pyt + 'Pxx
=0= (DD, +D,D, + D})f.f=0,

(6)
by using the bilinear transformation ¥ =2(In f),.

Chen and coauthors proposed the (3 + 1)-dimensional
Hirota-Satsuma-Ito-like equation to describe the wave motion
in fluid dynamics and shallow water [31]. Also, Liu et al. [32]
investigated the N-soliton solution to construct the (2 + 1)
-dimensional generalized Hirota-Satsuma-Ito equation, from
which some localized waves such as line solitons, lumps, peri-
odic solitons, and their interactions. Kuo and Ma [33] studied
on resonant multisoliton solutions to the (2 + 1)-dimensional
Hirota-Satsuma-Ito equations and the existence and nonexis-
tence of solutions. Kaur and Wazwaz [34] used the bilinear
form to the new reduced form of the (3 + 1)-dimensional gen-
eralized BKP equation and obtained lump solutions with suf-
ficient and necessary conditions. A variety of lump solutions,
generated from quadratic functions, for the (3 + 1)-dimen-
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sional BKP-Boussinesq equation have been obtained by using
the Hirota bilinear form in [35]. Also, the same authors
obtained the optical soliton solutions to the Schrédinger-
Hirota equation [36]. The authors of [37] obtained the lump
solutions by making use of Hirota bilinear form to the (3 + 1)
-dimensional generalized KP-Boussinesq equation. By using
Hirota’s bilinear form and the extended Ansatz function
method, Liu and Ye got the new exact periodic cross-kink
wave solutions for the (2 + 1)-dimensional KdV equation
[38]. Liu and Xiong [39] obtained abundant multiwave,
breather wave, and lump solutions by using the three wave
method, the homoclinic breather approach, and the Hirota
bilinear method for A variable-coefficient Boiti-Leon-
Manna-Pempinelli (BLMP) equation. Also, Liu and He [40]
utilized the Hirota bilinear form and concluded abundant
lump solutions and lump-kink solutions of the new (3 +1)
-dimensional generalized KP equation. Some three-wave
solutions including kinky periodic solitary wave, periodic sol-
iton, and kink solutions have been obtained to the (3 +1)
-dimensional BLMP equation by the extended three-wave
approach and the Hirota bilinear method in [41].

The outline of this paper is organized as follows. In Sec-
tion 2, the new periodic solutions and multiple wave solu-
tions of the (2 + 1)-dimensional generalized HSI equation
will be obtained by applying the Hirota bilinear method; in
addition, the corresponding three-dimensional, contour,
and density plots vividly show the physical structure of
the periodic wave solutions. In Section 3, carrying the bilin-
ear method to the cross-kink wave solutions will be
obtained via choosing the specified function. In addition,
we will plot several groups of maps to illustrate the cross-
kink of the corresponding solutions by symbolic computa-
tion. We gave three cases of solitary solutions with the
semi-inverse variational principle in Section 4. Finally, the
improved tan (y(£)) method and its application are given
and investigated in Section 5. A few conclusions and out-
look will be given in the final section.

2. New Periodic Wave Solutions for Generalized
HSI Eq

By employing Hirota operator [42] for Equation (1), we have
f=aH, +a,H, +a;H; +a,H,, (7)

H, =exp (Q;x+ Q,y + Qst),
H, =exp (-Q,x - Q,y — O;1),
Hj =cos (Qux + Qsy + Q4t),
H, =cosh (Q;x + Qgy + Qyt),

Hs =sin (Q,x + Qs + ),

Hg =sinh (Q,x + Qgy + Qqt), )

aH, -—a,Q H, —a;HQy +a,H O,

u=2a%1n(f)=2 7

(10)
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where Q,,i=1,---,9,a;j=1,---,4, are free values. By put-
ting (10) into Equation (3), one gets

2a,7 (49,7 Qy + 0,78, + 0,048 + 0,200, + Q65 + 23048, ) =0,

2a30,(Q4°Q6 = 302,7Q,0 — 30,0407 + Q,°Q5 - Q,%8, - 2,058, — 0,048, — Q0785 — 25048,+Q;,°8, + 2,08, + 2,048, + Q705 + 208,) =0,
2a,a,(Q°Q; +30,20,0Q0 + 300,07 + Q7 Qg + 0,78, + 0,085 + 2,8, + Q)26 + 0,056, + Q,78, + 0,048 + 2,008, + Q85 + 2,046, ) =0,
“2a,a,(Q,°Q + 30,7040, -30,0,°Q) - 0,0, - 2.0,0,6, - 0,085 — 2,240, — Q50,05 — 2052485 — 0508, — Q62,0, - 0,048,) =0,

“2a,a,(2,°Qy +30,°2,0, +30,0,°Q) + 2,0, +2.0,0,6, + Q. Q85 + 2,240, + 2,02,05 + 20,0485 + 2,08, + Q2,02,0, + 2,048,) = 0, (11)
2057 (40,°05 - 0,28, - 2,0:6; - 0,068, — Q5785 - 2,0,0,) =0,

2a,a5(Q°Q; - 30,20,00 - 30,0,0,7 + Q2 Q) + 0,78, + Q0,85 + 2,28, + Q)26 + 2,06, - Q,%6, - 0,08, - 2,08, — 085 — Q;046,) =0,
2a,05(Q°Q +30,20,0, - 30,020 - 00,7 +2.0,0,8, + 0,058, + 2,08, + 0,2,0; + 22,0585 + 0,068, + 20,8, + 2,0:6,) =0,

8a,a,(402,°Q; + 2,78, + 0,0,8; + 2,28, + 2,)°85 + 2,0;6,) = 0.

Solving the above equations, we get the following. Case 1.

