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ABSTRACT 
 

The article derives the probability for lethal recessive alleles in the case of recessive disadvantage 
or advantage. It is shown that recessive advantage of a lethal gene can be detected by the ratio of 
heterozygotes and homozygotes. This demonstrates that higher IQ of certain ethnic groups cannot 
be explained by recessive advantage of lethal genes. The article shows that lethal genes can 
survive in the population if some lineages of families have much more children than the average.  
 

 
Keywords: Recessive alleles; heterozygote advantage; lethal genes; hardy-weinberg equilibrium, 

markov model. 
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1. INTRODUCTION 
 
Lethal recessive alleles are gene alleles, which 
either are lethal for a homozygote, or were so in 
past centuries. They cause rare serious diseases 
including Cystic Fibrosis (carrier frequency 1/24 
in Northern Europeans, see [1]), Tay-Sachs 
disease (1/29 Ashkenazi Jews [2]), Gaucher 
disease (1/18 in Ashkenazi Jews [3]), α-
Thalessemia (1/25 Chinese and SE Asians [4]), 
β-Thalessemia (1/30 Greeks and Italians [5]). 
Most of these diseases can be caused by several 
different mutations, but the disease is expressed 
by a homozygote of a single mutated allele. In 
the past a homozygote of a lethal allele died 
before reaching the reproductive age, thus two 
mutated alleles carried by a homozygote were 
removed from the gene pool in every generation. 
We would expect that such deadly diseases 
became less frequent in each generation and 
they would vanish after a certain time and 
consequently the lethal alleles we now can 
observe must have been created relatively 
recently. Yet this is not the case: the age of the 
most common allele causing Cystic Fibrosis is 
estimated as 52,000 years. There must be some 
mechanism keeping these extremely harmful 
alleles in the gene pool.  
 
One proposal is that a heterozygote of the 
mutated allele has a selective advantage.            
When the heterozygous genotype has a higher 
relative fitness than either of 
the homozygous  dominant  and 
homozygous recessive genotype, it is called as 
heterozygote advantage. When the heterozygote 
advantage is caused by single locus, it is called 
as overdominance [6,7]. This is a specific 
condition where the the set of observable 
characteristics/traits (pheontype) of 
the heterozygote lies outside the phenotypical 
range of 
both homozygous parents. Heterozygote 
advantage often results in increased function of 
any biological quality in a hybrid offspring, also 
known as heterosis. It has been found by 
comparing various measures of dominance and 
overdominance that majority of such cases arise 
when due to the masking of deleterious 
recessive alleles by wild-type alleles(although in 
rice this is caused due to overdominance [7]). 
 
The classical case of a heterozygote advantage 
is the Sickle Cell disease. This is caused by 
presence of two incompletely recessive alleles. 
The name of the disease comes from the fact 
that red blood cells of the person suffering when 

exposed to low-oxygen conditions lose their 
healthy round shape and become sickle-shaped. 
This deformed cells later get lodged in blood 
vessels which causes oxygen deficiency in 
various parts of the body. This disease is not 
quite lethal for a homozygote but causes a 
serious illness. The disease has the carrier 
frequency 1/10 in African Americans [8] and 
relatively higher carrier frequencies in areas 
where malaria occurs than in areas without this 
infective disease. It has been demonstrated that 
a heterozygote of the Sickle Cell disease has 
partial immunity towards malaria [9,10]. 
However, heterozygote advantage has not been 
sufficiently well demonstrated for any of the 
mentioned recessive lethal alleles, though it has 
been suggested, for instance, that Cystic Fibrosis 
gives partial protection against diseases 
involving loss of body fluid, typically due to 
diarrhea like cholera [11], typhoid [12] and the 
Ashkenazi Jewish diseases may offer a cognitive 
advantage for a heterozygote [13]. The 
explanation of the persistence of recessive lethal 
alleles by a heterozygote advantage is weak, and 
in this analysis it will be shown that this 
explanation cannot be correct since it would lead 
to a different ratio between the disease 
prevalence and the carrier frequency than what 
is observed.  
 
