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Abstract: Comparative analysis of the steady-state and transient properties of a bubbling fluidized-
bed catalytic reactor obtained according to different mathematical models of the emulsion zone was
performed to verify the commonly used assumption regarding the pseudohomogeneous nature of
this zone. Four different mathematical models of the fluidized-bed reactor dynamics were formulated,
based on different thermal and diffusional conditions at the gas-solid interface and within the catalyst
pellet, namely the model based on the assumption of pseudohomogeneous character for the emulsion
zone, and a group of two-scale models accounting for the heterogeneous character of this zone. It
was demonstrated that, while the pseudohomogeneous model of the emulsion zone predicts almost
identical behavior of the reactor at steady-state as the proposed heterogeneous models, it may fail
in the prediction of the reactor start-up behavior, especially when dealing with highly exothermic
processes run at relatively high fluidization velocity.

Keywords: fluidized bed; catalytic reactor; heterogenous model; pseudohomogeneous model; steady
state; transient behavior

1. Introduction

Bubbling fluidized-bed reactors (BFBR) for solid-catalyzed gas phase processes are
unquestionably, units of great importance in the chemical and petrochemical industries, as
well as in energy conversion. Due to its hydrodynamic properties and tendency to equal-
ize temperature, the fluidized bed provides an excellent environment for running highly
exothermic solid-catalyzed chemical reactions since any hot spots are rapidly quenched.
Another advantage is the fluid-like behavior of the bed that makes the BFBR attractive
for running chemical processes that require continuous regeneration of the catalyst parti-
cles [1,2]. These features have favored a wide industrial application of the BFBR, among
others, in the processes of olefin polymerization [2–4], oxidation of hydrocarbons [1,2,5],
propylene ammoxidation to acrylonitrile or fluidized-bed cracking [1,2]. Besides solid-
catalyzed chemical processes, fluidized-bed units are widely used in energy industry for
non-catalytic combustion and gasification of solid fuels [6,7], and in material processing for
powder granulation [8–10] or drying [11].

Effective design, operation and control of these apparatuses require a comprehensive
analysis of their steady-state and transient behavior made with the aid of an adequate
mathematical model. Many predictive models of catalytic BFBR [12–16] are based on a
classical two-phase concept of fluidization, whose origins date back to the 1950s [17,18].
According to the simplest two-phase model, the BFB consists of two phases (zones): a
bubble phase and an emulsion phase (also called a dense phase), which is usually treated
as a pseudohomogeneous medium, i.e., both intraparticle and interphase gradients of the
concentration and temperature are neglected in the emulsion model. Mass and heat trans-
port resistances are usually disregarded a priori when modeling the catalytic BFBR, and
such a simplification is motivated by the small size of the particles used as the bed material.
However, it should be borne in mind that too simplified description of intraparticle and
interphase transport phenomena may lead to erroneous prediction of the performance of
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these solid-gas reactors. Some early studies concerning mathematical modeling of catalytic
fluidized-bed reactors [19,20] take indeed into account the external resistance to mass and
heat transport at the pellet surface, however most of the later studies concerning catalytic
processes completely neglect both intraparticle mass and heat diffusion as well as external
transport resistances at the particle surface [12–16]. The assumption of a pseudohomo-
geneous nature of the emulsion phase is usually not supported by any analysis of the
transport resistances. One of the few exceptions are the works of Fernandes and Lona [3,4]
concerning mathematical modeling of the ethylene polymerization in a BFBR. The authors
compared the results obtained using a full heterogeneous model of the emulsion zone with
the pseudohomogeneous model of this zone. They demonstrated that, for low values of the
mean residence time of the polymer particles in the reactor, the emulsion phase should be
described using a heterogeneous model. When the mean residence time of particles in the
reactor is relatively long, then the results obtained using both models are comparable.

