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Abstract: Aerosol microphysical properties, including aerosol particle size distribution, complex
refractive index and concentration properties, are key parameters evaluating the impact of aerosols
on climate, meteorology, and human health. High Spectral Resolution Lidar (HSRL) is an efficient
tool for probing the vertical optical properties of aerosol particles, including the aerosol backscatter
coefficient (β) and extinction coefficient (α), at multiple wavelengths. To swiftly process vast data
volumes, address the ill-posedness of retrieval problems, and suit simpler lidar systems, this study
proposes an algorithm (modified algorithm) for retrieving microphysical property profiles from
the HSRL optical data targeting fine-mode aerosols, building upon a previous algorithm (basic
algorithm). The modified algorithm is based on a look-up table (LUT) approach, combined with the
k-nearest neighbor (k-NN) and random forest (RF) algorithms, and it optimizes the decision tree
generation strategy, incorporating a self-posed scheme. In numerical simulation tests for different
lidar configurations, the modified algorithm reduced retrieval errors by 41%, 30%, and 32% compared
to the basic algorithm for 3β + 2α, 3β + 1α, and 2β + 1α, respectively, with a remarkable improvement
of stability. In two observation scenes of a field campaign, the median relative errors of the effective
radius for 3β + 2α were 6% and −3%, and the median absolute errors of single-scattering albedo were
0.012 and 0.005. This method represents a further step toward the use of the LUT approach, with the
potential to provide effective and efficient aerosol microphysical retrieval for simpler lidar systems,
which could advance our understanding of aerosols’ climatic, meteorological, and health impacts.

Keywords: multi-wavelength lidar; fine-mode aerosol; look-up table; aerosol microphysical
properties retrieval

1. Introduction

Although atmospheric aerosols constitute only a small portion of the atmosphere,
they significantly impact the Earth’s radiation budget and hydrological cycle. They are
also one of the primary causes of air pollution [1–4]. Aerosols typically exhibit a bimodal
particle size distribution, including fine and coarse modes [5]. The fraction of the particle
size distribution occupied by fine modes, such as urban pollution particles and smoke, is
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referred to as fine-mode aerosols. They have effective radii between 0.1 and 0.25 microns [6].
Fine-mode aerosols exacerbate human health conditions because of air pollution [7,8].
Additionally, studies have shown that fine-mode aerosols dominate during haze periods [9].
Under these circumstances, research on the optical and microphysical properties of fine-
mode aerosols can better quantify the impact of aerosols on earth and human.

Aerosols feature a strong spatiotemporal distribution, not only on the horizontal scale
but also on the vertical scale, owing to vertical mixing processes, sedimentation, dry/wet
removal processes, and chemical reactions. In addition, owing to the spatiotemporal vari-
ability of aerosol characteristics, vertical distribution information is crucial for accurately
understanding the complex effects of aerosols [10–12]. Lidar is currently the only active
remote sensing technology capable of probing the vertical profile of aerosol microphysical
properties, such as aerosol particle size distribution (APSD), complex refractive index (CRI),
single-scattering albedo (SSA), and concentration properties [13]. The 3β + 2α configuration
of multi-wavelength lidar, which enables measurements of the backscattering coefficient (β)
at 355, 532, and 1064 nm and the extinction coefficient (α) at 355 and 532 nm, is commonly
employed for aerosol microphysical properties inversion. In recent studies, the measure-
ment of extinction coefficient at 1064 nm was achieved, allowing for the realization of the
3β + 3α configuration and analysis of aerosols’ optical and physical properties with in-
creased accuracy [14,15]. However, it should be noted that the most prevalent combination
of optical properties remains the 3β + 2α configuration. Advanced high spectral resolution
lidar (HSRL) can retrieve aerosol microphysical properties in this configuration [16] and has
been developed for both airborne and spaceborne platforms. The NASA Langley Research
Center’s latest airborne HSRL-2 system has shown remarkable performance since 2012,
conducting multiple field campaigns, such as the Two-Column Aerosol Project (TCAP), the
DISCOVER-AQ field campaign, and Observations of Aerosols Above Clouds and Their
Interactions (ORACLES) [13,17,18]. However, the current implementation of the 355 nm
channel in HSRL-2 is based on a Michelson interferometer, which has a complex design,
leading to high costs and sensitivity to input errors [19]. For other HSRL systems, such as
the China Aerosol High Spectral Resolution Lidar (CAHSRL) [20], which only includes
2β (532 and 1064 nm) + 1α (532 nm), it remains to be determined whether the inversion
algorithm of aerosol microphysical properties can operate normally and yield stable results.
Some studies have demonstrated the feasibility of reducing the number of inputs for aerosol
optical properties [21], laying the foundation for the application of low-cost and simple
HSRL systems. However, more constraints and more assumptions were used in designing
methods for simple lidar configurations.

Following extensive research, numerous methods have been developed to retrieve
aerosol microphysical properties by combining the backscatter and extinction coefficients.
However, due to the limited information provided by the 3β + 2α configuration, the
inversion problem becomes ill-posed, resulting in non-uniqueness and instability in so-
lutions [22,23]. The inherent complexity of the underlying inversion system also leads to
its ill-conditioned nature, which manifests as a discontinuous dependence of solutions on
input optical data [11]. These two properties often coexist in inversion problems, posing
significant obstacles to the retrieval of microphysical parameters. Currently, the most
mature method is the Tikhonov regularization method, which addresses the ill-posedness
of inversion problems by decomposing the APSD into triangles and searching for an op-
timal regularization factor [24]. The regularization inversion method makes a series of
prior assumptions about the radius window, APSD smoothness, and CRI, and it typically
requires manual analysis to remove outliers from the solution space, making this approach
time-consuming [25]. In practical applications, we are facing massive amounts of data,
and therefore supervised methods are inefficient. Additionally, principal component analy-
sis [26] and linear estimation methods [21] avoid solving ill-posed equations by analyzing
lidar measurement data and effectively obtaining the concentration properties. However,
these methods cannot invert the APSD and CRI, thereby hindering the subsequent SSA
analysis [27].
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Methods based on look-up tables (LUT) have also shown excellent performance in solving
inversion problems, particularly when obtaining precise numerical solutions to inversion
equations is challenging. Previous studies have used the concept of LUT to invert aerosols’
direct radiative effects, aiming to replace physical equations and achieve rapid solutions [28].
This method involves generating a LUT based on theoretical calculations or actual observations
of aerosol particles, whereby the required optical and microphysical properties are obtained.
The inversion can then be completed by finding the element in the LUT with the smallest
difference from the input [29]. Due to the limited input information and measurement
uncertainties, finding a series of possible solutions is more stable and accurate than obtaining
one solution from a single retrieval process [24,25]. Based on this, a method using an arrange
and average strategy was proposed. The method averages all possible solutions to obtain
the final solution [30]. This was an effective attempt at an unsupervised method when
faced with a large amount of observational data. However, this method had an excessively
long processing time, rendering it impractical. To solve this problem, the FAST method
was proposed. This method adopts the concept of LUT-element matching together with
the use of unsupervised machine learning algorithms and further includes the k-Nearest
Neighbor (k-NN) and Random Forest (RF) methods [31]. This method differs from previous
approaches in which, to the best of our knowledge, an unsupervised machine learning
algorithm was used for the first time in the context of application to lidar data [32]. Machine
learning methods have been applied in aerosol classification research [33]. The FAST method
utilizes artificial intelligence to improve the accuracy and efficiency of aerosol microphysical
properties retrieval, achieving a significant breakthrough. However, there are still many
details that urgently require improvement and further exploration, such as the selection of
hyperparameters (the size of the LUT, the reduction factor of k-NN, the number of decision
trees of RF, etc.) and the stability of the method.