The second proposal for an explanation is a 
founder effect followed by a genetic drift. The 
influence of dominance and drift on lethal 
mutations in human populations has been 
studied extensively earlier [14-17]. The founder 
effect is the loss of genetic variation that occurs 
when a new population is established by a very 
small number of individuals from a larger 
population as defined by Ernst Mayr in 1942 [18]. 
The new population will be 
both genotypically and phenotypically different, 
from the parent population from which it is 
derived. This effect genarally occurs when a 
small proportion of a polulation which does not 
represent genetically the population from where 
they come establish themselves in a new area 
[19,20]. The founder effect in rare cases leads to 
the speciation and subsequent evolution of new 
species [21]. This new population will show 
increased sensitivity to genetic drift (the change 
of an existing alelle frequency in a population 
due to the random sampling) due to its small 
population. It is of course possible that among a 
small number of founders several have the same 
rare disease and in this way the mutated alleles 
become enriched in the population. A genetic 
drift, especially in small populations, can still 
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increase the frequency of mutated alleles. It can 
either lead to gene variants to disappear 
completely and thereby reduce genetic variation 
or rare alleles to become much more frequent. 
The problem with this explanation is that such a 
process would be very unlikely e.g. in the case of 
the main allele of Cystic Fibrosis (CF). It will be 
shown in this analysis that a recessive lethal 
allele would vanish from the population in 50 
generations unless there is a mechanism 
keeping it in the population. A generation is 
about 30 years. The main allele of CF is 52,000 
years old [22]. That is about 30 times longer than 
the time for the allele to disappear. We should 
assume that a founder effect occurred some 30 
times. As such a founder effect must be a quite 
rare event it cannot have a probability very close 
to 1. This probability, what-ever it is, raised to 
power 30 gives a number very close to zero. 
There is a nano-scale chance that a sequence of 
30 founder effects could be the correct 
explanation why the CF allele still is there.  
  
After discarding these two common proposals a 
“new” mechanism is proposed. There is nothing 
especially new in this mechanism as such: it is 
just that certain family lineages tend to have 
many children and this alone can in about 8-10 
generation produce observed carrier frequencies 
for recessive lethal alleles in the population. Still 
in the present context the proposal seems to be 
new as the only mechanisms that usually are 
suggested are heterozygote advantage or 
founder effect with a genetic drift. 
 

2. PROBABILITY ANALYSIS OF 
MUTATED ALLELES 

 
Genetics of such a system is easy: every 
mutated allele can be considered separately as a 
system of two alleles: the original allele A and the 
mutated allele a. If the mutated allele brings 
neither selective benefits not disadvantages, the 
relation between the frequency of homozygote 
(aa) of allele a and heterozygote (aA) can be 
calculated from Hardy-Weinberg equilibrium 
[23,24]: assuming that the probability of allele a 

is x , then the probability of A is )1( x . Thus 

the probability of two alleles a is 
2x  and it is the 

probability of a homozygote aa. In a similar way 

the probability of a homozygote AA is 
2)1( x

and consequently the probability of a 

heterozygote is )1(2)1(1 22 xxxx  . 

Denoting the probability of a homozygote by q  

and of heterozygote by p we get 2xq  , 

)1(2 xxp   and the probability of 

homozygote AA is 
2)1(1 xqp  . 

Eliminating x  yields qpqp  12  whence 

 

0
4

1
)1( 22  pqpq , 

)(
4

1

4

1
21

2

1
)1(

2

1 422 pOppppq 

. 

(1) 

This is the steady state solution of a two allele 
system assuming that the mutated allele gives 
neither advantage not disadvantage, but with a 
lethal recessive allele homozygote aa naturally 
have a major disadvantage. We can model a 
system, which is not in a steady state by using 

recursion formulas. Let np  and nq  be the 

frequencies of heterozygote aA and homozygote 

aa respectively in a generation n , thus np  is the 

carrier frequency and nq  is the disease 

prevalence as a function of time given as number 
n  of generations from the beginning.  
 