Considering the state of art of mathematical modeling of catalytic FBR operating in the
bubbling regime, there is still a necessity of revision, especially in relation to the transient
analysis, of the commonly adopted pseudohomogeneous model of the emulsion zone.
Heterogeneous models of the emulsion zone incorporated in the reactor models based
on two-phase theory are nowadays computationally affordable, even when dealing with
real-time applications, such as control or transient behavior prediction. Aim of this study
is to show that it is necessary to move away from the—usually “blind”—application of
pseudohomogeneous models. While the effect of transport phenomena around and inside
the catalyst pellets on the reactor behavior was analyzed quite intensively in the past in
relation to fixed-bed reactors [21], there is a lack of similar studies referred to fluidized-bed
reactors. Moreover, although the influence of transport resistances is much smaller, it still
needs particular attention when dealing with highly exothermic processes. Other systems
for which the necessity to employ fully heterogeneous model may arise are adsorptive
reactors and catalytic reactors [22] integrating two or more types of active sites. When
different functionalities are integrated within a structured hybrid pellet [23,24], then the
intrapellet distribution of the functionalities needs to be taken into account to predict
correctly the reactor behavior. Therefore, in this study, the steady-state and transient prop-
erties of a catalytic BFBR determined using mathematical models accounting for various
diffusional and thermal conditions at the gas-solid interface and within the catalyst pellet,
were compared, with the aim of evaluating the applicability of the pseudohomogeneous
model for the prediction of the reactor behavior.

2. Materials and Methods
2.1. Mathematical Models of a Catalytic BFBR

Figure 1a shows a schematic diagram of a catalytic BFBR together with the basic notation
used in the mathematical models formulated below. The models consider various diffusional
and thermal conditions at the solid-gas interface and inside the catalyst pellet. They are based
on a well-established theory of mathematical modelling of solid-catalyzed chemical reactions
accompanied by diffusion in porous particles [21]. In all cases, a two-phase bubbling-bed
model [1,25] which considers the bed consists of two phases or zones, i.e., a bubble zone and
an emulsion zone, was adopted to describe the fluidized bed. To avoid ambiguity hereafter,
the term zone is used to refer to the phase (i.e., bubbles or emulsion) present in the fluidized
bed, whereas the term phase refers to gas or solid phase only.

The equations used to determine the hydrodynamic properties of the fluidized bed
are summarized in Table 1. More details on the methodology of determination of the
hydrodynamic characteristics of the catalyst bed can be found in reference [26], which,
however, is limited to a steady-state analysis made with the use of a pseudohomogeneous
model only.
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Figure 1. Scheme of: (a) a catalytic BFBR and of the formulated reactor models with: (b) pseudohomogeneous and (c)
heterogeneous model of the emulsion.

Table 1. Hydrodynamic properties of the BFBR.

Parameter Equation

Fluidized-bed void fraction at minimum fluidization
conditions, εm f [27] εm f = 0.586 ·Ar−0.029

(
ρg
ρp

)0.021
. (1)

Superficial gas velocity at minimum fluidization
conditions, um f [1]

1.75
ε3

m f φp
Re2

p,m f +
150(1−εm f )

ε3
m f φ2

p
Rep,m f = Ar where

Ar =
d3

pρg(ρp−ρg)g
µg

and Rep,m f =
dpum f ρg

µg
.

(2)

Terminal velocity of a falling particle, ut [28] Rep,t =
Ar

18+0.6Ar0.5 where Rep,t =
dputρg

µg
. (3)

Effective bubble diameter, db [29]
db = db0 + 0.5 · ξ · H where H =

Hm f
1−δ ,

db0 = 0.8205
(

u0−um f
n0

)0.4
and ξ = 0.14ρpdp

u0
um f

.
(4)

Bubble fraction in a fluidized bed, δ [1] δ =
u0−um f
ub−um f

. (5)

Bubble rise velocity, ub [1] ub = u0 − um f + ub0 where ub0 = 2.227
√

db (6)
Superficial velocity of gas in the emulsion, ue [1] ue =

u0−δub
(1−δ)·εm f

. (7)

In the simplest mathematical model of the catalytic BFBR evaluated in this work, the
emulsion zone is treated as a pseudohomogeneous medium (Figure 1b). The adoption of
such an assumption results in the omission of equations describing the interphase mass and
heat exchange, and equations describing the distribution of concentration and temperature
in the catalyst pellet. The second category of the models formulated within this work are
the models of the BFBR which account for the heterogeneous nature of the emulsion zone
(Figure 1c).