Another factor hindering the inversion of microphysical parameters is the quality of
the input optical data, that is, the measurement uncertainty, including bias and noise [13].
Raman lidars, similar to HSRL, have also been used for aerosol profiling [34,35]. Their
extinction coefficients are calculated from relatively weak nitrogen Raman signals, whereas
HSRL uses molecular Rayleigh scattering signals, which are three orders of magnitude
stronger. HSRL has a lower level of uncertainty and is more suitable for airborne or space-
borne platforms. Inversion algorithms must have sufficient tolerance for the uncertainty of
the input products, which is an indispensable aspect of practical applications.

In summary, the need for simpler lidar systems and the use of data products in rapid
data processing algorithms in the context of large amounts of optical input data have be-
come core challenges that need to be overcome in terms of aerosol microphysical parameter
inversion algorithms. This study aims to improve inversion stability by optimizing the
RF generation strategy in FAST. A self-posed scheme is introduced, which means that the
scheme can utilize the output of the inversion system to weaken the ill-posedness of itself.
The performance and error sensitivity of the proposed method were comprehensively
tested using numerical simulations. Finally, two scenarios from NASA’s Deriving Informa-
tion on Surface Conditions from COlumn and VERtically Resolved Observations Relevant
to Air Quality (DISCOVER-AQ) field campaign in California in 2013 were selected for the
case study. The application of the algorithm and evaluation of the inversion results will be
conducted jointly between the data collected aboard the B-200 aircraft that was equipped
with an HSRL and the P-3B aircraft that carried in situ measurement instruments.

The remainder of the paper is structured as follows. Section 2 describes the materials
and methods, including strategies and data processing methods for the basic and modified
algorithms. Section 3 presents the results and an analysis of a comprehensive experiment
using the algorithm, and Section 4 presents the conclusions and discussions.

2. Materials and Methods

This section introduces the algorithm applied to retrieve aerosol microphysical prop-
erties. The basic algorithm described in Section 2.1 is based on the latest algorithm that
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utilizes machine learning ideas on LUT [31]. Section 2.2 describes improvements and
further optimizations built upon the basic algorithm, serving as the core content of this
work, termed the modified algorithm. The performances of the basic and the modified
algorithms were compared for evaluation purposes. Section 2.3 outlines the research case
selected for this study, DISCOVER-AQ, along with the specific data processing methods.

2.1. Retrieval Algorithm for Fine-Mode Aerosol Microphysical Properties Based on LUT—Basic
Algorithm: k-NN and RF

To address this inversion problem, it is essential to consider the relationship between
aerosol optical properties and microphysical properties, which can be represented by the
first-kind Fredholm integral equation [11]:

gi(λ) =
∫ rmax

rmin
Ki(r, m, λ; s) f (r)dr

i = α, β
(1)

where gi(λ) is the aerosol optical properties, which are wavelength-dependent, and
Ki(r, m, λ; s) is the kernel function, which can be calculated using the Mie theory [36,37].
The kernel function depends on the particle radius r, complex refractive index m, wave-
length λ, and particle shape s. Because the Mie theory applies only to spherical particles, the
influence of s is not considered. The fine-mode aerosols in this study predominantly consist
of spherical particles [38], which allows us to apply the conditions of the Mie theory. The
variables rmin and rmax denote the size range of the integration, which is typically the radius
range in which aerosols produce significant signals [39]. The subscript i represents different
types of optical properties, such as backscatter coefficient β and extinction coefficient α.
The variable f (r) represents the APSD. Because the volume of aerosols is more relevant to
their optical effects, this study employed volume APSD for further analysis [40]. Generally,
the volume APSD of fine-mode aerosols can be described as a log-normal distribution [41]:

v(r) =
dV
dr

=
Vt

r
√

2πlnσ
exp

[
− (lnr − lnrmed)

2

2(lnσ)2

]
(2)

where Vt is the total volume concentration, lnσ is the geometric standard deviation of the
distribution, and rmed is the median radius. CRI (m = mr + mi) and APSD (Vt, lnσ, rmed)
include all the input parameters on the right side of Equation (1) and are referred to as
an aerosol’s microphysical properties. The optical properties of aerosols can be uniquely
determined using a set of microphysical parameters.

Additionally, to assess the aerosol’s radiative effects and gain a simpler understanding
of APSD [42], the single-scattering albedo (SSA) was calculated based on the Mie theory,
and the effective radius was computed using Equation (3):

re =

∫
v(r)dr∫ v(r)

r dr
(3)

Using Equation (1), a set of optical properties was computed for each combination of
microphysical properties and stored in the LUT. The microphysical property combinations
established for the LUT are presented in Table 1. To simplify the analysis, it is assumed
that Vt = 1 µm3/cm3 during the construction of the LUT. The LUT contains a wide range
of microphysical properties and their corresponding optical properties, covering common
types of fine-mode aerosols to better simulate real-world scenarios. In the subsequent
description of the method, the 3β + 2α configuration of the lidar is employed.

The actual optical properties are influenced by the aerosol’s concentration. To facilitate
the inversion of other microphysical properties, all optical properties were normalized [30]:
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B355 = β355
Bnorm

, B532 = β532
Bnorm

, B1064 = β1064
Bnorm

Bnorm =
√

β2
355 + β2

532 + β2
1064

(4)

A355 = α355
Anorm

, A532 = α532
Anorm

Anorm =
√

α2
355 + α2

532

(5)

Six extinction-to-backscatter ratios were included in the inversion to provide
additional information:

L355
355 = α355

β355
, L355

532 = α355
β532

, L355
1064 = α355

β1064

L532
355 = α532

β355
, L532

532 = α532
β532

, L532
1064 = α532

β1064

(6)

The optical data input and the data in the LUT were both processed using the afore-
mentioned methods. For the 3β + 2α configuration, the optical parameter set G (B355,
B532, B1064, A355, A532, L355

355, L355
532, L355

1064, L532
355, L532

532 and L532
1064) includes the aforementioned

11 values. The input optical parameter set is denoted as Ginput and those in the LUT are
denoted as Gn (Gn ∈ GLUT, 1 ≤ n ≤ NLUT, where NLUT is the total number of elements in
the LUT).

Table 1. Aerosol microphysical parameters used for generating the LUT.

Parameter Values Interval

mr 1.30–1.70 0.02
mi 0.00–0.05 0.001
lnσ 0.38–0.50 0.01

rmed (nm) 50–500 10

The essence of the inversion is to find the Gn in the LUT that minimizes the difference
from Ginput, thereby matching the corresponding elements. Because of the ill-posed nature
of the inversion problem, providing a cluster of possible solutions is statistically more
convincing than providing a single solution, and the inversion results are always more
accurate and stable. The principles of the two machine-learning algorithms were introduced
to obtain this cluster of possible solutions. Figure 1a illustrates the inversion process. Based
on the difference between the input and LUT optical parameter sets, the k-NN algorithm
was used to reduce the solution space, and a series of possible solutions was obtained using
the RF algorithm. The final solution was obtained by averaging the data. The following
section provides a detailed description of the process.

Using the k-NN algorithm to calculate the differences between the input and LUT
parameter sets reduced the possible solution range to a certain interval [43]. Specifically,
the implementation involves calculating the Mahalanobis distance [44]:

DistM(n) =
√(

Gn − Ginput
)TS−1

(
Gn − Ginput

)
(7)

where S is the inverse of the covariance matrix. The k-NN algorithm uses DistM(n) to retain
the LUT elements closest to the input data, forming a solution space consisting of NkNN
elements. This rapidly generated reduced solution space enhances the efficiency of the entire
inversion process while encompassing all parameter sets close to the possible solutions.

