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In this work, we synthesize Al/TiB, metal matrix composites (MMC) based on the effect of cooling rate in the melt while pouring
into the permanent mold condition. The objective of this paper is to achieve the desired distribution pattern and increased TiB,
particles’ size in the Al/TiB, MMC ingot. Two halide salts, viz., potassium hexafluorotitanate (K,TiFs) and potassium tetra-
fluoroborate (KBE,), are procured and measured. The two salts were mixed with the aluminium melt in the crucible, and it is
stirred manually with help of a graphite rod. Because of the exothermic reaction, the melt reacts very quickly and that is what
dropped the salts slowly. The salt particles were synthesized because of the exothermic reaction, and it will allow the particles to
grow. The size and distribution of particles differ at different place in the MMC. An FEA tool ProCAST was used to analyze the
cooling rate of the melt, and SEM is used to study the microstructure of the ingot at different places. The microstructures helped to
identify the size of reinforcement in the MMC. The TiB, particles are distributed more at this location at 810°C, and the TiB,
particles formed various clusters in this zone as 70%-80%. Also, the tribological characteristics are analyzed with the help of
the results.

1. Introduction

The cast aluminium components are used in automotive
industries due to its more strength-weight ratio, outstanding
castability, and corrosion resistance [1, 2]. The ex situ
method is involved for the fabrication of particulate matter
reinforced metal matrix composites (PRMMCs) by con-
ventional ex situ method due to its isotropic properties, ease
of fabrication, and the lower cost. The reinforcement is
added directly to fabricate the ex situ composites [3, 4]. In in
situ method, a chemical reaction of reinforcements inside
the composites takes place to synthesize the composites. To
identify the behavior of in situ particles, a small work was
carried out in the aluminium matrix composites [5].

The in situ metal matrix composites have a good at-
traction characteristic because of their good bonding
strength and well distribution of fine reinforcement [6, 7]. It
was found that the study was concentrated on fabrication
and the mechanical properties of the reinforcement such as
SiC, AlL,O;, TiC, and B4C. Various researchers have per-
formed high-performance applications focusing on TiB2 as
the reinforcement as of its high elastic modulus and high
thermal conductivity [8, 9]. Also, it does not react with the
molten aluminium. The casting defects such as oxide films,
porosity, and other inclusions will strongly disturb the
mechanical behavior of the cast aluminium alloys [10, 11].
However, because of the stiffness, hardness, and improved
tensile strength, the aluminium-based MMCs are preferred
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compared to the base matrix alloy [12-14]. The fabrication of
aluminium-based MMCs is done by addition of SiC, AL, O3,
TiC, CBN, and TiB,. Out of these ceramic-based reinforced
particles, TiB, is used mostly because they possess hardness,
maximum tensile strength, and compressive strength
[15, 16].

Because of the very clean and size of particles in the
interface of the in situ method, the fabrication of Al/TiB,
MMCs is preferred. Also, the increased tensile strength and
fatigue strength is due to the very fine particles [17].

In the in situ fabrication method, two salt powders such
as K, TiFs and KBF, were used as reinforcement. They were
mixed in measured proportion and then poured to the al-
uminium melt slowly. The mixture was stirred manually to
endorse the reaction between salts with the help of a manual
graphite rod. The floron gas was inserted in the melt to avoid
formation of gases which will create the casting defects such
as blow holes [18, 19]. Later, the melt was kept in hold to
synthesize TiB, particles that grow in size with holding time
[20, 21].

The Al/TiB, melt was poured into the mould, so the
falling elevation will be the possible turbulence that occurs
during filling. The fragmented TiB, particles are created due
to the turbulence, and also a variation in distribution oc-
curred at different locations. It occurs because the cooling
rate and turbulence were attributed and also due to the
influence of melt fluidity [22, 23]. The above parameters
were analyzed, and their effects are understood clearly from
the SEM micrographs captured from the cast ingot at six
different locations.

2. Experimental Work

An in situ method was used to fabricate Al/TiB, MMCs
through salt metal reaction. Three different melt tem-
peratures were maintained, such as 750°C, 780°C, and
810°C. Also, three dissimilar holding times were main-
tained after mixing of entire salt such as ten minutes,
twenty minutes, and thirty minutes before pouring into
the permanent molds. Through the same procedure, to-
tally nine ingots were fabricated with different combi-
nations, pouring temperature, and holding time [24]. The
size of the reinforced particle is not the same as in the melt
because of the parameters’ fluidness and disorder at
different places of the ingot and the local cooling rate of
the casting [25].

Figure 1(a) shows the twenty-four various locations in
cast ingots from top to bottom, and based on variation of
local conditions of ingot, six locations were selected from
twenty-four various locations. The distribution of TiB,
particles and size were compared for all nine ingots through
the SEM micrographs; Figures 1(b)-1(d) show the SEM
micrographs.

2.1. Finite Element Analysis. Figure 2(a) shows the simula-
tion model, and Figure 2(b) describes the mesh diagrams of
ingot. The temperature vs. time curves were generated at
twenty-four different locations of each ingot by using the
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FEA tool. Out of the twenty-four different locations, selected
six locations were shortlisted for simulation. From the
simulation, a drastic variation occurred in the melt due to
the turbulence of melt, cooling rate, and fluidness.

Figures 3(a)-3(f) show the temperature vs. time curves
at selected six different locations.

3. Results and Discussions

At location 23, the temperature-time curve indicates max-
imum cooling rate and turbulence during filling out of
twenty-four different locations. Also, it was found that the
fluidness reaches its maximum range at the maximum
pouring temperature.