Due to the general character of the analysis, focused mainly on the comparison of
reliability of different mathematical models of the emulsion zone and on the evaluation
of the effect of the selected parameters onto the results discrepancy, a single first-order

irreversible exothermic chemical reaction A k→ P was considered as a test case. The
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chemical reaction rate equation per unit volume of the catalyst particle with respect to
reactant A is expressed as:

rA(CA, T) = k0 exp
(
− E

RT

)
· CA (8)

Other assumptions of mathematical models formulated below for the catalytic fluidized-
bed reactor operating in the bubbling regime are the following:

• ideal mixing of gas in the emulsion zone;
• plug flow of gas in the bubble zone and quasi-steady state character of this zone,

which is motivated by lower mass and thermal inertia of the bubble zone compared to
the emulsion zone;

• gas bubbles are spherical, and they have a constant diameter along the bed height;
• values of mass and heat exchange coefficient between the emulsion zone and the bubble

zone are calculated according to the assumptions of a three-phase model (Table 2);
• the chemical reaction takes place only in the emulsion zone;
• the chemical reaction may be accompanied by physical sorption of the reactant on

the inert support of the catalyst pellet; however, the heat of adsorption is neglected
because it is much lower than the heat of chemical reaction;

• the sorption process is at equilibrium, described by a linear isotherm with temperature-
dependent adsorption constant;

• contribution of the intraparticle gas phase and the adsorbed phase heat capacities to
the rate of increase of the catalyst pellet thermal energy is neglected.

Table 2. Mass and heat interchange coefficients.

Parameter Equation

Overall coefficient of gas interchange between bubble
and emulsion zone, βbe

gA [30]

1
βbe

gA
= 1

βbc
gA

+ 1
βce

gA
where βce

gA = 6.78
√

εm f DeAub

d3
b

and

βbc
gA = 4.5 um f

db
+ 10.353 D0.5

bA
d1.25

b
.

(9)

Overall coefficient of heat interchange between bubble
and emulsion zone, αbe

q [30]

1
αbe

q
= 1

αbc
q
+ 1

αce
q

where αce
q = 6.78

√
εm f λgρgcgub

d3
b

and

βbc
gA = 4.5 um f

db
+ 10.353 D0.5

bA
d1.25

b
.

(10)

In a single apparatus with no solid recycle, physical adsorption does not influence the
loci of steady-state branches; however, it may affect their stability and have a significant
impact on the dynamic features of the reactor. The importance of the reactant adsorption
on the support was recognized in theoretical studies concerning the transient behavior of
fixed-bed reactors [31] and it was also confirmed by experimental observations regarding
fluidized-bed catalytic cracking [32], therefore, the occurrence of this phenomenon was
accounted for in the models formulated in this work.

2.2. Model of the Bubble Zone

Regardless of the form of the emulsion zone model, under the assumption of a plug
flow of gas in the bubble zone and considering a quasi-steady state character of bubbles,
the balance equations for this zone can be written as follows:

Sδub
dCb

A
dh

= −Sδβbe
gA(C

b
A − Ce

A) (11)

Sδubρgcg
dTb

dh
= Sδ(αbe

q + βbe
p ρpcs) · (Te − Tb)− Sδaqkq(Tb − Tq) (12)

where h ∈ [0, H], with H being the total height of the fluidized bed and ρp = (1− εp)ρs is the
effective particle density, with εp being the catalyst porosity and ρs the solid phase density.
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Ordinary differential equations (ODEs) (Equations (11) and (12)) are supplemented
with the initial conditions (ICs) resulting from the concentration of reactant A and tempera-
ture of the feed stream:

Cb
A(h = 0) = CA f , Tb(h = 0) = Tf . (13)

After the introduction of the following dimensionless variables:

XA =
CA

CA,re f
where CA,re f =

P · yA f

R · Tre f
, z =

h
H
∈ [0, 1], (14)

Equations (11) and (12) with ICs given by Equation (13) take, respectively, the form:

dXb
A

dz
= −B3(Xb

A − Xe
A), (15)

dTb

dz
= −B4(Tb − Te)−Q2(Tb − Tq), (16)

and:
Xb

A(z = 0) = XA f , Tb(z = 0) = Tf , (17)

where:

B3 =
Hβbe

gA

ub
, B4 =

H
ub

(
αbe

q

ρgcg
+ βbe

p a1

)
, Q2 =

Haqkq

ubρgcg
, a1 =

ρpcs

ρgcg
. (18)