Two AA parents will have only AA children. This 

occurs with probability 
2)1( nn qp   as each 

parent comes from a pool of AA homozygotes, 

which has the probability ).1( nn qp   

Similarly, two aa parents have only aa children 

and this event has the probability 
2

nq . The 

probability of the case of aA having children with 

AA is )1(2 nnn qpp  . Half of the children will 

be AA and half aA. Similarly aA-aa has the 

probability nnqp2 . Half of the children are aA, 

half aa. Two aA parents producing children has 

the probability 
2
np . Half of these children will be 

aA, one fourth AA and one fourth aa. The final 
case is AA-aa. This event has the probability 

nnn qqp )1(2   and all children are 

heterozygotes aA. 
 
Let us insert two nonnegative parameters   and 

  to describe heterozygote advantage and 

homozygote disadvantage respectively. These 
parameters increase or decrease the number of 
children for a couple having certain combination 
of alleles a and A. For a lethal allele a no 
heterozygote aa can have children. Thus aa-aa 
have children of type aa with the probability 
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2

nq  in the generation 1n  where 0 . 

Likewise, aa-AA have children, all aA, with the 

probability nnn qqp )1(2   in the generation 

1n  with 0 , and aA-aa have children with 

the probability nnqp2  in the generation 1n  

with 0 . There are three combinations aA-

aA, aA-AA and aA-aa, where the heterozygote 
aA appears but we give the heterozygote 
advantage only to the case aA-aA. This is done 
by modifying the original model so that if both 
parents are aA, then they produce more children. 
We define that the children of aA-aA have the 

probability 
2
np  in the generation 1n , that is, 

these couples produce   times as many 
children than AA-AA couples. Half of these 
children will be aA, one fourth AA and one fourth 
aa. 
 
The reason for not giving a heterozygote 
advantage to the case aA-aa is that as we are 

mostly interested in lethal allele a,   is zero and 

aA-aa have no children. It does not matter if we 
multiply zero by any  . The reason why we do 
not give a heterozygote advantage to aA-AA is 
that it is not possible to find a steady state 
solution for small p  if we do so and the carrier 

frequency p  for recessive lethal alleles is on the 

range of 1/25. Consider what would happen if we 
multiply the number of children of aA-AA couples 
by  . The leading term of p  for the number of 

heterozygote children is obtained from children of 
the couples aA-AA and it would be p  as the 

leading term of )1(2
2

1
qpp  , here always 

2pq  . The two leading terms of p  for the 

number of AA children are obtained from AA-AA 
and aA-AA couples and the terms would be 

p)2(1   from 

)1(2
2

1
)1( 2 qppqp   . If the system 

is in a steady state, then ratio of aA children to 
AA children must be the same as the ration of aA 

parents to AA parents. Thus 
p

p

p

p

)2(11 







 

where   indicates that we ignored )( 2pO  

terms. This equation can only be satisfied if p  is 

close to ½. So, for recessive lethal alleles we 

cannot give recessive advantage to the case aA-
AA. 
 
It is rather natural to give a recessive advantage 
to the case aA-aA. In the case aA-AA no children 
is a homozygote of the type aa and in the past 
the parents cannot have known that one of them 
is a carrier, but for the case aA-aA the situation is 
different: one fourth of their children die young. 
The parents may have tried to compensate this 
situation by having more children. This is 
mathematically a heterozygote advantage even 
though a heterozygote has no real gain from one 
copy of the lethal allele. However, as will be 
seen, here is a surprise. We may initially think 
that if aA-aA parents simply have 4/3 times as 
many children as AA-AA parents, then they have 
effectively compensated to the lethal allele, but 
this is not so. The steady state requires that the 
number of aA heterozygotes stays the same from 
parents to children and a lethal allele removes 
the children of AA-aa, which is the second 
largest term of p contribution to the number of 

aA children and has the leading term 
22 pq   

from )1(2 qpq  . Indeed, to compensate 

0  it will be seen that we need 3 . It 

sounds unrealistic that aA-aA couples would 
have had in the past three times as many 
children as AA-AA couples, but that is what the 
following calculation shows for a steady state 
solution and the idea in recessive advantage is 
that it is a steady state solution: loss of 
heterozygotes aA because of the lethal 
homozygote is compensated by more children 
because of recessive advantage.  
 