Also, here we discuss the effect of cooling rate at location
23. This location is marked in the bottom surface of the
ingot, and the cooling rate and the fluidity are maximum at
this location at 810°C pouring temperature. Additionally, the
falling height of the melt during the filling process is con-
sidered to be maximum. Because of the abovementioned
reasons, at location 23, the turbulence will be maximum.
Because of these reasons, the circulation will be maximum at
810°C, and it will cause the TiB, particles to fragment. Hence,
the TiB, particles get entrapped quickly because of maxi-
mum cooling rate, and the casting at this location is freezed
[26].

Moreover, more TiB, particles are distributed at this
location at 810°C and the TiB, particles formed various
clusters in this zone as 70%-80%.

Here, we discuss the effect of cooling rate at location 21.
This location is marked in the middle surface of the ingot;
the cooling rate and the fluidity are modest at this location at
810°C pouring temperature. Additionally, the falling height
of the melt during the filling process is considered to be
average. Because of the abovementioned reasons, at location
21, the turbulence will be average. Because of these reasons,
the circulation will be maximum at 810°C, and it will cause
the TiB, particles to fragment. Hence, the TiB, particles get
entrapped quickly because of maximum cooling rate, and
the casting at this location is freezed [27, 28].

Moreover, more TiB, particles are distributed at this
location at 810°C and the TiB, particles formed various
clusters in this zone as 60%-70%.

In this paragraph, we discuss the effect of cooling rate at
location 19. This location is marked in the top surface of the
ingot; the cooling rate and the fluidity are very low at this
location at 810°C pouring temperature. Additionally, the
falling height of the melt during the filling process is con-
sidered to be very less. Because of the abovementioned
reasons, at location 19, the turbulence will be average. Be-
cause of these reasons, the circulation will be maximum at
810°C, and it will cause the TiB, particles to fragment. Hence,
the TiB, particles get entrapped quickly because of very
minimum cooling rate, and the casting at this location is
freezed. Most of the TiB, particles were trapped at locations
23 and 21 already. Hence, very small particles settled down in
this particular location.

Analyzing at location 1, the falling height and the cooling
rate were minimum. Due to the effect, most of the particles
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F1GURE 1: (a) Ingot drawing showing locations considered. SEM micrograph at location 1 of the ingot for (b) 750°C pouring temperature and
10-min holding time, (c) 750°C pouring temperature and 20-min holding time, and (d) 750°C pouring temperature and 30-min holding time.

FIGURE 2: (a) Mold model. (b) Mold meshing.
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FIGURE 3: (a) T'vs. tat point 1 for 750°C. (b) T'vs. t at point 4 for 780°C. (c) T'vs. t at point 7 for 780°C. (d) T'vs. tat point 19 for 780°C. (e) T'vs. t
at point 21 for 780°C. (f) T vs. t at point 23 for 780°C.

TasLE 1: TiB2% of different places in micrographs.

Percentage area of TiB,

Location Pouring temperature (in degree Celsius) ) . .
10 min 20 min 30 min
750 10-20 30-40 35-40
1 780 20-30 30-40 35-40
810 20-30 30-40 40-50
750 30-35 30-35 35-40
4 780 20-30 25-35 30-40
810 25-30 30-35 40-50
750 10-20 30-40 25-35
7 780 20-30 35-45 40-50
810 20-30 40-50 60-70
750 20-30 20-30 30-40
19 780 20-30 40-50 40-50
810 20-30 50-60 50-60
750 30-40 20-30 40-50
21 780 10-20 30-40 30-40
810 30-40 50-60 60-70
750 30-35 35-40 40-50
23 780 35-40 45-50 50-60
810 40-50 60-70 70-80
were trapped at the bottom of the ingot at location 1, which was The friction between the aluminium matrix and TiB2

found to have fewer TiB2 particles through SEM micrographs. ~ particles was analyzed. The tribological characteristics
Also, it covers 40%-50% area in the SEM micrograph. showed better performance than conventional material.
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TaBLE 2: TiB2% particle size for holding time.

Particle size for holding time (um)

- Temperature
Position o . 20 30
Q) 10 minutes . .
minutes minutes
750 1-1.5 1-1.5 2-2.5
1 780 1-1.5 1.5-2 2-2.5
810 1.5-2 2-2.5 2.5-3
1-1.5
750 15 D-1 1.5-2 2.5-3
4 780 1-1.5 1-1.5 2-3
2-2.5
810 1-1.5 1-1.5 [-12, D-1
750 1-1.5 1.5-2 2.5-3
780 1.5-2 2-2.5 2-2.5
7 1-1.5
810 1.8, D-15 1-1.5 2-2.5
750 1-1.5 1-1.5 1.5-2
19 780 1-1.5 1.5-2 2-2.5
810 1-1.5 1-1.5 2-2.5
750 1-1.5 1.5-2 2-2.5
780 1-1.5 1-1.5 1.5-2
21 1-1.5
810 L-10, 1-1.5 2-2.5
D-15
750 1.5-2 2-2.5 2-2.5
23 780 1-1.5 1.5-2 gji
810 1-1.5 1-1.5 L5, D-1

L =length of needle-shaped TiB, particles. D = diameter of needle-shaped
TiB, particles.

Also, the distribution of TiB, particles at different lo-
cations for less holding times and pouring temperatures was
found to be low, which is tabulated in Tables 1 and 2.

4. Conclusions

The TiB, particles were found to be more at location 23
because of the very high cooling rate.

The TiB, particles were found more at locations 23 and
21 due to the very high turbulence. When the circulation of
the fluid is more, the fluidity is also more.

Also, the tribological characteristics showed significant
improvement on the basis of hardness. However, the
reinforced particles get trapped quickly when the cooling
rate was very high at these locations.
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