Separation of variables in Equations (15) and (16) followed by closed-form integration
with conditions defined by Equation (17) gives the following expressions describing the
distributions of dimensionless concentration of reactant A, Xb

A(z), and temperature, Tb(z):

Xb
A(z) = Xe

A[1− exp(−B3z)] + XA f · exp(−B3z), (19)

Tb(z) =
B4Te + Q2Tq

B4 + Q2
+

[
Tf −

B4Te + Q2Tq

B4 + Q2

]
· exp[−(B4 + Q2)z]. (20)

2.3. Pseudohomogeneous Model of the Emulsion Zone (Model P)

Beyond the general assumptions formulated at the beginning of Section 2.1, basis for
the construction of the simplest model of the emulsion zone, i.e., the pseudohomogeneous
model (Figure 1b), is the assumption that there is no transport resistance between interstitial
emulsion gas and catalyst particles, and within catalyst particles (Table 3).

Table 3. Main assumptions of the mathematical models.

Model of the Emulsion Zone
Internal Transport Resistance External Transport Resistance Model Equations

Mass Heat Mass Heat

P - - - - (25), (26), (34)
H1 X X X X (42)–(45), (48), (49), (53)–(55)
H2 X - X X (42), (44), (48), (49), (53), (55), (58), (59)
H3 - - X X (48), (49), (55), (63), (64), (66)

Under the assumption that the emulsion zone can be considered as a pseudohomoge-
neous medium, i.e., when the intensity of transport processes is so high that the chemical
process is controlled by kinetics, the dynamic mass and energy balances are:

SH(1− δ)εm f
dCe

A
dt + SH(1− δ)(1− εm f )

(
εp

dCe
A

dt + ρp
dqA
dt

)
= S(1− δ)εm f ue(CA f − Ce

A)+

+Sδ βbe
gA

H∫
0
(Cb

A − Ce
A) dh− SH(1− δ)(1− εm f ) · rA(Ce

A, Te),
(21)
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SH(1− δ)
[
(1− εm f )ρpcs + εm f ρgcg

]
dTe

dt = S(1− δ)εm f ueρgcg(Tf − Te)−

−Sδ(αbe
q + βbe

p ρpcs)
H∫
0
(Te − Tb) dh + SH(1− δ)(1− εm f ) · rA(Ce

A, Te) · (−∆h)−

−SH(1− δ)aqkq(Te − Tq).

(22)

The derivative dqA/dt in Equation (21) can we written as:

dqA

dt
=

dqA

dCe
A

dCe
A

dt
, (23)

where dqA/dCe
A is the slope of the sorption equilibrium curve. For a linear isotherm with a

temperature-dependent equilibrium constant, Ka, the slope expression can be rewritten as:

dqA

dCe
A

= Ka(Te) = Ka0 exp
(

Ea

RTe

)
. (24)

Introduction of the above defined dimensionless variables (Equation (14)) and ex-
pressions describing the distribution of reactant A concentration and temperature in the
bubbles (Equations (19) and (20)) into Equations (21) and (22), followed by closed-form
integration of integrals leads to the following final form of the pseudohomogeneous model
of the emulsion zone (hereinafter referred to as model P):

dXe
A

dt
= a2(XA f − Xe

A) + ϕ1(Xe
A)− a3RA(Xe

A, Te), (25)

dTe

dt
= a5(Tf − Te)− ϕ2(Te) + a4RA(Xe

A, Te) · (−∆h)−Q1(Te − Tq). (26)

where ϕ1(Xe
A), ϕ2(Te) and RA(Xe

A, Te) are:

ϕ1(Xe
A) =

B1

B3
[exp(−B3)− 1] · (Xe

A − XA f ), (27)

ϕ2(Te) =
B2

B4 + Q2

[
Q2(Te − Tq) +

(
Tf −

B4Te + Q2Tq

B4 + Q2

)
· [exp(−(B4 + Q2))− 1]

]
, (28)