The RF method was employed to perform weight analysis on all elements within the
reduced solution space, combined with the concept of feature pruning to generate a series
of possible solutions. An RF is an ensemble of decision trees constructed using randomly
chosen criteria [45]. In this approach, the “bagging” strategy was used to extract NRF
permutations from the full permutation of 11 optical parameters (11! = 39916800). These
permutations serve as the order for the subsequent decision tree pruning (i.e., the number
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of decision trees generated is NRF). The “bagging” strategy is a common method of random
sampling with replacement, commonly used in constructing RF decision trees. For each
decision tree with a specific pruning order, the distance between the optical parameters
was calculated as follows:

Distopt(i) =

∣∣Gn(i)− Ginput(i)
∣∣

Ginput
, 1 ≤ i ≤ 11 (8)

where subscript i is the type of optical parameter that is currently pruned. To facilitate
comparisons of distance levels between the optical parameters, relative distances were
used instead of absolute distances.
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Figure 1. Process of the LUT element matching algorithm based on RF. (a) Process of obtaining
the final solution from the LUT. The blue cubes represent the elements of the LUT, yellow cubes
represent the reduced solution space obtained by the k-NN algorithm, red cubes represent the
possible solutions after processing by the RF algorithm, and the green circle represents the final
solution after averaging the possible solutions. The three cubes belong to the same data set. The
circle indicates that it generally does not correspond to any LUT element. (b) Workflow of the RF
algorithm. Using the “bagging” strategy to extract several permutations from the full permutation
to generate decision trees. Each tree prunes optical parameters according to its permutation. The
orange circles represent the elements retained during each pruning, light blue circles represent the
excluded parts, and arrows indicate different directions in different dimensions. The red circle is the
output of a single decision tree, i.e., a possible solution. After averaging all possible solutions, the
final solution is obtained, where the yellow part corresponds to the reduced solution space in (a),
and the green part corresponds to the final solution. (c) Pruning process of a single decision tree. For
each pruning, the optical parameter distances are first sorted. In the first step, for example, G1 is
selected, which means sorting based on the distance of B355 and retaining the top ω portion with the
smallest distances. In the second step, G3 is selected, and the remaining part is sorted and pruned
based on the distance of B1064. This process continues until the last pruning, where the remaining
part is output as a possible solution.

The pruning method is based on the size of Distopt(i), retaining only a portion with
smaller distances, with a proportion of ω (0 < ω < 1). After pruning all optical parameters,
the retained elements have the smallest differences and are stored as possible solutions.
After all of the decision trees have made their final outputs, averaging all possible solutions
yields the final solution, obtaining CRI (m = mr + mi) and APSD (lnσ, rmed). Figure 1b
illustrates the process of the RF strategy, including the generation of decision trees and the
final results. Figure 1c shows the specific pruning process of an individual decision tree.
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The inversion of Vt requires an additional step. Since Vt has a proportional change to
the aerosol optical parameters, it can be estimated by the mean of the ratio between the
input parameters and the original optical parameters (3β + 2α) of the final solution [30]:

Vt =
1
5

5

∑
i=1

ginput(i)
gn(i)

, 1 ≤ i ≤ 5 (9)

where g is the original set of optical parameters (3β + 2α).
The selection of NKNN, NRF, and the pruning coefficient ω in k-NN are related to the

lidar configuration, LUT, and input data, and it is challenging to find a fixed combination
of them that simultaneously achieves optimal computational efficiency and inversion
accuracy [30]. It is sufficient to select a relatively suitable set of values that can yield good
results for a wide range of data. For the configuration of 3β + 2α, NkNN = 0.01 NLUT,
NRF = 500, ω = 0.4 can yield a reasonable balance between accuracy and efficiency.
This method represents only the basic part of the algorithm, which is referred to as the
“basic algorithm” in the following sections. In Section 2.2, the optimization of the strategy
generated by RF and the introduction of a self-posed scheme are discussed.

2.2. Retrieval Algorithm for Fine-Mode Aerosol Microphysical Properties Based on LUT—Modified
Algorithm: Weighted “Bagging” Strategy and Self-Posed Scheme

The basic algorithm adopts a “bagging” strategy to generate decision trees. To avoid
excessive computation time, the number of decision trees NRF is usually set to approxi-
mately 500–1000, much smaller than the total number of permutations (11! = 39,916,800).
For the “bagging” strategy, when the sampling times increase, the number of samples
that are not extracted approaches zero [46]. Therefore, the difference between generated
decision trees in each round of sampling is large, which increases the instability of the
results. Although the final solution was averaged, the bias caused by the large permutation
space could not be avoided. The inversion system is ill-posed because of the insufficient
input information, which manifests as discontinuous and non-unique solutions caused
by insufficient constraint equations. The principle of the LUT-based inversion method
is elemental matching. Owing to the limitations of the data dimensions and system fluc-
tuations, when generating possible solutions as shown in Figure 1c, elements with large
differences are included, which affects the accuracy of the inversion. To overcome these
issues, this section introduces a modified algorithm that optimizes the “bagging” strategy
and adopts a self-posed scheme, including a constraint window and local interpolation.
The constraint window replaces the LUT in the second inversion and local interpolation is
used to interpolate a selected local region of the LUT.

Figure 2 illustrates the modified algorithm. The algorithm underwent two inversion
processes, in which the results of the first inversion served as constraints for the second
inversion. The results of the second inversion served as the output for the entire algorithm.
We will now explain the weighted “bagging” strategy, constraint windows, and local
interpolation in turn.

To mitigate the algorithm’s instability and ensure consistent and reasonable criteria
for generating each decision tree, a weighted “bagging” strategy was employed. After
reducing the solution space using the k-NN algorithm, the relative distances between
all elements in the solution space and the input data were calculated using Equation (8).
Figure 3a illustrates the distance distribution of the 11 optical parameters generated during
a particular algorithm run as an example. There were significant differences in the distance
distribution of each optical parameter, with some distances concentrated at smaller values
and others dispersed at larger values. Figure 3b shows the mapping of the sixth optical
parameter after pruning the second optical parameter. The red-shaded area represents the
remaining elements after pruning. The second optical parameter represents concentrated
parameters, whereas the sixth optical parameter represents dispersed parameters. Although
the elements retained after pruning ensure that the solution space is closer to the input of
the second optical parameter, the error in the sixth optical parameter is relatively large,
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which is detrimental to the inversion. Figure 3c shows the operation that is opposite to
the one shown in Figure 3b, in which pruning the sixth optical parameter results in the
retained data still having a relatively small distance from the second optical parameter. This
phenomenon reveals how randomly generated decision trees produce unstable results. The
order of pruning affects the entire inversion process, and the random generation sequence
makes this influence uncontrollable, resulting in more divergent results.
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Figure 2. Process diagram of the modified algorithm. It includes two inversion iterations, where the
solid lines depict the process of the first inversion and the dashed lines represent the process of the
second inversion. The parts highlighted in orange indicate the additional aspects introduced by the
modified algorithm compared to the basic algorithm.

In summary, the results obtained by pruning the optical parameters with greater
distance levels are more accurate. This inspired a method of reducing instability, namely,
weighted decision tree generation based on the distance between optical parameters. The
distances of all the elements in the solution space for the 11 parameters were averaged to
represent their distance levels and sorted. The decision-tree pruning order changes from
completely random to a pattern in which parameters with largest distance levels are more
likely to be selected first and parameters with smallest distance levels are more likely to
be selected last. This operation does not eliminate randomness, which is the core idea of
the RF method. However, after considering the instability caused by randomness in an
overly large space, the results are constrained to a solution space that is favorable in the
consequent pruning.