[2a5 sin (E,)Q,]

[V Z0 /S s 12
oo [a,e7 2051040y 4 g, eD05110, =Dy + g, cos (5,) + ay cosh (Qgt — Qy8,y/35)] (12)
Q,(Q,%65+68,6,-6,0
B = Q- 4( 4 05 10,03 =04 5)}” (13)
6,05

where a,,a;, ay, Q,, Q,,Q, are arbitrary values. Also, we  the wave motion as periodic waves in parallel to the x axis
need to satisfy the condition Q, #0,8,5; #0. By assigning  in Figure 1.
particular values of the parameters, we can easily observe

Case 2.

[20,0,6% -2a,0,¢7]

¥, =y _ _ i 14
2= %ot [a,€52 + a,e™=2 + a; cos (—Q505t/8, + Qsy) + a, cosh (Qt — 246, y/05)] (14)
Q,(02,%65-6,65+6,0
E,=0x+ (2 56813+ 45)y, (15)
1905

where a,,a;, ay, O, Q5,Q, are arbitrary values. Also, we  the wave motion as periodic waves in the line of x — y axis
need to satisfy the condition ; #0, 8,05 # 0. By assigning  in which they intersect at one point in Figure 2.
particular values of the parameters, we can easily observe

Case 3.

[2 a4 sinh (55)Q;]

VY,=¥,+ > 16
3 0 [ale‘ﬂzas‘/slmﬂ + a,e%0510~ %y + ay cos (Qgt — Qeb,y/105) + ay cosh (53)] (16)
0, (0,%*5.-6,8,+6,0
2= 0x+ 7( 7 05 = 0103 45))’

17
NG , (17)
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FiGure 1: Plot evolution of periodic waves (12) utilizing values a, =.5,a,=1.5,a;=2,a,=1,0,=19,0,=.2,0,=2,6,=1,8,=1.3,0;
=2,0,=13,0,=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

where a,, a5, a,, Q,,, Q, are arbitrary values. Also, we
need to satisfy the condition Q, #0, 8,05 # 0. By assigning
particular values of the parameters, we can easily observe

the wave motion as periodic waves in the line of x — y axis
in which they intersect at one point in Figure 3.

Case 4.

[2a,0;¢% =2 a,0,e5 + 2 a, sinh (Z5)Q, ]
[a,€%1 + aye%s + ay cos (Qt — Qe0,y/85) + a, cosh (E5)]”

. Q, (97285 - 8,05 +8,05)y

¥Y,=¥,+

[83]
1l

0 s 18
= Qx 5.5, (18)
£ -0 Q, (97265 —-8,0; + 6485))’
Es=0Qx+ 55 ,
195
where a,, a;, a,, Qs, O, 2, are arbitrary values. Case 5.
W=, 42 a, sinh (Q,x + Q)

) 19
a,eBt + a,eB! + ay cos (Qgt) + ay cosh (Q,x + yQy) (19)



Advances in Mathematical Physics

(b)

()

F1GURE 2: Plot evolution of periodic waves (14) utilizing values a; =.5,a, =1.5,a;=2,a,=1,0,=1.9,Q;=.2,0,=2,6,=1,6,=1.3,6,
=2,0,=13,0;=2,¥,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

where a,, a;, a,, Q;, 4, Q, are arbitrary values.

Case 6.
a]QIe.le+sz _ alee‘le"Qz)’
V=W, +2 , (20)
a, ey 4 g, e~ %%y 4 gy cos (Qgt) + ay cosh (Qyt)
where a,, a5, a,, Q;, Q2,, ), Qg are arbitrary values. Case 7.
W.W _2 az sin (Qux + Q3)Q, (21)
700 T aet + aye B+ ay cos (Qux + Qsy) +ay cosh (Qut)’
where a,, a;, a,, O3, Q, Qs5, Qy are arbitrary values. Case 8.

W, 42 a9, % — g, (0, e ¥ % + g, sinh (Q,x + yQ4)Q, ’ (22)
a,eX*% + q,e~ %% + gy cos (Qgt) + ay cosh (Q,x + yQy)




where a,, a;, a,, O, Q,, Qy are arbitrary values.
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Case 9.

W 42 1/2a,/-8,€% = 1/12a,,/-8,e % — a; sin (G,)Q, + 1/2a, sinh (G,)/-4,

lI/ = + N 23
o0 a,e% +a,e G +ay cos (G,) +a, cosh (G)) (23)
80,5, 0\/-0,t 1
G, = 5% + 5 V0,
8,(40,°-4,)
4 QEt 24
= 5% + Qux + Qsy, (24)
(40,2 -46,)

By =400, +40,0.05 - 5,8,

where a,, a5, a,, Qg, Q,, Qg are arbitrary values. Also, we
need to satisfy condition 4Q3 -8, #0, 8, < 0. By assigning
particular values of the parameters, we can easily observe

V=Y +2

the wave motion as periodic waves in parallel to the y axis
in Figure 4.

Case 10.

a,;9,¢% — a,Q,e” % — ay sin (G,)Q, + a, sinh (G,)Q,

5,=20-20°-4,,

a,eb1 + a,e % +a; cos (G,) + a4 cosh (G))

>

- §532_Q42_Q7t s 19763(4()72 +64)y’ (25)
3 85(5) 2 %(5)
L= _é94?722832t o 10,6, (45242 - 54))”
3 (5,)70s 2 (£7)5

where a,, as, a,, £, Q; are arbitrary values. Also, we need to
satisfy the condition (2 Q,* —2.0Q,% - §,)8; # 0. By assigning
particular values of the parameters, we can easily observe the

wave motion as periodic waves in the line of x — y axis in
which they intersect at one point in Figure 5.