If 1   we have the original system and we 

get the Hardy-Weinberg equilibrium. If 1 , 

0  the system cannot be in a steady state. 

The allele a is decreasing in each generation and 
we can estimate how fast the allele is removed 
from the population to undetectable frequencies. 

If 0 , there is a value   which gives a 

steady state solution. Then   is greater than 1 
and it is the heterozygote advantage. Naturally 

we could select   greater than one and study 

homozygote advantage, but this is not done in 
the present analysis.  
 
The scaled recursion equations from generation 

n  to generation 1n  are: 
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 







 nnnnn qpqp

s
q 22

1
4

11
  

 

(2) 
 

 







 nnnnnnnnnn qpqqpqppp

s
p 222

1 22
2

11


 
where the scaling factor s  is the total probability  
 

 222 22)1(1 nnnnn qqqqps   .

  

(3) 

Dividing by s  assures that the total probability of 
equations (2), which is 1 in the generation n , 

stays as 1 in the generation 1n . Assigning 

1   yields 1s  and 

 

 0
4

1 2
1

2   nnnnn pqpqq . 

 
We can see that the system has a steady state 

solution ppp nn 1 , qqq nn 1  giving 

the Hardy-Weinberg equilibrium (1). If 1 , 

0  there is no steady state solution. We will 

make a simple approximation of the solution. To 
make it simple, we will not scale the equations as 
in (2) by dividing the equations with s . Then for

1 , 0  they are 

 

2
1
4

1
nn pq   

  nnnnn pqppp  1
2

1 2
1 . 

(4) 

 

If np  is small to start with at 0n , scaling by 

dividing with s  makes little difference. We will 

assume that np  is so small that )( 3
npO  terms 

can be ignored. The equation for 1np  reduces 

to  
 

2
1

2

1
nnn ppp   . 

 

 
This equation is approximately solved by  
 

1

2

11












N

n
C

N
pn   

(5) 

 

which satisfies 
 

 32
1

2

1 
  NOppp nnn

. 
 

In order to use this solution, N , the total number 

of generations must be so large that 
3N  is 

ignorable. As the carrier frequency np  is on the 

range of 1/25 for most recessive lethal alleles, 

25N  should be enough. The constant C  in 

(5) is fixed by the initial value for np . Indeed, 

from (5) follows that  
 

np
pn




1
02

2
,  

np
p

n 


10
2

2
. 

 

 

Necessarily npn 
12  must be larger than zero 

in the second equation. It is just stating the 

condition that np  is decreasing in each 

generation and cannot have been higher than 
one in generation zero. Thus, if the allele a is still 

detectable at carrier frequency np  in the 

generation n , there is a maximum number of 
generations it can have been decreasing. For 

Cystic Fibrosis np  has the value 1/24 today. 

Consequently n  must be smaller than 48. That 
means some 1450 years. The solution is 
approximation and cannot give precise values. 
Yet the age 52,000 years for the main allele of 
CF is too much at odds with this approximation. 
As promised in the beginning, this mathematical 
argument shows that some kind of mechanism 
must keep recessive lethal alleles in the 
population. Else we would only see relatively 
recent lethal mutations.  
 
No more elaborated argument against a founder 
effect and genetic drift than was given in the 
beginning will be offered, but the possibility of 
heterozygote advantage will be analyzed. This 

advantage means that for 0  there is 1  

that keeps the lethal allele in the population. 
Over all these generations the lethal allele has 
not replaced the healthy allele but has a rather 
small carrier frequency. This means that the 
system must be in a steady state and 

frequencies of np  and nq do not any more 

depend on n . We set ppp nn 1 , 
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qqq nn 1 in (2) and solve   from both 

equations: 
 

 














2

1

223

2

22223

pp

qqpqpqppqpqp 


, 

 

 














qp

pqqqqqqpq

4

1

2

2

32322 


. 

(6) 

 

Eliminating   gives an third order equation of q

with parameters   and p  
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4
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2
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















 ppqp 

. 