A constraint window is generated based on the results of the first inversion. This
constraint window allows us to further constrain the LUT and is applied in a feedback-like
manner in the second inversion run, replacing the LUT. The modified algorithm is subjected
to two inversions. In the first inversion, the microphysical parameters are obtained and
the corresponding optical parameters are calculated using the Mie theory to derive a
normalized optical parameter set. By merging the microphysical and optical parameters
as inputs, the k-NN algorithm is applied to all LUT elements containing microphysical
and optical parameters to generate the constraint window. The generation process of the
constraint window is done in a similar fashion to that of the reduced solution space, but
with some differences, as shown in Figure 4. The constraint window corresponds to the
LUT. In the first inversion, the LUT serves as the entire “map” that is used to search for
matching “locations” with the input. In contrast, in the second inversion, the constraint
window acts as a “restricted area”, excluding potential non-unique solutions outside this
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area. The results obtained using the basic algorithm in the first inversion proved to be
relatively reliable [31], which is a prerequisite for the application of this approach.
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Figure 3. Example of the decision tree pruning process. (a) Distances between all elements in
the reduced solution space and the input optical parameter set on the 11 optical parameters. The
horizontal axis represents different optical parameters, and the vertical axis represents the magnitude
of the distance. The shaded area in the graph indicates the distribution of the data. Optical parameters
corresponding to 1–11 are explained on the right side. (b) Operation’s mapping on the sixth optical
parameter when pruning the second optical parameter in (a). The red-shaded area represents the
data retained after pruning. (c) Operation’s mapping on the second optical parameter when pruning
the sixth optical parameter in (a).
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Local interpolation, also known as the fine-tuning of the local region of the LUT,
balances inversion accuracy with computational efficiency. In the LUT method, a special
class of input data comprises the grid points of the LUT that precisely match the parameter
values of the LUT elements. However, it is highly unlikely that the actual input data
will match one of the grid points, leading to inevitable errors. One strategy to overcome
the error of non-grid points is to increase the size of the LUT, that is, to generate LUTs
with smaller step sizes and larger ranges of microphysical parameters. However, this
approach significantly increases the computational cost and is challenging to apply in
practical scenarios. This study employs local interpolation as an alternative to fine-tuning
the LUT. Owing to the fluctuation and discontinuity of the LUT data, a segmented cubic
Hermite interpolation is employed, which ensures the continuity of both the function
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and its derivative [47]. Interpolating 4-dimensional inputs and 11-dimensional outputs is
quite complex. Here, a simple step-by-step approach is presented. First, three of the four
inputs were fixed, and all the values of the remaining inputs along with the corresponding
outputs were selected. Interpolation was then performed on all 11 outputs, followed by
the same process for the other inputs. An interpolation ratio Pinterp (Pinterp > 1) is defined,
with Pinterp = 2 chosen to balance the interpolation effectiveness and computational load,
which implies inserting one point between every two points. Considering the demand for
algorithm efficiency in practical applications, local interpolation was applied to the solution
space reduced by k-NN in the second inversion.

2.3. Source and Processing of NASA DISCOVER-AQ Field Campaign Data

To evaluate the algorithms mentioned in this paper, we chose NASA’s DISCOVER-AQ
field campaign as a case study in view of the availability of high-quality concurrent lidar and
in-situ observations. NASA’s HSRL-2 system uses the 3β + 2α configuration, and it is one
of the most advanced HSRL systems in the world. The HSRL-2 system has been involved
in various field campaigns, including the DISCOVER-AQ field campaign. DISCOVER-AQ
was conducted over the course of four years (2011–2014) in four different locations to assess
the air quality by combining satellite, airborne, and ground-based measurements [18]. Two
aircraft were used during the campaign. The B-200 aircraft carried the HSRL-2 system,
flying along a route at an 8.5 km altitude to simulate satellite observations. The flight
path of the P-3B aircraft includes several spiral patterns that intersect the flight path of
the B-200. The aircraft spiraled up and down from the ground to an altitude of 5 km.
A P-3B instrument was used to measure aerosols and trace gases to assess the ambient
aerosol properties. The trajectories of both aircraft were coordinated with similar flight
times, allowing for a comparison between the HSRL measurements within the P-3B spirals
and the in-situ measurements. The study presented in this contribution focuses only on
activities in California on 30 and 31 January 2013. The flight paths of the two aircraft are
shown in Figure 5.

In the following we briefly introduce the HSRL-2 system with the detailed descriptions
available in the literature [48]. The HSRL-2 system measures the aerosol backscatter
coefficient (β) and depolarization ratio (δ) at 355, 532, and 1064 nm [49], as well as the
aerosol extinction coefficient (α) at 355 and 532 nm [50]. These data allow us to calculate
additional data products such as the Ångström exponent and aerosol optical thickness. The
HSRL-2 system samples at a temporal frequency of 2 Hz and a spatial resolution of 15 m,
followed by horizontal averaging over 10 s (for β and δ) and 60 s (for α), corresponding to
spatial resolutions of 1 and 6 km at the nominal aircraft speed. Considering the limitations
of the Mie theory for spherical particles, only points with particle depolarization ratios
at 532 nm of δ532 < 10% are used for inversion. Furthermore, data points outside the
range of Ångström exponent γα (355 − 532) = −ln(α355/α532)/ln(355/532) of [1.5, 2.5]
are excluded, as this value range represents the typical characteristics of fine-mode aerosol
particles [51,52].

The other aircraft, P-3B, conducted in-situ measurements of aerosols, including APSD,
aerosol scattering coefficients, and absorption coefficients. The Ultra-High Sensitivity
Aerosol Spectrometer (UHSAS) measures the APSD in the diameter range of 0.06 to 1 µm,
mainly capturing information about fine-mode aerosol particles. Coarse-mode aerosol
particles were sampled using a Laser Aerosol Spectrometer (LAS) to measure particles with
a diameter range of 0.09 to 7.5 µm. To ensure the absence of coarse-mode particles in the
UHSAS measurements, points with ∆Vt > 30%(∆Vt =

∣∣VLAS
t − VUHSAS

t
∣∣/VUHSAS

t ) were
excluded from our data analysis.

Generally, in-situ measurements are conducted under dry conditions (Relative Hu-
midity, RH < 20%), whereas HSRL measurements are conducted under ambient RH con-
ditions [53]. However, aerosols can absorb moisture under high RH conditions, which
affects their physical properties. Therefore, measurements from in-situ instruments cannot
represent the true measurements in the atmosphere, which is one of the major limitations
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in the validation of lidar measurements with in-situ measurements [52]. To overcome this
limitation, a humidity correction was applied to the in-situ measurements on P-3B for the
scattering coefficient. The scattering coefficients under dry and wet conditions (550 nm)
were measured using a pair of integrating nephelometers, and the Ångström exponent was
used to adjust the wavelength from 550 nm to 532 nm [18]. One nephelometer operated at
a low RH (RHdry ~ 10%), while the other operated at a high RH (RHwet ~ 80–85%). This
allows the calculation of aerosol hygroscopicity, γ:

γ =
ln
(

σsca,wet
σsca,dry

)
ln
( 100−RHdry

100−RHwet

) (10)

where σsca,wet and σsca,dry are the scattering coefficients measured under RHwet and RHdry,
respectively. An open-path diode laser hygrometer was used to measure the static tempera-
ture and water vapor concentration, which could be used to derive the ambient relative
humidity RHamb [54]. Based on the hygroscopicity γ, the scattering coefficients under dry
conditions can be corrected:

σsca,amb = σsca,dry

[ 100 − RHdry

100 − RHwet

]γ

(11)

The dry aerosol absorption coefficient was determined at 532 nm using a Particle
Soot Absorption Photometer (PSAP). The impact of hygroscopic growth on the absorption
coefficient was neglected. The aerosol extinction coefficient in the real atmosphere is the
sum of the hygroscopicity-corrected scattering coefficient and dry absorption coefficient.
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Figure 6 illustrates the data processing approach used for the DISCOVER-AQ field
campaign. Because of the 15 km separation limit between the two aircraft, the HSRL data
were averaged vertically across 75 m height bins and temporally over 1.5 min. The diameter
of the P-3B spirals was 6–10 km, with a vertical resolution of 5 m and a temporal resolution
of 1 s, thus requiring the same averaging of the P-3B data to match the resolution of the
HSRL data.
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Figure 6. Data processing and comparison process between the two aircraft. The blue annotations
indicate important parameters and results during the process. HSRL optical data undergoes screening
for depolarization ratio (δ532) and Ångström exponent (γα(355 − 532)), followed by inversion to
obtain CRI and APSD, and then the calculation of SSA, re, and Vt products. P-3B data were screened
based on ∆Vt, and APSD, environmental scattering coefficient, and dry absorption coefficient were
obtained from measurements by UHSAS, nephelometer, and PSAP, respectively. Finally, SSA, re,
and Vt are computed. The conditions for mutual comparison of the products obtained from both
aircraft are within the spirals of P-3B, where validation of the aerosol vertical profile information can
be performed.