Case 11.

a,;09,e% - a,Q,e% — ay sin (G,)Q, + a, sinh (G,)Q,

V=%, +2 a,e% +a,e"G1 + a5 cos (G,) + ay cosh (G) )
L (30,8,+20,8,) "
. (912 -30,7+ 64)2 )
.
= %Qél’;:t +Ox+ Qyy,
10,5t Q4 (30/°8;5 + 30,7085 +30,0,78; - 00,785 + 2,0,85)y <27)
2:_58—5+Q4x+ 0185(912—3942+54) >
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() ()

F1GURE 3: Plot evolution of periodic waves (16) utilizing values a; =.5,a,=1.5,a;=2,a,=1,0,=1.9,Q¢=.2,0Q,=2,6,=1,6,=1.3,8,4
=2,6,=13,0,=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

where a,,4a;,ay, O, Q,,Q, are arbitrary values. Also, we  ily observe the wave motion as periodic waves in the line of
need to satisfy the condition Q,85(Q,>-30Q,>+8,)#0.  x—y axis in which they intersect at one point in Figure 6.

By assigning particular values of the parameters, we can eas-
Case 12.

a;\/30Q,% -8, —a,\/30,2 - 8,69 —ay sin (G,)Q, +a, sinh (G,)/3Q,% -6, (28)

a,e% + a,e %1 + ay cos (G,) + ay cosh (G,)

VYVi,=¥,+2

Q2= 8,5t 38;4/30,2-6
G, - V3 45 8,5, N /3Q4Z—G4x—5 3V 54 o8
5

5

29
G —(3042_84)59t +Q,x+Q >
= — X y’
2 0485 4 5,
o1 (3948,+2098) (30)

P 12(160,' - 80,25, +6,%)
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(b)

FI1GURE 4: Plot evolution of periodic waves (23) utilizing values a, =.5,a,=1.5,a;=2,a,=1,0,=1.9,0Q;=.2,0,=2,6,=1,6,=1.3,8,4
=2,6,=-1.3,8;=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

where a,,as, ay, Q,Q,,Q, are arbitrary values. Also, we  motion as periodic waves in the line of x — y axis in which
need to satisfy condition 3 Q,> -8, > 0. By assigning partic-  they intersect at one point in Figure 7.
ular values of the parameters, we can easily observe the wave

Case 13.

a,;09,e% — a,0,e7% — a; sin (G,)Q, + a4 sinh (G, )Q,
a,e% +a,e=G1 +a; cos (G,) +a, cosh (G;)

(302,06, +20,5;)°

(22-302+8,)°

Vi3=Y,+2

>

[

1
0= 3

(31)

Q25 ot
G, = ;2—810 + O x+Q,y,
1¥5
oo LSt o 9,(309,°0, +30,20,8, +302,0,78; - 2,0,76; + 2,8,05) y
2T T T 4 ?

55 2,65(Q,>-30.+9,)
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where a,,a;, a,,Q;,Q,,Q, are arbitrary values. Also, it (Ot Oyt O
needs to satisfy 30Q,% -8, > 0. Hj =sin (Qux+ Qsy + Ogt),

H, =sinh (Q.x + Q.y + Qut),
3. New Cross-Kink Wave Solutions for ¢ (& o + ot

Generalized HSI Eq Hj = cos (Qx + Qsy + OQ4t), (33)
Based on the Hirota operator [42] for Equation (1), we get Hg = cosh (Q;x + Qgy + Qot), (34)
f=aH, +a,H, +a;H, +a,H,, (32) uzzaiax In (f) =2 2 H _aZQ‘HZ}r%HSQ‘* +aHe Y

H, =exp (Q;x + Q,y + Q4t), (35)

H, = exp (~Qux— Qyy - O4t), where Q;,i=1,:--,9,a;,j=1, -+, 4, are free parameters. By

inserting (35) into Equation (3), one concludes

20,7 (40;°Qy + 0,78, + 0,048, + 0,000, + Q65 + 2508,) =0,

2a50,(Q,°Q - 30,20,Q, -30,0,0,7 + Q0 — 0,8, - Q,0:8; — 0,068, — Q5785 — Q;068,+0Q,°8, + 2,040, + 02,0240, + Q0 + 2,048, ) =0,
2a,a,(Q° Q2 +30,20,05 +30,0,0,7 + Q70 + 0,28, + 0,28, + 0,08, + ;705 + 20,8, + 2,76, + 02,048, + Q,098, + Q785 + Q,Q8,) = 0,
—2a3a, (2,70 + 30,700, - 30,070y - 0,Q;,° - 20,0,6, - 0,046, - 2,08, — 052,8; - 20,0485 — 08, — Q,0Q,6, - 2,26,) =0
“2a,a,(Q° Qg + 30,2050, + 30,0700 + 0,07 +2.0,0,8, + Q2,085 + 0,040, + 2,0,85 + 20,085 + 0,048, + 0,0,8, + 2,0:8,) =0,

20 (40,°Q - 0,76, - 0,058, - 0,00, — Q5765 - 2;0,8,) =0,

2a,05(Q°Q; -30,20,00 - 30,0,0Q,7 + Q70 + 0,28, + 0,8, + 0,028, + Q2,785 + 2,0,8, — 2,76, - 0,08, - 2,08, - Q°6; — Q2,0(8,) =0,
2a,05(Q°Q +30,20,0, - 30,0200 - 0,07 +2.0,0,8, + Q0,85 + Q) Q0, + 20,8, + 22,058, + 0,068, + 20,8, +0,0:6,) =0,
8a,a,)(402,°Q5 + 0,°8, + 0,0,8, + 0,28, + 2,65 + 2,0,8,) = 0.

(36)
Solving the above equations, we get the following. Case 1.
2 a5 cos (5,)€]
lI/ = lI/ - >
Lm0 [a,e7 00510+ Dy 1 @, e D050~y 4 gy sin (8,) + ay sinh (Qgt — Q98,y/05)] (37)
2 p—
= Op- 0,(Q°85 + 8,05 - 8,05)y (38)

6,05 ’

where a,,a;, ay, Q,, Q,,Q, are arbitrary values. Also, we  the wave motion as cross-kink waves in parallel to the x axis
need to satisfy the condition Q, #0, 5,85 # 0. By assigning  in Figure 8.
particular values of the parameters, we can easily observe

Case 2.