 

((6) 

A third order equation has an exact solution, but 
it is inconvenient. Assuming that p  is small, 

2pq   is so small that the term 
3q  can be 

ignored and as an approximation, we get a 
second order equation for q . The solution has a 

square root, which can be expanded as a power 
series of p , which is assumed small. In order to 

see what size of an error we are introducing by 

dropping the third order term 
3q , we can do this 

approximation for 1 . When 1  equation 

(7) reduces to (1) and yields the exact solution of 
Hardy and Weinberg. In our approximation we 

get by setting 1  in (7) the third order 

equation 

 

0
4

1

4

1
12

2

3
)33(2 23223 








 ppppqpqq

 (7) 

which we approximate with a second order 
equation, solve it and expand to a power series 
of p . The result is  
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while the Hardy-Weinberg solution expanded as 
a power series yields  
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The difference is )( 4pO  and ignorable for 

realistic values if p for recessive lethal alleles. 

Thus, the approximation is sufficiently good for 
our purposes, but if p  is larger, this method 

must be used with care. For arbitrary   the 

approximation gives (to )( 4pO , which is the 

highest precision we can get) 

)(

2
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(8
) 

Where 
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4
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
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 65432

6
10315161361

)1(

1






B

. 

 

Let us evaluate the solution (8) for some values 

of  : 

 

 If 1 , then 0 BA , 

)(25.025.0)(
4

1

4

1 432432 pOpppOppq  . 

 

 If 0 , then 1 BA , 

)(06.175.0)(
16

17

4

3 432432 pOpppOppq 

 

 If 2 , then 
81

45
A , 

729

1487
B , 

)(11.01575.0 432 pOppq  . 

 

Heterozygote advantage   can be solved by 

inserting   and the approximation of q  into (6). 

For )( 33
2

2
1 pOpcpcq  equation (6) 

gives )()(44 2
121 pOpccc   : 

 

 If 1 , )(1 2pO  (in this case the 

exact solution for   is 1.) 

 If 0 , )(24.43 2pOp  . 

 If 2 , )(82.063.0 2pOp  . 
 

We see that in all cases 
2pq  , but the 

coefficient is different. For all recessive lethal 
alleles the values announced in literature for the 
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disease prevalence q are related to the carrier 

frequency p  in the way that is very close to the 

Hardy-Weinberg equilibrium  
 

32

4

1

4

1
ppq  . 

 

 
In some cases this may be a result of measuring 
only the disease prevalence and calculating the 
carrier frequency from the Hardy-Weinberg 
formula, but at least [23] contains direct 
measurements of carrier frequencies and 
announces also how many homozygote cases 
the test sample contained. The sample in [23] is 
sufficiently large for measuring the carrier 
frequency, while it may be too small for 
estimating the disease prevalence in the sample. 
There fortunately are better values for the 
disease prevalence. There are certain problems 
arising from the composition of the samples in 
[23], but the results seem to fit to the Hardy-
Weinberg equilibrium, or to the exact non-steady 

state un-scaled solution 2

4

1
pq   when 0 ,

1 . The difference between these solutions 

and the steady state scaled solution for 0 ,

3 with 
32 06.175.0 ppq   is so large 

that it should be seen in the sample of [23]. 
Consequently, the explanation of persistence of 
recessive lethal alleles because of heterozygote 
advantage must be discarded. It can also be 
questioned if recessive advantage is the only 
mechanism in the Sickle Cell disease. In that 
disease recessive advantage is a likely cause, 
but not necessarily the only cause for the 
observed carrier frequency. 
 
The final contribution of this analysis is a 
proposal of a mechanism that can explain why 
recessive lethal alleles do not disappear. The 
argument is based on a simple model, which is 
not in every respect realistic, but illustrates the 
mechanism sufficiently well. The idea is that 
many family lineages tended in the past to have 
about the same number of children over several 
generations. Thus, there were family lineages 
where most women had a large number of 
children, and the number could be higher than 
what was customary in the general population. 
The proportion of people in a population 
originating from these family lineages grows over 
generations and if one such lineage included 
carriers of rare diseases, the carrier frequency of 
the population grows.  