3. Results

This section presents the tests and demonstrates the results and analyses of the algo-
rithms described in Section 2. Sections 3.1–3.3 focus on the numerical simulation test of the
algorithm, with Section 3.1 focusing on an error-free input test and Sections 3.2 and 3.3 ex-
amining the algorithm’s performance with input errors. Section 3.4 applies the algorithms
to the DISCOVER-AQ scenario in a real-world setting.

3.1. Numerical Test of Simulated Error-Free Data

In addition to the 3β + 2α configuration, this study investigated three other configura-
tions: 3β + 1α, 2β + 1α, and 3β. The reason for this is that instruments for measuring the
extinction coefficient at 355 nm are complex and expensive, and thus the 3β + 2α configu-
ration is difficult to implement in many lidar systems. Commonly, simpler instruments
lack backscatter or extinction measurements. A large amount of simulated error-free data
was used to test the performance of these algorithms. To study the impact of input data
on inversion performance, the simulated input types were divided into two categories:
grid points and non-grid points. Grid points refer to data points whose parameter values
exactly match those of the elements in the LUT, whereas non-grid points do not. The test
on the grid points shows the greatest performance of the algorithm; in other words, the
input case that is likely to get the most accurate result. Tests on non-grid points represent
performance in general. The range of the simulated error-free data was narrower than that
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of the LUT. More detailed information on the input data is provided in Table 2. Simulated
data generation was on the condition of Vt = 1 µm3/cm3.

Table 2. Microphysical parameters for error-free input data. The data are divided into two types for
algorithm testing: (1) Grid points refer to data points whose parameter values exactly match those of
elements in the LUT (Grid) and (2) Non-grid points refer to data points whose parameter value do
not overlay any elements in the LUT (Non-grid).

Category Parameter Values

Grid

mr 1.3, 1.4, 1.5, 1.6
mi 0.001, 0.005, 0.01, 0.015, 0.020, 0.025, 0.035, 0.050
lnσ 0.40

rmed (nm) 70, 100, 140, 180, 240, 300

Non-grid

mrrmed 1.35, 1.45, 1.55, 1.65
mi 0.001, 0.005, 0.01, 0.015, 0.020, 0.025, 0.035, 0.050
lnσ 0.40

rmed (nm) 75, 100, 140, 180, 225, 300

To validate the effectiveness of the improvement strategy, the basic and modified
algorithms were employed to simulate the same set of error-free data. The results ob-
tained directly from the LUT by the algorithms include mr, mi, lnσ, and rmed. Based
on the Mie scattering theory, SSA can be calculated and re and Vt can be derived using
Equations (3) and (9). Therefore, the final results consist of errors in five parameters: |∆mr|,
|∆mi|, |∆SSA|, |∆re|/re , and |∆Vt|/Vt , where the first three are represented in absolute
values and the last two in relative values [24,25,30]. We defined:

|∆mr| = |mr,retrieved − mr,true|
|∆mi| = |mi,retrieved − mi,true|

|∆SSA|=|SSAretrieved − SSAtrue|∣∣∣∣∆re

∣∣∣∣/re =
|re,retrieved−re,true|

re,true∣∣∣∣∆Vt

∣∣∣∣/Vt =
|Vt,retrieved−Vt,true|

Vt

(12)

The subscript “retrieved” denotes the results obtained from the inversion, while the
subscript “true” represents the true values. The algorithms were executed on a personal
computer with an AMD Ryzen 7 4800H processor running MATLAB 2023a. The times
required by both the basic and modified algorithms were recorded to evaluate the efficiency
lost by the modified algorithm.

The inversion results for the four lidar configurations are shown in
Figures 7a–e,g–k and 8a–e,g–k. The bar charts depict the average inversion errors of the
test dataset. The errors on grid points were significantly smaller than those on non-grid
points because the LUT method theoretically cannot obtain the most accurate solution
for non-grid points. The 3β + 2α configuration exhibited the smallest error, followed by
3β + 1α, 2β + 1α, and 3β. This outcome is attributed to the maximum information content
of 3β + 2α, which has 11 normalized optical parameters, whereas the others have 6, 4,
and 3 normalized optical parameters, respectively, leading to an increase in errors as the
information content decreases. The modified algorithm significantly enhanced inversion
accuracy, especially for grid point data. The errors on the grid points for 3β + 2α and
3β + 1α were almost negligible and those for 2β + 1α and 3β were substantially reduced.
For non-grid point data, the errors for 3β + 2α, 3β + 1α, and 2β + 1α are notably reduced,
resulting in similar average error levels. The non-grid inversion errors of the modified
algorithm for 3β + 2α, 3β + 1α, and 2β + 1α were reduced on average to 41%, 30%, and 32%
of those of the basic algorithm, respectively. For the 3β configuration, the performance
improvement of the modified algorithm on non-grid points was not significant, with almost
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no improvement. This may be due to the extreme nature of the 3β configuration, which has
only 3 normalized optical parameters, resulting in insufficient information from a system
of strong ill-posedness. The testing of 3β serves as a lower limit test for the algorithm, as
actual lidar systems require at least one extinction measurement to ensure the inversion of
aerosol microphysical parameters [55]. The above analysis demonstrated the effectiveness
of the modified algorithm strategy for overcoming the ill-posedness of inversion systems
and narrowing the gap in error levels between different lidar configurations. However,
this does not imply that complex configurations do not contribute to an improvement in
accuracy. Due to the limited test data, the results of these configurations serve only as
references, demonstrating that under the modified algorithm, simple configurations can
achieve results comparable to those of complex configurations within a certain range.
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Figure 7f,l and Figure 8f,l depict the time consumed by the basic and modified al-
gorithms to invert these data points using the same computer hardware and MATLAB
2023aconditions. Overall, the time consumed by the algorithms was, in the order from
longest to shortest, 3β + 2α, 3β + 1α, 2β + 1α, and 3β. This was influenced by the difference
in information content; the greater the number of optical parameters, the more dimensions
the RF algorithm needs to prune and the longer the interpolation program run time. The
time required for the grid and non-grid points was almost the same because the compu-
tational load of the system remained the same, regardless of whether the input precisely
matched the elements of the LUT. The modified algorithm required approximately twice
the time of the basic algorithm, which is the cost of the accuracy improvement. However,
the time required is still within an acceptable range.

