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This paper is aimed at investigating the soliton solutions of the hyperbolic nonlinear Schrodinger equation. Exact analytical
solutions of the model are acquired through applying an integration method, namely, the Sine-Gordon method. It is observed
that the method is able to efficiently determine the exact solutions for this equation. Graphical simulations corresponding to
some of the results obtained in the paper are also drawn. These results can help us better understand the behavior and
performance of this model. The procedure implemented in this paper can be recommended in solving other equations in the

field. All calculations and graphing are performed using powerful symbolic computational packages in Mathematica software.

1. Introduction

Finding exact solutions for differential equations, including
ordinary or partial derivatives, is always an important chal-
lenge in mathematics, physics, and engineering. This process
is very difficult or even impossible for some of these equa-
tions. Therefore, any method that helps us determine these
solutions is of great importance and use. Exact solutions
can be used to illustrate many nonlinear phenomena
observed in mathematical physics. One of the most appro-
priate tools for describing many events in nature is to
employ differential equations. This importance has made
the traces to such equations tangible in many branches of
science, including mathematics, physics [1-3], electrical
engineering, astronomy, mechanics, economics, and many
other existing disciplines [4-6]. Based on these remarkable
effects, several analytical methods have been successfully
applied to obtain exact solutions of such equations. Some
of these methods are the homotopy analysis method [7],
the variational iteration method [8], the exp-function
method [9], the logistic function method [10], the
generalized G'/G-expansion [11], the elliptic finder method
[12-14], the exponential rational function idea [15], the

modified Kudryashov technique [16], and the subequation
method [17]. To see more methods, please refer to
[18-20], including, biology, nonlinear optics, economy, and
applied science [1, 20-34]. In this article, the authors study
the HNSE, which is given in the form [35]:

1
iDju+ 5 (D =D )u+[ufu=0, 0<a<l. (1)

It is notable that this equation encompasses a wide range
of well-known equations through some specific selection of
parameters. So far, a variety of techniques have been used
successfully to find the exact solutions to the HNS equation
(1). This article contains the following sections. A brief
mathematical description of the conformable derivative used
in this paper is provided in the second section of this paper.
Then, the method used is introduced in the third section.
The fourth section involved the exact solutions obtained by
employing the analytical method equation and graphical
behavior are discovered. Finally, conclusions are presented
in the last section of the article.
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2. The Conformable Derivative

Biswas proposed an interesting definition of derivative called
conformable derivative [1]. This derivative can be consid-
ered to be a natural extension of the classical derivative. Fur-
thermore, conformable derivative satisfies all the properties
of the standard calculus, for instance, the chain rule.

Definition 1. Let f : [0,00) — R, the conformable derivative
of a function f(¢) of order «, is defined as

Def(e) = tim L) (O,

e—>0 €

€(0,1,£>0. (2)

This new definition satisfies the following properties.

Definition 2. Suppose that ¢ >0 and ¢ > ¢, let h be a function
defined on ¢, t as well as « € R. Then, the a-fractional inte-
gral of h is given by

“h(x)

aen(n = [ 15 d G)

c

if the Riemann improper integral exists.

Theorem 3. Let a € (0, 1), f, g be a-differentiable at a point t,
then

Dj(af + bg) = aDj(f) + bD;(g),fora, b e R,
Dy () =
Df(fg) = fD{(g) + gD{ (f), (4)
«(9\ _ 9Pi(f) ~ fDi(9)
b (9) g '

utt™%, for y € R,
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Theorem 4. Let h be a differentiable function and _ is the
order of the conformable derivative. Let g be a differentiable
function defined in the range of h, then

D (fog)(t) =t'*g(t)* "' g' (DD (F(1) gy (5)
where “prime” is the classical derivative with respect to t.
3. Structure of the Sine-Gordon Method
In order, we consider the Sine-Gordon equation as follows:
Y =asin(y); 6)
here, « is a nonzero constant. We exert the change
y(xy ) =U(E),

here, v is the traveling wave velocity. Replace Equation (8) in
Equation (7)

E=n(x+y+uvt); (7)

U = v%z sin (u(£)). (8)
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By simplifying Equation (8), we have

(-3 o

In Equation (9), C is the integration constant. We sup-
pose C=0,w(&) = U(£)/2, and f* = a/u?, so Equation (9)
detracts to

w'(§)” = f* sin*(w(§)).- (10)
In simple terms, we have
w'(§) = f sin (w(§)). (11)
Inserting f = 1, we have
w' (&) =sin (w(§)). (12)
We have solutions of Equation (12) as follows:

sin (w(&)) =sech (§) or cos (w()) =tanh (£),

(13)
sin (w(&)) =icsch(§) or  cos (w(&)) = coth (&).

For constructing the solutions of NLPDE as follows:
N (V0o Voo ¥y Wi ) =0, (14)

Using the following variation:

Z cos’™ 1

B sin (w) +Aj cos (w)] + Ay,

(15)

by using Equation (13), we have the solution of Equation
(15) as follows:

Ztanh’ !
Z coth/~ 1

[B; sech (&) + A, tanh ()] + A,,

X [B; csch (§) + A; coth (§)] + A,.
(16)

We obtain n by balancing in [10]. Then, by substituting
Equation (15) into ODE concluded from Equation (14), we
have a system of algebraic equations of sin’(£) and cos’(£).
Then, by equating of coefficients, we obtain the necessary
coefficients. By substituting these coefficients in (15), we
extract the solutions of Equation (14).
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4. Solution Procedure

To determine the solitary solution of Equation (1), we first
define the following new variables:

u(x, y, t) = h(&)e®,

6= (%)" (- (17)
d

Substituting Equation (2) in Equation (1) and comparing
real and imaginary parts, respectively, one can obtain

(a +2b—d*)h— 21 + (0 - 1)R" =0, (18)
p=—(a+do).