[2a,0/6% -2a,0,e7]

¥,=¥,+ = = ,
2770 JayeB + aye® +ay sin (505118, + Qsy) + ay sinh (Qgt — Qy8,y/55)]

Q, (2,285 6,8, +8,85)y
6,05 ’

E,=0x+
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where a,,as, a,, Q;, Qs,Qy are arbitrary values. Also, we
need to satisfy the condition Q, #0, 8,55 # 0. By assigning
particular values of the parameters, we can easily observe

the wave motion as cross-kink waves in the line of x — y axis
in which they intersect at one point in Figure 9.

Case 3.
YW 4 [2 a4 cosh (55)02] (41)
200 [a)e7 D050+ Dy 1 @, e D050, =Dy 4 gy sin (Qgt — Q8 y/85) + ay sinh (Z5)] ’
0. (05, -6,6,+6,0
2=+ 7( 7 05 =0103 T 04 5))” (42)
6,65

where a,,a;, a,, 2, 4, 2, are arbitrary values. Also, we
need to satisfy the condition Q, # 0, §,85 # 0. By assigning
particular values of the parameters, we can easily observe

the wave motion as cross-kink waves in the line of x — y axis
in which they intersect at one point in Figure 10.

Case 4.

[2 a,Q,e% -2 a,Q,e % +2a, cosh (55)07]
[a1€% + aye s + ay sin (Qgt — Q6,y/85) + a, sinh (55)]
0,(0,28,- 8,6, +8,85)y )
6,05 ’
Q,(0,°85-8,0,+8,05)y
6,05 ’

Ey=0,x+

where a,, a;, a,, Qs, O, 2, are arbitrary values. Case 5.

h (Q,x + yQ) 0
Ws=Wo+2 —5 _Qf“cos.( Rt Vi , (44)
a,efst +a,e 5 + gy sin (Qgt) + a, sinh (Q)x + yQy)

where a,, a3, a,, 3, 4, (2, are arbitrary values. Case 6.

aIQIe,leJery _ aZQIe—Q]x—QZy

VY=Y, +2 , 45
67 70T g ety 4 g, 05Dy g, sin (Qgt) + a, sinh (Qqt) (45)

where a,, a;, ay, Qy, Q,, 4, Q, are arbitrary values. Case 7.

V. W —2 az cos (Qux + Q)0 (46)
7000 T g e+ aye Bt + ay sin (Qux + Qsy) +a, sinh (Qyt)’
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(b) (©

FIGURE 5: Plot evolution of periodic waves (23) utilizing values a, =.5,a, =1.5,a;=2,a,=1,2,=1.1,0,=1.2,6,=1,§,=1.3,8;=2,0,
=1.3,8,=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

where a,, a;, ay, O3, Q,, s, , are arbitrary values. Case 8.

a, Qe % — g e Y% 4 g, cosh (Qx + Q) Q
W=, +2 1447 2497 . 4 ('7 y%)Q; i (47)
a,e* % + q,e” %% + gy sin (Qgt) + ay sinh (Q)x + yQy)

where a,, a;, ay, O, Q,, Qg are arbitrary values. Case 9.

o, 42 1/2a,/-8,¢% - l/ga2 —&ée‘Gl ~ a5 cos (GZ)Q4'+ 1/2a, cosh (G,) —84’ (48)
a,e% + a,e”%1 +as sin (G,) + a4 sinh (G))
80,501/, 1
G =265V 6,k
3 5, 2
405t
2= 3 270+ Qux + Qg

(49)
(40228, +40,0,05 - 8;0,)
(40,.2-8,)

—
—

6=



12 Advances in Mathematical Physics

(®)

FIGURE 6: Plot evolution of periodic waves (26) utilizing values a, = .5,a, =1.5,a;=2,a,=1,0,=1.1,02,=15,0,=1.2,6,=1,6,=1.3,
0;=2,0,=1.3,8,=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

where a,, a,, a,, O, Q,, Qg are arbitrary values. Also, we  the wave motion as cross-kink waves in the line of x — y axis
need to satisfy the condition 40Q] — 8, # 0,8, < 0. By assign-  in which they intersect at one point in Figure 11.

ing particular values of the parameters, we can easily observe
Case 10.

a;0,e% — a,Q,e7% — ay cos (G,)Q, + a, cosh (G,)Q,

a,eb + a,e 1 + a5 sin (G,) + a4 sinh (G))

E2,=20,-202-6,,

VYie=%¥,+2

>

1= é—8329i2927t +0;x+ 19763 ¢ QZZ ’ 84)y, 0)
3 65(5;) 2 05(57)
40,0,%8:% 10,8,(40.2 - 8,)y

= +Q,x — ,
’ 3 (57)255 ! 2 (E7)d5
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FIGURE 7: Plot evolution of periodic waves (28) utilizing values a, =.5,a,=1.5,a4;=2,a,=1,0Q,=15,02,=1.2,6,=1,6,=1.3,8;=2,6,
=1.3,05=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

where a,, as, a,, £, Q, are arbitrary values. Also, we need to ~ wave motion as cross-kink waves in the line of x — y axis in
satisfy the condition (2, —20Q,* - §,)8; # 0. By assigning ~ which they intersect at one point in Figure 12.
particular values of the parameters, we can easily observe the

Case 11.

a;9,e% - a,Q,e7% - a; cos (G,)Q, + a, cosh (G,)Q,
a,eb1 + a,e 1 + a5 sin (G,) + a4 sinh (G)) ’
100,420 W) (51)
3 (Q°-30.72+6 )

Y, =Y,+2

[n]

Q2
(26

[1]

G, = + OQx+Q,y,

(52)
G, =- 0.5t Ot Q,(30,°8; +30,20,0, +30,0,28; - 0,0,28; + 0,8,85)y

85 2,65(Q-30,+9,)

>

where a,,as, ay, Q,Q,,Q, are arbitrary values. Also, we  easily observe the wave motion as cross-kink waves in
need to satisfy the condition Q,85(Q,>-30Q,*+68,)#0.  the line of x -y axis in which they intersect at one point
By assigning particular values of the parameters, we can  in Figure 13.
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Case 12.
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V,=¥,+2

a;\/30Q,% =8, —a,\/30Q,> -8, —ay cos (G,)Q, +a, cosh (G,)/30Q,%-4, (53)

a,e% + a,e %1 + a5 sin (G,) + a, sinh (G;)

V30,2 -8,8,t 38;/30,2-6
G1=—48 49 +\/3Q42—64x—§—3 84 J
5

30,°-06,)5,t
G:-M{.Qx*.gy,
2 9465 4 5.