3. MARKOV MODEL OF RECESSIVE 
LETHAL ALLELES 

 

The model is a Markov model, which is 

constructed to be easy to analyze. Let jns ,  be 

the fraction of the population of generation n  

being born into a family of j  girls who grow old 

enough to reproduce. This implies that the state 

(n,j), which has the state probability jns , , 

contains also women born into a family where 
both the mother and father were heterozygote 
and more than j  girls were born but 

homozygote died before reaching the 
reproductive age. Naturally, the recessive 
disease is not the only reason why children die 
before reaching the reproductive age. Most 
families faced this situation.  
 
For the model we take a birth and death process: 
 

 1,1,,,1 )1()1())1()1(1(
1

  jnjnjn

n

jn sjsjsjj
s

s 

. 

 

Here ns  is the scaling factor to get the total 

probability to remain at one. The term 

1,)1(  jnsj   describes women, who were born 

into a family of 1j  daughters who grow up to 

reproduce, but who themselves have j  

daughters. The parameter   describes the 
probability of having one daughter more than the 

mother, while the multiplier 1j  indicates that 

all 1j  daughters have this decision to make. 

In a similar way, the term 1,)1(  jnsj   

describes women, who were born into a family of 

1j  daughters who grow up to reproduce, but 

who themselves have j  daughters. The 

parameter   describes the probability of having 

one daughter less than the mother, while the 

multiplier 1j  indicates that all 1j  daughters 

have this decision to make. The remaining term 

jnsjj ,))1()1(1(    describes those 

women who have the same number of daughters 
as their mother.  
 
Assuming that the system is in a steady state, 
the flow in and out of state (n,j) are                   
equal:  
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jnjn sjsj ,1,)1(      

yielding the solution 
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(9)

The scaling factor ns  is the sum of the state 

probabilities: 
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Setting 1ns  fixes 

 

))1/(1ln()1ln(
1, 






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
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(10) 

 

As 1ns  the recursion simplifies to  
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(11) 

The average number of girls in generation n  

(women in generation 1n ) is  
 

))1/(1ln(1
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In distant history human population growth was 

very small. In this simple model 1Av  
corresponds to a population with zero growth, 
that is, one daughter implies two children in 

average. This value for Av  gives a small   and 
we can determine   from a power series 
expansion of the logarithm: 
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so if 1Av , then 0 , but we cannot select 

0  because then the system does not reach 
the steady state solution that was calculated 

before. In order to reach it,   and   must be 

positive. Let us set 1.0 . Then 055.1Av , 
which is very close to zero growth. The total 

fertility rate is the double of Av , 2.1, and it is 

very close to the minimum for sustaining a 
population. We can also notice that the value 

72.0  gives 02.2Av  implying about 4 
children per woman, that is 2.3% annual growth 
and 30 years (=one generation) doubling time. 
Before modern times such growth rates were a 
rarity.  
 

Selecting   does not fix   and  , only their 

relation, and the absolute values of   and   

are important for determining the average 
number of descendants in the nth generation for 
a family, which started with j children at the 
generation zero. This is obviously so because if 

0   , all daughters of the family lineage 

will have j daughters reaching the productive 

age. Then the number of women grows as 
nj  

and the population as 
nj2 . We cannot select 

0  , because that implies that after some 

time the whole population grows as 
nj2 , where 

j  is the highest number of daughters any 

woman of the zero generation had. However, we 

can set   and   to small positive values. Doing 

so, we can estimate the number of female 
descendants of a single woman of the zero 
generation having j  daughters, who reach the 

reproductive age.  
 

If   and   are small, it is sufficient to calculate 

only one or two state changes from one j  value 

to another in the whole run of generations from 0 
to n . In the beginning all probability is in the 

state (0,j), i.e., 1,0 js . No state changes gives 

the following contribution to (n,j):  
 

n
j

n
jn jjsjjs ))1()1(1())1()1(1( ,00,,  

. 