Taking balance principles between k" and A’ into
account in Equation (10) yields m = 1. Immediately, the gen-
eral structure for the solution to the problem, which is pre-
sented in (7), is determined as follows:

h(§) =B, sin (§) + A, cos (§) + A,. (19)

Following the steps mentioned for the method by
substituting Equation (15) along with Equation (8) into
Equation (10), we get a polynomial in sin (), cos (). Equat-
ing the coefficient of same power of sin(£), cos'(£)(i=0, 1,
2,-+), we obtain the system of algebraic equations, and by
solving this system, we obtained equations for A, A,, B;,a
,b,d, u, and 0. Now, by solving obtained systems, we get
the following values:

Set 1:

_ V2a2-2d* - 302 +4b+3

0 2 >
2
Alz\/2a2—2d +O'2+4b—1’ (20)
4
B - V2a2 -2d° + 02 +4b -1
L= :
4

So, we obtain the following dark optical soliton:

_ V2a2-2d + 02 +4b- 1
- 4
V2a2 - 2d* + o2 +4b - 1
+ t
4
. V2a2 - 2d* — 302 +4b + 3
5 .

hy(§) sech (&)

anh (&) (21)
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Ficure 1: Dynamic behaviors of solution u,(x, y, t) given by (22)
for t=0..5,x=—-m..mm, for a =0.8.
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Ficure 2: Dynamic behaviors of solution u,(x, y, t) given by (22)
for t=0..5,x = —m.., for «=0.5.

So we have optical dark soliton solution of (1) as follows:

sech

ul('x’y’t): 4

(@009
V2a2 = 2d* + o2 +4b—-1
+ tanh
| ﬁ S (22)
| <<&> e+ (- G) t“)
V2a2 = 2d% — 302 + 4b + 3J
+ 5 exp

(CRERER)

{\/Zaz 2d¥ v o2 +4b-1




Ficure 3: Graphical representation of solution u,(x, y, t) given by
(22) for t=0..5,x = —m..7r, for a =0.2.
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Ficure 4: Graphical representation of solution u,(x, y, t) given by
(23) for t=0..5,x = —m..7r, for = 0.8.

And the dark singular soliton is

V2a2 —2d* + o2 +4b—1
Uy (%, p,t) = 1 csch

(G 0r-6)

V2a2 - 2d* + o2 +4b - 1
+ coth
4 (23)

(@)

V2a2 —2d% 307 + 4b + 3|
+ exp

2

[(CRORER0)
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Set 2:

Ay =0,

3
A= %\/6a2—6d2—60'2+ 12b +6, (24)

1
B, = g\/eaz—st—6a2+1zla+6.

The optical dark soliton solution is

Uy (%, yy 1) = E V6a2 - 64> — 602 + 12b + 6 sech
(O tr-0r)
+ g V6a2 - 6d% — 602 + 12b + 6 tanh (25)
()00
con ()¢ )+ (o0

And dark singular soliton is

uy(x,y,t) = [é V6a2 - 642 - 662 + 12b +6 csch
()00
+ g\/&lz — 6% — 602 + 12b + 6 coth (26)
(0 0-r)
X exp (i((g)x“ + (g)y"‘ + (g) t* + 90)> .

Set 3:

V2a2 - 2d%* + 4b
Ao= 2

V2a2 22 + o2 +4b—1 (27)
4

A= ,
B, =0.
The optical dark soliton solution is

V2a2 - 2d* + 0% +4b -1 1
us(x, y, t) = tanh 2

4

(04
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Ficure 5: Graphical representation of solution u,(x, y, t) given by

(23) for t =0..5,x = —m..7T, for «=0.5.
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FI1GURE 6: Graphical representation of solution u,(x, y, t) given by
(23) for t=0..5,x = —m..71, for « =0.2.

And dark singular soliton is

2d* + 02 +4b-1 <(1> .
1 coth X

N « _ g o
(- @)+
N b
U@ @ C)ren))
In Figures 1-9, we see that the graphs of the answers are

very similar and the only difference is in the degree of oscil-
lation of the graph.
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FiGure 7: Graphical representation of solution u4(x, y,t) given by
(29) for t=0..5,x = —m..7T, for = 0.8.
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Ficure 8: Graphical representation of solution u4(x, y, t) given by
(29) for t=0..5,x = —m..7, for a =0.5.

5. Concluding Remarks

In this study, some new solitary exact solutions of the hyper-
bolic Schrodinger equation are obtained with the aid of an
efficient analytic method. The structure considered for the
equation consists of a series of arbitrary parameters that lead
to many well-known models by considering certain options
for them. One of the main advantages of this method is
the determination of different categories of solutions for
the equation in a single framework; this means that the
method can determine different types of solutions for the
equation in a single process. Furthermore, one can easily
deduce that the methods used in this study are very simple
but very efficient methodologies for solving NPDEs. We
have performed all necessary calculations for obtaining and
plotting Figures 1-9 through the implementation of the
symbolic computations in Mathematica software.



Ficure 9: Graphical representation of solution u4(x, y, t) given by
(29) for t=0..5,x = —m..7T, for a =0.2.
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