1 (30,8, +20585)°
12 (160, - 80,28, +68,%)

(-
—qg =

9

where a,, a5, a,, Q;,Q,,Q, are arbitrary values. Also, we
need to satisfy the condition 30Q,? -8, >0. By assigning
particular values of the parameters, we can easily observe

5

the wave motion as cross-kink waves in the line of x — y axis
in which they intersect at one point in Figure 14.

Case 13.

a;09,e% - a,Q,e7% — a, cos (G,)Q, +a, cosh (G;)Q,

lII = lII 2 >
13= %o ¥ a,e% + a,e %1 + a5 sin (G,) + a4 sinh (G;)
_ 1 (3028,+20,8,)°
S107 3 7
3(0,2-30,.2+4,) (56)
G, = 08t +OQx+0Q
17708, 1 2)>
oo QuEat o (08 +30°0,8,+30,0,%8, - 0,026, + 0,8,8:)y
2 Ss * 2,05(2,2-30,7+9,) ’
where a,,a;, ay, Q,Q,,Q, are arbitrary values. Also, we Case 1. With selection the below solution function
need to satisfy the condition 30Q,? - &, > 0.
4. Application of SIVP for Equation (1) (&) = A sech (BL), (59)
By utilizing & = k(x + ay — ct) in Equation (1), one becomes 4 . 1. stationary integral changes to
—ck?P"" — 6ke V"W + (a’85 — By + ady + 8, — c8,) V" =0. 1
J=—--A’B(-21B*ck’ — 12kABc-5),
(57) 30 (60)
S=a*8; — 8, +ad; +8, - cd,.
By points of Refs. [16, 17, 43] and by multiplying Equa-
tion (57) with ', we get With the help of below
0o 301 2 1
J= —2kc(‘f”) + = ck? (‘P") + = (a’5 - cd, 9 _
—co 2 2 0A >
, (58) (61)
+a53+62—c51)(¥/’) —ckz‘I”‘I’”’>d§. I _,
0B
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F1GURE 8: Plot evolution of cross-kink waves (37) utilizing values a, = .5,a,=1.5,a4;=2,a,=1,0,=1.9,0Q,=.2,0y=2,6,=1,6,=1.3,
0;=2,0,=1.3,8,=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

two nonlinear algebraic systems will be concluded as Lastly, the solitary wave solution gets

1 2 e V21cS
— —AB(-21B*ck’ — 12kABc - 58) + - A’B’kc =0, Hlxyt)== sech |+ —-—(x+ay—ct)|,
15 5 (65)
%Az (-21B*ck® — 12kABc - 59) §=ad5— O, +ad; +8, = cb.
_ % A2 B(— B —12A ck) -0. Case 2. By selecting the below solution function
(62) u(&)=A sec h*(BE), (66)
By solving the above cases, one gets then the stationary integral changes to
(240 B*ck® + 70 kABc + 28 S) A”B
J= : (67)
Sv/21 105
A=+ ,
3Ves (63) With the help of below,
Beos V21cS )
=T . 2
1ok O 2 oy (480B%AC + L40KABC+56S)AB
0A 3 105
The domain of definition is 9J _ (480 Bek® +70 Ack) A”B (68)
0B 105
(240 B*ck® + 70 kABc + 28 S) A?
c(a*8; - b, +ads +8, - cd,) >0. (64) + =

=0.
105

15
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FI1GURE 9: Plot evolution of cross-kink waves (39) utilizing values a, = .5,a,=1.5,a;=2,a,=1,0,=1.9,0Q;=.2,0,=2,6,=1,6,=1.3,
0;=2,0,=1.3,8,=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

By solving the above cases, one gets

16Sv/21

35v/cS
21c

~ 30ck

A=7%

2

The domain of definition is

c(a*8; - b, +ads +8, - cd,) >0.

Lastly, the bright wave solution one becomes

16Sv/21 V21cS
Y(x,p,t)=7F sec h? |+ ¢ (x+ay—ct)|,
3v/cS 30¢

S=a’8; — 8, +ad; + 8, —cd,.

Case 3. Suppose the dark soliton wave solution as below

forms

ul)=A tanhz(BE),

(69)
then the stationary integral changes to
_ 2A’B(-120 B*ck’ + 35kABc - 14)
- 105
(70) With the help of below,

dJ  4AB(-120 B*ck’ + 35kABc - 145)

0A 105
2
-3 A’B*kc=0,

0] 2A*(-120Bck* + 35kABc—145)

0B 105
2 A*B(-240 Bck® + 35 Ack)
- =0.
(71) 105

(72)

. (73)

(74)



Advances in Mathematical Physics

(®)

-150

17

-100

(©

F1GURE 10: Plot evolution of cross-kink waves (41) utilizing values a, =.5,a, =1.5,a;=2,a,=1,0,=1.9,0,=.2,Q2,=2,6,=1,6,=1.3
,0,=2,0,=1.3,0,=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

By solving the above cases, one gets

168v/21
35v/cS

V21cS
~ 30ck

=7

The domain of definition is
c(a*8; — by +ads +8, - cd,) >0. (76)

Then, the dark wave solution will be obtained as

16Sv/21 Vv21cS
¥(x,p,t)=7F tan h? |+ ¢ (x+ay—ct)|,
3v/cS 30c

S=a*8; — 8, +ad; +8, - cd,.
(77)

5. The Improved Rational tan (x(&)/2)-
Expansion Method

The application of the improved tan (y(&)/2)-expansion
technique will be studied where for the first time is given
here. We first discuss the mathematical analysis of nonlinear
partial differential equations (NPDEs). Hence, we consider
the NPDE:s in the following way.