(12) 

If there is only one state change in the run, there 
is no contribution to (n,j), while from two state 
changes there are. The state can change from 
(m,j) to (m+1,j  1) and back from (r,j  1) to 
(r+1,j) giving second order contributions to  
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For simplicity we ignore from now on the second 
order contributions. Thus, (12) is the 

approximation of the state probability of jns , . 

The (first order) approximations of the state 

probabilities 1, jns  and 1, jns  are respectively 
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The number of female descendants with j  

daughters of the one woman in the zero 
generation is approximated by 
 

nn
j jjjNum ))1()1(1(    

 

 

If   and   are very small, we can ignore even 

the first order terms and keep only this term. It is 

essentially
nj . Including male descendants, the 

woman has 
nj2  descendants and if the woman 

was a carrier, half of the descendants are 
carriers of the lethal allele. As the total population 
has negligible growth, the carrier frequency of 
the population reaches relatively high levels 
because of this exponential growth. This 
exponential growth does not continue infinitely. It 

stops when n  is on the range of 
1))((  j . 

We may estimate that this n  could be about 10 
by the following reasoning.  
 

Human female has a upper limit for number of 
children probably around 16, but very large 
families, where children grow up to have their 
own children, must have been rare. We probably 
can ignore families with more than 4 daughters. 

For 4j  daughters 10n  generations of 

growth approximated by ))(1(   njj n gives 

about 1 million female descendants to the 
generation n , that is two million people. If 

 11)1( 1  
 (we have selected 

1.0 ) is sufficiently much smaller than 

40/1)( 1 nj , the growth is almost 

exponential. That means that 440/1 , which 
is small but not necessarily impossible in this 
simple model. It very much depends on the value 
selected for  .Two millions is 4%, that is 1/25, 
of 50 million, which in the past was a large 
population. We see that in ten generations 
observed carrier frequencies can be reached by 

a family lineage which has 8 children per woman. 

For 3j  ten generations of growth produces 

118,000 people. It is about 4% of 3 million. That 
is a more typical size that a population, which 
today has diseases caused by recessive lethal 
alleles, may have had 300 years (=10 

generations) ago. For 2j  we get 2000 people 

in 10 generations, for 1j  the number stays at 

one and the case 0j  there are no daughters.  

 

Assuming that the woman, who starts this family 
line at the generation zero, is a typical member of 
the larger population, the probability for her to 
have j  daughters living to a reproductive age is 
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Multiplying this probability by the number of 

descendants in the generation 10n  and 

summing over the values 4,...,0j  yields the 

average number of descendants: 

 
994000,000,21.0
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The woman was a heterozygote for a lethal allele 
having the carrier frequency p  with the 

probability p . We may assume that her husband 

mostly was AA, as a is a rare allele. Thus, half of 
her children were carriers. Half of the children 
are boys and we may assume for simplicity that 
all boys were AA and all girls aA. This way it is 
not necessary to track the boys. All daughters in 
all generations are therefore carriers in this 
calculation. If the woman of the zero generation 
was a carrier, she produced 994 carriers to the 
10th generation. 

  
At the same time the number of heterozygotes 
aA decreases by a considerable factor. Since 

0 , the couples AA-aa do not exist and they 

do not produce qqpq 2)1(2  carriers. The 

couples aA-aa also do not exist, but their 

contribution is of the order )( 3pO . From (2) we 

can see what is missing if 1 , 0 to the 

steady state solution 1  . The carrier 

frequency decreases in each generation by a 
fraction  
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1
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As 10 generations is a short time, np  does not 

change very much and we can estimate that the 
change is about  
 


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2

1
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If p  is originally about 1/25=0.04, it decreases to 

about 0.032. At the same time we get 993 new 
carriers. In order 0.8% of the population (0.04-
0.032) to be 993, the population size should be 
124,125.  
 