In addition, to test the improvement of the retrieval stability caused by the modified
algorithm, both the basic and modified algorithms were run 100 times for each lidar
configuration on the same dataset. The results are shown in Figures 9 and 10. Box plots were
generated using the InterQuartile Range (IQR) strategy. The upper and lower sides of the
rectangle represent the 25th and 75th percentiles, the middle line represents the median, and
the bottom and top lines represent the minimum and maximum values, respectively [56].
It is evident that for all configurations, the modified algorithm significantly enhanced the
stability of the inversion. This result demonstrates that the basic algorithm’s “bagging”
strategy indeed introduces excessive randomness, leading to significant differences in the
inversion results for the same data each time. The weighted “bagging” strategy to some
extent reduces the randomness, making the algorithm more stable.
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3.2. Sensitivity Study of Individual Input Optical Property

Research on regularization methods has shown that inversion errors are linearly re-
lated to optical data errors [57]. To explore this relationship in our method, we artificially
introduced distortions into the individual input optical properties. Currently, the measure-
ment uncertainty of most lidar systems is within ±20% [58]. Therefore, in studying the
influence of individual input optical property on the inversion results, fixed errors of 0%,
±10%, and ±20% were used. The simulated non-grid data from Table 2 were used. This
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method involved artificially distorting an individual optical property obtained from the
Mie theory calculations for each simulation. Sensitivity studies of the fixed errors were
conducted separately for each optical property under the same lidar configuration. Only
the modified algorithm was used in this section.
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The results are presented as functions of the inversion error versus the fixed error in
Figure 11. In many cases, the inversion error was approximately linearly related to the fixed
error. However, the linear relationship did not always exist, for example, the inversion
of Vt showed an axisymmetric linear relationship, and Vt was always overestimated. In
the inversion of mr, the relation between the input error of β1064 and the inversion error
was nonlinear, and it was more sensitive to the negative error. Many similar abnormal
relationships were shown in Figure 11.

For the 3β + 2α configuration, α355 had the greatest impact on the inversion results for
mr, followed by β1064, while the other optical properties had less influence. The inversion
of mi was the most sensitive to α355 and β355, followed by α532, with β532 and β1064 being
the least sensitive. The inversion of SSA, which integrates mr and mi, was most affected by
β355, α355, and α532, as shown in Figure 11i. The retrieval of re was highly sensitive to α532,
followed by α355. In the inversion of Vt, the results showed an approximately symmetric
linear relationship around the zero-error point, with a clear overestimation regardless of
the sign of the fixed error, which is consistent with previous studies [28]. The inversion
results for Vt were most sensitive to α355 and α532, and least sensitive to β355. Overall,
the two extinction properties played the most important role in the inversion of 3β + 2α,
while the backscatter properties had a significant impact on the inversion of some aerosol
microphysical parameters.

The results for 3β + 1α and 2β + 1α were similar to those for 3β + 2α. Notably, in
Figure 11b, the inversion of mr is more sensitive to β532 than in Figure 11a. The curves
and trends in 3β + 1α and 2β + 1α with existing channels were generally consistent with
those in 3β + 2α. A comparison of the results of these three configurations demonstrated
that the absence of a few optical properties did not significantly affect the quality of the
inversion results in the modified algorithm. Combined with the results from Section 3.1,
this further demonstrates that the modified algorithm has a higher tolerance for simple
lidar configurations.



Remote Sens. 2024, 16, 2265 17 of 25Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 11. Function of inversion error versus fixed error when artificially distorting individual input 
optical properties. (a–d) Inversion errors of 3β + 2α (a), 3β + 1α (b), 2β + 1α (c) and 3β (d) configura-
tions regarding 𝑚 . (e–h) Same as (a–d), but showing inversion errors regarding 𝑚 . (i–l) Same as 
(a–d), but showing inversion errors regarding 𝑆𝑆𝐴. (m–p) Same as (a–d), but showing inversion 
errors regarding 𝑟 . (q–t) Same as (a–d), but showing inversion errors regarding 𝑉 . The horizontal 
axis represents the value of the fixed error, while the vertical axis represents the inversion error, 
with the zero−error line highlighted by a dashed line. For different optical parameters, lines with 
different colors and markers represent 𝛽 , 𝛽 , and 𝛽  with blue hexagons, orange circles, 
and yellow stars, respectively, while 𝛼   and 𝛼   are represented by purple diamonds and 
green squares, respectively. 

3.3. Study on Input Optical Properties with Random Gaussian Noise 
The signal noise generated by actual lidar systems clearly does not appear only in the 

individual optical properties. Each optical property can have different errors. To evaluate 
the performance of the algorithm in real systems, Gaussian noise generated according to 
the uncertainty of the actual lidar systems was applied to the microphysical parameters 
listed in Table 2. As in previous studies [31], if the error level of Gaussian noise is denoted 
as x%, it means that this value is the same as the 3-σ value of the Gaussian distribution 
(i.e., the geometric standard deviation σ = x/3). Gaussian noise was applied with error 
levels of 10% and 20%. To avoid significant randomness, 100 inversion repetitions were 
performed for each input, with random noise generated independently each time. This 
test section applies only to the modified algorithm. 

To illustrate the distribution of the data more intuitively, violin plots, which are en-
hanced versions of box plots that display the probability density of the data, were used to 
describe the results [59]. 

Almost all data distributions approximately followed a Gaussian distribution, except 
for the inversion of 𝑟  and 𝑉  in the 3β configuration as shown in Figure 12p,t. All con-
figurations exhibited varying degrees of overestimation in the inversion of 𝑉 , where the 
green bars were significantly higher than the white dots, corresponding to previous anal-
yses. However, in all other subpanels, the mean and zero points were very close. There 
were no significant differences among the results of 3β + 2α, 3β + 1α, and 2β + 1α. In Figure 
12o,s, the performance of the inversion of 𝑟  and 𝑉  in the 2β + 1α configuration is the 
best, with the data being more concentrated. This is a positive phenomenon, once again 
demonstrating the improvement in the accuracy of microphysical parameter inversion by 
the modified algorithm for simple lidar configurations; it is expected to make the lack of 

Figure 11. Function of inversion error versus fixed error when artificially distorting individual input
optical properties. (a–d) Inversion errors of 3β + 2α (a), 3β + 1α (b), 2β + 1α (c) and 3β (d) configurations
regarding mr. (e–h) Same as (a–d), but showing inversion errors regarding mi. (i–l) Same as (a–d), but
showing inversion errors regarding SSA. (m–p) Same as (a–d), but showing inversion errors regarding
re. (q–t) Same as (a–d), but showing inversion errors regarding Vt. The horizontal axis represents the
value of the fixed error, while the vertical axis represents the inversion error, with the zero−error line
highlighted by a dashed line. For different optical parameters, lines with different colors and markers
represent β355, β532, and β1064 with blue hexagons, orange circles, and yellow stars, respectively, while
α355 and α532 are represented by purple diamonds and green squares, respectively.

The results for 3β showed some differences from the above conclusions, such as higher
sensitivity to the backscatter properties and significant overestimation in mr, mi, and re, with
particularly poor performance in the inversion of re. This phenomenon can be explained by
the lack of the most important extinction properties in 3β, as relying solely on the information
provided by backscatter properties is insufficient for successful inversions. The comparison
with the results for 2β + 1α corroborates this conclusion, demonstrating the indispensable role
of extinction properties in the inversion of aerosol microphysical parameters.

3.3. Study on Input Optical Properties with Random Gaussian Noise

The signal noise generated by actual lidar systems clearly does not appear only in the
individual optical properties. Each optical property can have different errors. To evaluate
the performance of the algorithm in real systems, Gaussian noise generated according to
the uncertainty of the actual lidar systems was applied to the microphysical parameters
listed in Table 2. As in previous studies [31], if the error level of Gaussian noise is denoted
as x%, it means that this value is the same as the 3-σ value of the Gaussian distribution (i.e.,
the geometric standard deviation σ = x/3). Gaussian noise was applied with error levels of
10% and 20%. To avoid significant randomness, 100 inversion repetitions were performed
for each input, with random noise generated independently each time. This test section
applies only to the modified algorithm.