Step 1. Assume a nonlinear partial differential equation is
given in the general form as follows:

Z (x, X Xy Xo» Xws Xy Xooo ) =0. (78)

After simple algebraic operations, this equation is trans-
formed into an ordinary differential equation (ODE) with
the below transformation:

X6y, t) = x(8)s

(79)
E=kx+kyy—ct,
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F1GURE 11: Plot evolution of cross-kink waves (48) utilizing values a; =.5,a, =1.5,a;=2,a,=1,0,=1.9,Q,=.2,0Q,=2,6,=1,6,=1.3
,0,=2,0,=-1.3,05=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

as below nonlinear ODE
°9<X, ki kox—ex ki x L kex ' e ) =0. (80)

Step 2. Then, assume that the searched wave solutions of
Equation (80) have the following representation:

v9- 3 (1) s $o (1), a

where (;(0<j<0),0,(0<j<0) are constants to be deter-
mined, such that {,,0, #0, and y = y(&) is the solution of
the following first order differential equation:

x' = a, sin (y) +a, cos (x) + . (82)

The particular solutions of Equation (82) will be read as
the following.

Family 1. If o} +a—-a3<0 and a,—a;#0, afterwards
3(€)12=tan [ /a, — a3 — \/aF — o} — a3/a, — a5 tan (

o —ai — a3/ 2(§+¢))l.

Family 2. If o +a3-a3>0 and a, —a;#0, afterwards
3(€)12=tan [ /a, — ay + \/a} + &% — ai/a, — a; tanh (

of + a3 — a3/2(§ + ¢y))]-

Family 3. If o2 + a3 —a3 >0, a, #0 and a; =0, afterwards

3(&)/2=tan" oy /e, + \/a} + d3/a, tanh (\/aZ + a2/2(& +
¢))]-

Family 4. If o? + a3 — a3 <0, a3 #0 and a, =0, afterwards

3(&)2=tan![-a,/ay + /a3 — a}lay tan (y/ad — a2/2(E +
¢))]-

Family 5. If «, —a;#0 and a; =0, afterwards 3(&)/2=
tan™![\/o, + a3/, — o tanh (y/a3 — a3/2(E + ¢,))].

Family 6. If a; =0 and a;=0, afterwards 3()=tan™!
[620‘2(&%) — 1/62“2(E+¢0) +1, 26“2(E+¢0)/62“2(E+¢0) + 1]

Family 7. If a,=0 and a;=0, afterwards 3(§)=tan"![2
eal(s'ﬂl)ﬂ)/ez‘xl (E+¢o) +1, ez"‘l(P*"/’o) — 1/62“1 (&+¢0) + 1]
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FIGURE 12: Plot evolution of cross-kink waves (48) utilizing values a, =.5,a,=1.5,a;=2,a4,=1,0,=1.1,0Q2,=12,6,=1,8,=1.3,5, =2
,0,=1.3,8,=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

Family 8. If of + a5 = a3, afterwards 3(§)/2 =tan™"[a; (£ +

bo) +2/(a — a3)(E + ¢y)].

Family 9. If a) =a, =a; = ka,, afterwards 3(£)/2=tan™'|
ek‘xl (E+¢o) _ 1]

Family 10. If a; = ay = ka; and «, = —ka,, afterwards 3(&)/
2 =—tan ! [eFu&+bo) /1 4+ kea(E+0)],

Family 11. If ay;=a,, then 3(&)/2=-tan'[(a; + )
ea2(5+¢0) — 1/((x1 — 0(2)60‘2(5-“%) — 1]

Family 12. If a;=as, afterwards 3(&)/2 =tan™![(a, + a3)
eaz(‘s+¢0) + 1/((x2 — ‘x3)ea2(‘s+¢0) — 1]

Family 13. If a; = —a,, afterwards 3(&)/2 = tan™'[e%(E+%0) +
a, —a /e —q, —q].

Family 14. If a, = —as, afterwards 3(£)/2 = tan™! [a; e (5+%0)
/1 — 0636“1 (‘E*‘/ﬁo)]_

Family 15. If a,=0 and o =a;, afterwards 3(&)/2=-
tan™ a5 (& + @) + 2/05 (& + @)

Family 16. If a; =0 and a, = a3, afterwards 3(£)/2 =tan™!|
a3(€+ )]

Family 17. If a; =0 and «, = —a;, afterwards 3(&)/2=-
tan™ [1/as (& + ¢, )]-

Family 18. If &, =0 and a, =0, afterwards 3(&) = a3(& + ¢,
)+C.

Family 19. If a, = a, afterwards J(£)/2 = tan~![e% (5+4) — o,
/o], where ¢, is an integration constant. Also, {, 0, (k=1,
2,-++,0), 04, &, and a; are constants to be determined later.

Step 3. To determine the positive integer 7, we usually bal-
ance linear terms of the highest order in the resulting equa-
tion with the highest order nonlinear terms appearing in
Equation (80).

Step 4. We collect all the terms with the same order of tan
( X(E)/Z)k (k=0,1,2, ) together. Equating each coefficient
of the polynomials of i to zero yields the set of algebraic
equations for {,0,(k=1,2,---,0), a;, a,, and a; with the
aid of the Maple.
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Step 5. Solving the algebraic equations in Step 4, then
substituting {;, 0,(k=1,2,---,0), &}, a,, and a5 in (81).