This is of course a very simple conceptual           
model and cannot be fully realistic. Yet it shows 
that if family lineages have a practice of getting 
the same number of children to adulthood as 
their parents did, which is about the same as 
making the same number of children, then it 
creates a pump, which increases the number of 
heterozygotes and can balance the loss of 
heterozygotes due to the death of homozygotes. 
Is there any reason to think that there were             
such practices in the past? The age of the main 
allele of Cystic Fibrosis, unless the dating will be 
revised, takes us back to the Stone Age. Hunter-
gatherer societies usually have few children 
because many children restrict the mobility of 
women. As Hunter-gatherer women get pregnant 
in a normal way, such societies practice 
infanticide: only one child, who cannot walk 
alone, can be nursed by a woman. This implies 
that the time between children is typically 3-5 
years. As a woman reaches maturity at around 
15 years and the life length was around 35 years, 
a woman could raise 4-6 children, but as such 
societies tend to be violent, few lived long. 
Usually only tribal chiefs had more wives, often 
2-4, and consequently more children, but that 
does not increase female fertility. It seems that 
there was no possibility for families with a               
large number of children, which is required by the 
mechanism proposed here. However, this               
may be a too fast judgment. There could have 
been areas and times when food was               
abundant, women could be semi-sedentary and 
nurse the children, or something                           
else. 
  
From the time of sedentary habitation, first in the 
Levant already before agriculture, family sizes 

could grow and families with 6 to 8 children were 
more like a rule in agricultural societies. Still the 
population grew very slowly, much below 1% 
annually. These facts can be combined by an 
assumption that most children did not reach the 
reproductive age, or that many adults died 
young, were widowed, taken to slavery, or for 
some other reason did not raise a large family. 
Some family lineages did and the gene pool 
probably was all the time changing with more 
fertile lineages replacing less fertile ones. Some 
may see here a place for natural selection, some 
only a play of chance. Such a situation explains 
why some religions gained support much easier 
than lends support to the forces of natural 
selection. Fertility cults and later patriarchic 
religions, which forbade infanticide, created 
family lineages which produced many children. 
Such lineages grew to represent the majority of 
the society.  
  
Can this be a better explanation to the puzzle of 
Ashkenazi Jewish intelligence, pondered in [13]. 
Probably not for intelligence, but it may explain 
their collection of rare genetic diseases. 
Ashkenazi Jews had for about 800 years 
population growth rate about 1.4% annually. It 
was much higher than in the host society. A high 
growth rate implies large families and while 1.4% 
per year (50 years doubling time) means only 
doubling in two generations (setting the female 
generation to 25 years for simplicity), which is 2.8 
children per woman, some family lineages almost 
certainly grew much faster. The pump 
mechanism described here could have 
contributed to keeping recessive lethal alleles in 
the population. It could also make non-lethal, 
even advantageous, alleles more common, but 
this is not the topic of the present analysis. In any 
case, the mechanism was not simply recessive 
advantage if understood in a simple way that 
heterozygote had more children grown to the 
reproductive age. 
 
A positive side in this is that as family sizes today 
are small in developed countries, such a pump 
mechanism cannot work. Recessive lethal alleles 
would be purged out of the population, unless 
modern medicine makes them non-lethal and the 
removal mechanism is blocked. That this can be 
so may be shown by Finns not having Cystic 
Fibrosis even though Finns have a large portion 
of genes from European Western Hunter 
Gatherers, who presumably had this disease as 
it is common in Northern Europe. If Finns had 
smaller families, the disease was purged out. 
Interestingly, the same mechanism may slow 
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down evolution, but that topic we will leave to 
another time.  
 

 
4. CONCLUSION 
 
This article discussed about the prevalence of 
lethal or near-lethal recessive alleles persisting at 
low frequencies in human populations. We 
proposed a couple mechanisms to account for 
recessive lethal alleles, such as heterozygous 
advantage and repeated founder events. We 
show that they do not adequately explain 
recessive lethal alleles persisting for tens of 
thousands of years. Instead, we proposed a 
mechanism to account for a rapid increase in 
carrier frequency over a short number of 
generations: large families tend to have children 
that then have large, similar-sized families of 
their own, and so on. Thus, we showed that a 
carrier that has a large family, with descendants 
each having their own large families will lead to a 
relatively high proportion of carriers in a short 
amount of time. 
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