To illustrate the distribution of the data more intuitively, violin plots, which are
enhanced versions of box plots that display the probability density of the data, were used
to describe the results [59].

Almost all data distributions approximately followed a Gaussian distribution, ex-
cept for the inversion of re and Vt in the 3β configuration as shown in Figure 12p,t. All
configurations exhibited varying degrees of overestimation in the inversion of Vt, where
the green bars were significantly higher than the white dots, corresponding to previous
analyses. However, in all other subpanels, the mean and zero points were very close. There
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were no significant differences among the results of 3β + 2α, 3β + 1α, and 2β + 1α. In
Figure 12o,s, the performance of the inversion of re and Vt in the 2β + 1α configuration is
the best, with the data being more concentrated. This is a positive phenomenon, once again
demonstrating the improvement in the accuracy of microphysical parameter inversion by
the modified algorithm for simple lidar configurations; it is expected to make the lack of
optical channels no longer the most fatal flaw in lidar systems. The performance of 3β was
relatively poor.
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Figure 12. Inversion errors after applying random Gaussian noise disturbance to the input data
at error levels of 10% and 20%. (a–d) Inversion errors of 3β + 2α (a), 3β + 1α (b), 2β + 1α (c) and
3β (d) configurations regarding mr. (e–h) Same as (a–d), but showing inversion errors regarding mi.
(i–l) Same as (a–d), but showing inversion errors regarding SSA. (m–p) Same as (a–d), but showing
inversion errors regarding re. (q–t) Same as (a–d), but showing inversion errors regarding Vt. The
error levels of 10% and 20% are represented by blue and orange images, respectively. The results are
presented in the form of violin plots, which are an enhanced version of box plots that provide more
detailed information about the distribution of the data. In each violin plot, the vertical gray bars
correspond to the ends of the box plot whiskers, representing the maximum and minimum values of
the statistical distribution. The shaded area corresponds to the interquartile range of 25% and 75% of
the box plot. Horizontally, the shaded area represents the probability density function of the data
distribution, showing the frequency of data distribution in each interval. The white points indicate
the position of zero, and the horizontal green bars represent the mean values.

In real situations, inversions that are too extreme are usually excluded. Therefore, data
within the 25th and 75th percentiles can approximate the uncertainty of the inversion, that
is, the range of the shaded area. The inversion of CRI and SSA showed less variation as
the level of Gaussian noise increased, indicating a higher tolerance for noise, while re and
Vt were more sensitive to noise, with the distribution of 20% Gaussian noise being more
dispersed than that of 10%. 2β + 1α still performed the best in the inversion of re and Vt.
The explanation for this result is that the test is only a small dataset and the results have a
certain degree of occasionality, which makes the performance of 2β + 1α better than other
configurations in some aspects. Overall, except for 3β, the uncertainties of the inversion
of the other three configurations were not significantly different and relatively small, thus
allowing for high-quality inversion results.

3.4. DISCOVER-AQ Case Study

Sections 3.1–3.3 of the simulated data tests preliminarily demonstrated the comprehen-
sive improvement of the inversion results by the modified algorithm under ideal conditions,
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as well as the sensitivity in regard to erroneous input data. This demonstrates the theoreti-
cal feasibility of the proposed algorithm. However, another necessary process for verifying
the algorithm is conducting case studies that directly address various complex uncertainties
in real situations. In this section, the modified algorithm was applied to the data obtained
during the DISCOVER-AQ field campaign, as introduced in Section 2.3.

The HSRL-2 system carried by the B-200 aircraft provides optical parameters for
inversion, including the backscatter coefficient, extinction coefficient, depolarization ratio,
and Ångström exponent. The P-3B aircraft was equipped with multiple in-situ instruments
to measure environmental aerosol particles and obtain aerosol SSA and APSD data. The
flight path of the P-3B includes many spiral points. At each location, the aircraft ascends or
descends at a constant speed; therefore, the aerosol profile information of that location can
be used as validation data for lidar inversion. Activities in California on 30 and 31 January
2013 were selected for the study. The flight paths on these two days were almost identical,
except for one circuit of P-3B (highlighted by the green trajectory in Figure 5b). There
were six spiral points for P-3B, and the inversion results at these six validation points were
verified. The latitude and longitude information of the six validation points are shown in
Table 3.

Table 3. Latitude and longitude information of P-3B six spiral points.

Spiral Points Site1 Site2 Site3 Site4 Site5 Site6

Latitude (◦) 35.35 36.03 36.32 36.17 36.62 36.76
Longitude (◦) −118.98 −119.03 −119.67 −120.10 −120.40 −119.78

Figure 13 provides the raw optical data obtained by HSRL on 30 and 31 January,
including five optical parameters (β355, β532, β1064, α355, and α532) and the Ångstrom
exponent γα (355 − 532). The flight paths of the B-200 aircraft were almost identical on
both days. Comparing the optical parameter profiles for the two days, it can be observed
that the aerosol layer on January 31st was slightly lower than the previous day, as indicated
by the lower altitude of the boundary of the data (dark blue region). However, the overall
temporal trend remained similar, indicating a relative decrease in the aerosol layer over
the course of the day. Moreover, the temporal and height continuities of the profiles
were good, indicating a uniform composition of the aerosol layer. It is noteworthy that
γα (355 − 532) mostly varied between 1.5 and 2.5, especially at relatively lower altitudes,
which is consistent with the typical characteristics of fine-mode aerosol particles. This
result provides favorable conditions for the application of the modified algorithm.

Figures 14 and 15 show the results obtained on 30 and 31 January, respectively, follow-
ing the process outlined in Figure 6.

The profiles of the inversion results of re were comparably stable in altitude for almost
all configurations. The exception to this result was the case of 3β in the 700–800 m height
range in Figure 14a. We also found minor fluctuations for 3β + 2α in the 500–600 m height
range in Figure 15d. This result indicated the high stability of the modified algorithm for
the APSD retrievals. Overall, the 3β + 2α configuration showed the best agreement with the
in-situ measurement data, without significant overestimation or underestimation, whereas
the other configurations exhibited clear overestimation. The 3β configuration yielded the
largest errors, with the median inversion error reaching 85% (as shown in Figure 14g),
compared to 6%, 26%, and 39% for 3β + 2α, 3β + 1α, and 2β + 1α, respectively. Although the
average inversion error for 3β + 2α was the smallest (as shown in Figure 15g), some points
exhibited higher errors than 3β + 1α, indicating slightly lower stability compared to 3β + 1α
and 2β + 1α. In summary, 3β + 2α and 3β + 1α were relatively reliable for re retrieval, while
2β + 1α was comparable to 3β + 1α in some cases but performed poorly overall. The results
we obtained for the 3β configuration showed the lowest quality and can hardly be used.



Remote Sens. 2024, 16, 2265 20 of 25

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 26 
 

 

The HSRL-2 system carried by the B-200 aircraft provides optical parameters for in-
version, including the backsca er coefficient, extinction coefficient, depolarization ratio, 
and Ångström exponent. The P-3B aircraft was equipped with multiple in-situ instru-
ments to measure environmental aerosol particles and obtain aerosol 𝑆𝑆𝐴  and APSD 
data. The flight path of the P-3B includes many spiral points. At each location, the aircraft 
ascends or descends at a constant speed; therefore, the aerosol profile information of that 
location can be used as validation data for lidar inversion. Activities in California on 30 
and 31 January 2013 were selected for the study. The flight paths on these two days were 
almost identical, except for one circuit of P-3B (highlighted by the green trajectory in Fig-
ure 5b). There were six spiral points for P-3B, and the inversion results at these six valida-
tion points were verified. The latitude and longitude information of the six validation 
points are shown in Table 3. 