5.1. Application of Improved tan (x(§)) Method on the
Generalized HSI Eq. By utilizing the following transformation,

E=kx+kyy—ct. (83)

Based on the section before, the needed detail can be got in
the below equation:

T wey+2a, (%W(E)) T e+, d_zlp(g) —0,

Al 1 T2
i i i

(84)

with

Advances in Mathematical Physics

A, =—ck?,
A, =-3ck?, (85)
Ay =—08,k, — ck,8, + 8,k,* + 85k, k, + 85k,%,

where k, k,, c are unspecified constants. The balance number
will be obtained 0 = 1 by using the balance principle. Then, the
exact solution is given as

V(&) ={,+{ tan (@) +6, cot (@) (86)

Firstly, we substitute the expressions of y (&) in (86) into
(84) and collect all terms with the same order of tan*(y(£)/2
). Then, by equating the coefficient of each polynomial to zero
containing a system of eleven nonlinear equations and by solv-
ing the nonlinear system, the specified coefficients will be got
as the below cases.

Case 1.

c=¢
co = (or
a; =0,
o, =y,
oy = s,
(1 =0, (87)
0, =k (o + a3),
P k, (a22k12 — %k + 8,)
2 61 4
V2 \/65(oc22 — a;?) (8163 —208,05+\/—40,26,0, + 612832>
ki=+— )
' +2 85(ay* — a3?)
According to Family 5, (86) becomes
¥, (&) =0y + ki (a, + ;) cot <%£)>,
1 a, + o, Vo3 — ol
— = h bl
an (500) =225 ( % g4 )

\/ 28, (,2 — a,2) (5153 —28,8,+/~48,28,0, + 612832) o (ke — ke +8,)

1
2 85(a* — a3?)

— _t’
X 5, y—c
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F1GURE 13: Plot evolution of cross-kink waves (51) utilizing values a, = .5,4,=1.5,4;=2,a2,=1,0,=1.1,0Q,=15,0,=12,6,=1,8, =
1.3,8;=2,8,=1.3,05=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

50 that 85 (a2 — @;2)(8,8; — 28,85 + /—468,28,05 + 5,%5,%)

>0 and §,°8,% - 48,%8,85 > 0.
According to Family 6, (86) gets

1

\/ 26, (6183 ~28,05+1/5,25,% - 46128265>

VO =40t 5 5

()

1 20 (E+y) _ 1 2e%2(8+¢)
tan (E X(E)) = [

20 (E+d) + 1 ’ 2 (8+¢y) 4+ 1

E:klx_ M}/—d’)
5,
X ﬁ\/55 (5153 —208,05+/—46,28,0, + 612632)
ki=t3 850,

so that 85(8,8; —28,85+/~-48,28,85 +5,28;,%) >0 and

8,0, —46,28,85 > 0.

Case 2.

c=¢
Go=0o>
(=0,
a; =0,
A, = =0,
a3 =0,
k, =k,
k, =k,
0,=0,.

According to Family 17, (86) becomes

¥1(8) =0y — 30, (kyx + kyy —ct + ).

Case 3.

8,k + 83k k, + .k,
kf(ocf + a5 —a3) +0,k;, + 8,k ’

c=

(91)
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FIGURE 14: Plot evolution of cross-kink waves (53) utilizing values a; = .5,a,=1.5,a;=2,a,=1,0,=1.1,0Q,=150,=12,8,=1,8, =
1.3,8;=2,8,=1.3,0;=2,%,=1,t=10 and (a) 3D plot, (b) density plot, and (c) contour plot.

Co :Co;
(1 =0,
o =,
Xy =0y,
O3 = A3,
ky =k,
k, =k,

0, =k (o, + a3).

According to Family 1, (86) becomes

Y. (&) ={y + ki (a, + a5) cot (@),

T2 _ o2
« o —af -«

tan (— X(§)> == _la ; ; 2 tan
2~ %3 2T

so that & = k,x + kyy — (8,k,% + 83k, k; + 85k, 21k, (a2 + o —
a3) +0,ky +8,k)t, a?+ai-a3<0, and a,—ay#0.
According to Family 2, (86) gets

¥, (&) =y + ky(a, + a3) cot <%E)>,
R )
tan G X(5)> = azof% + a;2+_“23 % tanh  (94)

(92)
so that & = k,x + kyy — (8,k,% + 83k, k; + 85k, 21k, (a2 + o —
a3) +08,ky +8,k))t, ad+ai-a3>0, and a,—ay#0.
According to Family 6, (86) gets
§
(93) ¥3(8) = Co + ki, cot (@ )

(95)

o205 (E+6y) 4 1’ e20,(8+¢g) 4 1

1 20(E+d) — 1 De%(5+d)
tan (E X(E)) = ,
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so that £ =k,x +k,y — (8,k,% + 8,k K, + 85k, 27k, *a,® + 8k,
+0,k;)t. According to Family 8, (86) gets

¥, (&) ==y + ki (a, + a3) cot (X(j))

1 _oa(§ ) +2
an (S0 = E TR

s0 that £=k,x +kyy — (8,k,% + 85k, + 8ok, 210,k + 8,k )t
and of +af —a3 =0.