Figure 13 provides the raw optical data obtained by HSRL on 30 and 31 January, 
including five optical parameters (𝛽 , 𝛽 , 𝛽 , 𝛼 , and 𝛼 ) and the Ångstrom 
exponent 𝛾  (355 − 532). The flight paths of the B-200 aircraft were almost identical on 
both days. Comparing the optical parameter profiles for the two days, it can be observed 
that the aerosol layer on January 31st was slightly lower than the previous day, as indi-
cated by the lower altitude of the boundary of the data (dark blue region). However, the 
overall temporal trend remained similar, indicating a relative decrease in the aerosol layer 
over the course of the day. Moreover, the temporal and height continuities of the profiles 
were good, indicating a uniform composition of the aerosol layer. It is noteworthy that 
𝛾  (355 − 532) mostly varied between 1.5 and 2.5, especially at relatively lower altitudes, 
which is consistent with the typical characteristics of fine-mode aerosol particles. This re-
sult provides favorable conditions for the application of the modified algorithm. 

Table 3. Latitude and longitude information of P-3B six spiral points. 

Spiral Points Site1 Site2 Site3 Site4 Site5 Site6 
Latitude (°) 35.35 36.03 36.32 36.17 36.62 36.76 

Longitude (°) −118.98 −119.03 −119.67 −120.10 −120.40 −119.78 

 

 

Figure 13. Original optical data from the HSRL collected during the DISCOVER−AQ field campaign
in California on 30 and 31 January 2013. The horizontal axis represents UTC time, and the vertical
axis represents altitude above sea level. The data for the two days are shown in the left and right
columns, respectively. (a,b) Profile s of β355 on the two days. (c,d) Profile s of β532 on the two days.
(e,f) Profile s of β1064 on the two days. (g,h) Profile s of α355 on the two days. (i,j) Profile s of α532 on
the two days. (k,l) Profile s of γα (355 − 532) on the two days.
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Figure 14. Comparisons of retrieved microphysical parameter profiles from the HSRL on 30 January
2013, with P−3B in-situ measurements at six validation sites. (a–g) represent the results for re,
while (h–n) represent the results for SSA. (a–f) and (h–m) show the profile information for re and
SSA, respectively, at the six sites. The results retrieved using the 3β + 2α, 3β + 1α, 2β + 1α, and 3β

configurations are depicted with blue, orange, yellow, and purple lines and markers, respectively,
while in-situ measurement data are represented by black lines and markers. The x-axis represents the
values of the microphysical parameters, and the y-axis represents altitude. (g,n) show box plots of
the retrieval errors for all data points at the six validation sites on that day, where the color scheme
matches that of Figure 9.
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Regarding the SSA retrieval results, significant discontinuities were observed at sev-
eral points in the profiles. SSA retrieval depends largely on the retrieval results of mi, and
the above analysis indicates the good stability of the APSD retrieval results. This suggests
that the modified algorithm was more sensitive to mi retrieval than to APSD retrieval,
leading to instability in SSA retrieval. However, most of these significant instabilities
were observed in the 3β + 1α configuration, while the SSA results for other configurations
were relatively stable. The profiles demonstrated that 3β + 2α remained the closest to the
in-situ measurements, while 2β + 1α and 3β performed the worst. Surprisingly, despite
some instability, the inversion results for 3β + 1α were close to or even surpassed those
of 3β + 2α in many data points. Figures 14n and 15n confirm this observation, with the
median inversion errors for 3β + 2α (0.012 and 0.005) and 3β + 1α (0.009 and 0.008) being
significantly higher than those for 2β + 1α (−0.087 and −0.081) and 3β (−0.100 and −0.126).
Therefore, it can be concluded that 3β + 2α and 3β + 1α are relatively reliable for SSA (or
mi) retrieval but the latter requires handling of some obvious outliers.

Furthermore, we compare the performance of the FAST algorithm in DISCOVER-AQ
field campaign with modified algorithm in this study. In the literature [31], the median
inversion errors of re in the application scenario of the FAST algorithm for 3β + 2α, 3β + 1α,
and 2β + 1α are 3.53%, 11.68%, and 12.33% respectively. The median inversion errors of
SSA for 3β + 2α, 3β + 1α, and 2β + 1α are 0.010, 0.014, and 0.016, respectively. For 3β + 2α
and 3β + 1α, compared with the FAST algorithm, the modified algorithm has significant
advantages in the inversion of SSA and similar performance in the inversion of re. For
2β + 1α, the modified algorithm is inferior to the FAST algorithm. The reason of this may
be because for 2β + 1α, the two inversion processes amplify the complex noise and errors
of the actual situation.

Based on extensive validation data, the above analysis preliminarily demonstrated
the feasibility of the modified algorithm. Among the six different validation sites, the
retrieval performance of 3β + 2α was excellent, followed by that of 3β + 1α, which exhibited
outstanding performance in SSA retrieval. 2β + 1α performed relatively poorly and 3β
performed the worst. The retrieval of re was more stable than that of SSA, which may
be due to the weaker HSRL backscatter signal compared to the extinction channels, as
demonstrated in Section 3.2. In the case study, inversions were performed for both scenarios.
Under the same hardware and software conditions (as mentioned in Section 3.1), the
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inversion time for the 30 January scenario was 22 min and that for the 31 January scenario
was 16 min. Notably, these results were obtained using a personal laptop, and the inversion
time could be significantly reduced by using a more powerful computer.

4. Discussion and Conclusions

This study proposed an LUT-based method for retrieving microphysical properties,
aiming to reduce the ill-posedness of the retrieval system and improve the accuracy and
stability. Building upon previous research, this study introduced a weighted “bagging”
strategy and a self-posed strategy, including a constraint window and local interpolation,
into the algorithm, resulting in the modified algorithm. The modified algorithm exhibited
remarkable performance, with retrieval errors at LUT grid points almost reduced to zero
and reductions of 41%, 30%, and 32% in retrieval errors at non-grid points compared to the
basic algorithm under 3β + 2α, 3β + 1α, and 2β + 1α configurations, respectively. Both ideal
input and error input studies demonstrated that the retrieval performance and sensitivity
to noise of 3β + 2α, 3β+1α, and 2β + 1α were at a similar level.

The modified algorithm was applied to case studies of two scenarios from NASA’s
DISCOVER-AQ field campaign, where the profiles retrieved from HSRL data were com-
pared with in-situ measurements. The application of the modified algorithm was successful,
with the median relative errors in the retrieval of re for 3β + 2α being 6% and −3%, for
3β + 1α being 26% and 12%, and for 2β + 1α being 39% and 23% for the two scenarios,
respectively. The median absolute errors in SSA retrieval for 3β + 2α were 0.012 and 0.005,
for 3β + 1α were 0.009 and 0.008, and for 2β + 1α were −0.087 and −0.081.

Analysis of the results indicated that the modified algorithm effectively mitigates the
ill-posedness of the retrieval system and enhances its stability. This study also demonstrated
the importance of adding extinction coefficient detection channels, such as Raman channels
or hyperspectral resolution channels, to lidars. Furthermore, the investigation of LUT
methods revealed the relationship between LUT construction and retrieval results, which
may assist with more LUT-based retrieval methods in the future.

This study represents a further attempt at developing unsupervised retrieval methods
with a scope limited to fine-mode aerosol particles, thus imposing certain constraints on
practical applications. Future research should explore retrievals involving coarse-mode
particles. Lastly, the introduction of a feedback mechanism in the modified algorithm
through a second retrieval increased the number of hyperparameters such as NkNN, NRF, ω,
etc. Too many hyperparameters can significantly impact the system, with minor variations
in the combination of hyperparameters potentially leading to drastic changes in the results.
Although this study has not yet reached this stage, the increase in hyperparameters poses
challenges for algorithm debugging and potential risks that need to be addressed in
future optimizations.
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