(96)

Case 4.

c=¢
o =00
a; =0,
o, = a,,
oy = o,
G =ki(a - ),
0,=0,

k, (oczzkl2 — a2k, + 64)
5,

ky=-

>

k= +

1
2 O5(ay? - o3%)
(97)

According to Family 5, (86) becomes
¥(§) =0+ k(o — &) tan (@)
tan (% X(E)) = Mtanh (7'0(%2_0% (E+¢O)>,

2~ O3

\/265(oc22 - a;2) (6163 —28,05+/—406,25,0, + 612632)
85 (% — a3?)
k, (klzoc22 —kl g+ d,)

X = 5, y—ct,

==+

N =

(98)

V2, [85(a2 - a2) (6163 ~28,8,+/—408,25,0, + 812632>

so that 8s(a,® — a;%)(8,8; — 28,85 + 1/~46,28,05 + 8,25,>
) >0 and 8,°8,> —468,°8,85 > 0.
According to Family 6, (86) gets

\/255 (6183 ~28,85+ /5,25, - 45125255)
W)=l 5
2 072 d;

()

tan (& §) )=
an EX() T 2wy 417 2mErey) + 1

k, =+

20 (E+ey) _ 1 2% (§+60)

k, (klzocz2 +0,)

gzkl'x— 61

y—ct,

|

23

ﬂ\/55 (6183 —208,05+/—46,26,0, + 812632)

dsa,

>

(99)

so that §5(8,8; —208,05 ++/—48,%8,85+8,°8;%) >0 and

812832 -

Case 5.

a3 =

46,°5,85 > 0.

c=¢,
Go="Co»
(,=—2as,
a; =0,
a, =—os,
8k, + c8,k, — 8,k,* — 85k k, — 8:k,*
6ck, 26, ’
k, =k,
k, = k,,
6,=6,.

According to Family 17, (86) becomes

¥yt

Case 6.

C1=

2
o kix+ky—ct+¢,

)=¢

(100)

Ok, + k) = 8,k,% = 85k Kk, - 8sk,” (101)

6ck,
(kx+kyy —ct+¢y).

(o = Co)
Ok, +c8,ky — 8k, - 83k Ky — 85k,

6cazk,

a; =0,
A =3,
o3 = o3,
ky =k,
k, =k,
0, =2a3k,.

>

(102)
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According to Family 19, (86) becomes

ik, + dyky — 8,k,% — 83k k, — 85k,

¥i(x ) =8, ek
3K

eal(k1x+k2y—ct+¢0) —a 2063](1 a
. + .
o eal(k1x+k2y—ct+¢0) - a,
(103)
Case 7.
oo O+ S5k + 05k,
4k (@2 - a2) + 8,k + 8,k
co = (0)
a; =0,
(104)
o, =,
oy = s,
Gy =ki(a, — a3),
0, =k (o, + a3).
According to Family 5, (86) becomes
¥1(§) =Co + ki (o, — a3) tan <%§)>
+k, (o, + a3) cot <%E)> ,
1 o o ol — o
o (300) - g e (Y e
8,k,* + 85k, k, + 8:k,?
E=kx+kyy - 32 12 3212 5/ )
4k7 (o) —a3?) + 6k, + 8,k
(105)

so that 4k,°(a,> — &%) + 8k, + 8,k #0.
According to Family 6, (86) gets

¥,(&) = o + ko, tan (@) + kya, cot (@)

t 1 E ~ ezuz(E+¢0) -1 26“2(E+¢0)
an 5 X( ) - 62a2(£+¢0) +1 ’ 620‘2(£+¢0) +1 ’
8ok,” +83ki ey + 05k,
4kla?+ 8.k, +8,k

E=kx+kyy -

(106)

Advances in Mathematical Physics

Case 8.

c=¢
Co=Cp»
a; =0,
o) = oy,
o3 = as,
{ =k (o — a3),
0, =k (o, + a3),
ky (407K, * — 40,2k, +6,)
7, ,
\/5\/65(@22 o) (5,0, 28,8, + /718,75,6, 5,767

O5(ay? — a3%)

ky = -

-

(107)

According to Family 5, (86) becomes

V(&) ={, + ki (ay — a3) tan (%5)) +ky(a, + at3) cot (%E))
tan G x(f)) Ry (@(f+¢0)>,

) — &3

\/285(a22 —a?) (6183 —208,05+/—406,28,0, + 812832>
85(ay® —az?)

ky (4k,%ay? — 4k *a,? +8,)
X — 5 y—ct,
1

==+

N

(108)

so that 85(a,® — a;%)(8,8; — 28,85 + 1/~46,28,05 + 8,25,
) >0 and 8,%8,> —468,%6,85 > 0.
According to Family 6, (86) gets

¥, (&) =, + k,a, tan <%E)) +k,a, cot <%E))

. 1 E ~ eZaz(EJrgbo) -1 zeo‘z(fﬂbo)
an E X( ) - e20:(8+¢y) 4 ]_) e20,(8+¢g) 4 1 ’

k, (4k,%a,? +
{:klx——l( 1% * 4)y—ct,
8,
| \/5\/85 (5153 —208,05+/—40,26,0, + 612832)
b ~* dsa, ’

(109)

so that 85(8,8; —28,05 ++/-48,28,85+8,25,%) >0 and
8,28,> —48,28,85 > 0.
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6. Conclusion

In this study, the periodic, cross-kink, solitary, bright, and
dark wave solutions of the (2 + 1)-dimensional generalized
Hirota-Satsuma-Ito equation have been achieved. From the
bilinear form of this equation, one test function or ansatz
has been chosen. Through Maple, the evolution phenome-
non of these waves is seen in Figures 1-14, respectively.
Mainly, by choosing specific parameter constraints, all cases
of 2D and 3D in solitons can be captured from the periodic
and cross-kink wave solutions. Also, the improved tan (y(&
)) method on the generalized nonlinear wave equation stud-
ied and four sets of solutions were obtained. The obtained
solutions are extended with numerical simulation to analyze
graphically, which results into multiwave and cross-kink
wave solutions. Moreover, we studied the solitary, bright,
and dark soliton wave solutions of the generalized HSI equa-
tion by help of SIVP in the previous section. Finally, litera-
ture is full of nonlinear evolution that rich soliton
structures are still to be constructed while applying these
methods. Further investigations deserve to be made in order
to ameliorate the improved tan (y(&)) scheme, so that it may
be possible to provide all the different solutions to a nonlin-
ear system. These questions will constitute future works.
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