RA(Xe
A, Te) = k0 exp

(
− E

RTe

)
· Xe

A, (29)

whereas the parameters appearing in Equations (25)–(28) are defined as:

a1 =
ρpcs

ρgcg
, a2 =

εm f ue

H[εm f + (1− εm f )(εp + ρpKa)]
, a3 =

1− εm f

εm f + (1− εm f )(εp + ρpKa)
, (30)

a4 =
(1− εm f )CA,re f

(1− εm f + εm f /a1)ρpcs
, a5 =

εm f ue

H[(1− εm f )a1 + εm f ]
, Q1 =

aqkq

(1− εm f + εm f /a1)ρpcs
, (31)

B1 =
δβbe

gA

(1− δ)[εm f + (1− εm f )(εp + ρpKa)]
, B2 =

δ

(1− δ)(1− εm f + εm f /a1)

(
αbe

q

ρpcs
+ βbe

p

)
, (32)

B3 =
Hβbe

gA

ub
, B4 =

H
ub

(
αbe

q

ρgcg
+ βbe

p a1

)
, Q2 =

Haqkq

ubρgcg
. (33)

The system of ODEs (Equations (25) and (26)) must be supplemented by ICs that
determine the values of initial concentration and temperature in the emulsion zone, namely:

Xe
A(t = 0) = Xe

A0, Te(t = 0) = Te
0 . (34)
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2.4. Heterogeneous Models of the Emulsion Zone

The second category of models are the models of a catalytic BFBR with a heterogeneous
model of the emulsion zone, according to which gas and catalyst particles are considered
as two separate phases (Figure 1c). Assuming that the chemical reaction takes place in
the emulsion zone only, the balance equations for the bubbles are identical to balance
Equations (11) and (12) formulated for the reactor model with pseudohomogeneous model
of the emulsion zone.

The form of the mass and heat balance equations for the emulsion depends on the
diffusional and thermal conditions prevailing in the catalyst particle and its surroundings
(Table 3). To limit the number of analyzed models, all formulated below heterogeneous
models of the emulsion zone account both for external mass and heat transfer resistance.

2.4.1. Heterogeneous Model with a Distributed-Parameter Model of the Pellet (Model H1)

Considering both the resistance to mass and heat exchange between catalyst pellet
and gas flowing through the emulsion, as well as intraparticle resistance to mass and heat
transport (Figure 2) and accounting for the assumptions formulated in Section 2.1, the
behavior of the emulsion zone is described by the following equations of a single pellet:

εp
∂Cp

A
∂t

+ ρp
∂qA

∂t
= De f

(
∂2Cp

A
∂r2 +

2
r

∂Cp
A

∂r

)
− rA(C

p
A, Tp), (35)

ρpcs
∂Tp

∂t
= λe f

(
∂2Tp

∂r2 +
2
r

∂Tp

∂r

)
+ rA(C

p
A, Tp) · (−∆h), (36)

with boundary conditions (BCs) in the center (r = 0) and at the pellet surface (r = Lp):

∂Cp
A(0, t)
∂r

= 0, De f
∂Cp

A(Lp, t)
∂r

= km

[
Ce

A(t)− Cp
A(Lp, t)

]
, (37)

∂Tp(0, t)
∂r

= 0, λe f
∂Tp(Lp, t)

∂r
= αq

[
Te(t)− Tp(Lp, t)

]
, (38)

coupled with mass and heat balance equations of the gas phase in the emulsion zone:

SH(1− δ)εm f
dCe

A
dt = S(1− δ)εm f ue(CA f − Ce

A) + Sδ βbe
gA

H∫
0
(Cb

A − Ce
A) dh−

− 6SH(1−δ)(1−εm f )

dp
km

(
Ce

A − Cp
A(Lp)

)
,

(39)

SH(1− δ)εm f ρgcg
dTe

dt = S(1− δ)εm f ueρgcg(Tf − Te)− Sδ(αbe
q + βbe

p ρpcs)
H∫
0
(Te − Tb) dh+

+
6SH(1−δ)(1−εm f )

dp
αq
(
Tp(Lp)− Te)− SH(1− δ)aqkq(Te − Tq).

(40)

After the introduction of the previously defined dimensionless variables (Equation (14))
and dimensionless concentration of reactant A in the catalyst pellet, βA, and coordinate, ζ:

βA =
Cp

A
CA,re f

, ζ =
r

Lp
∈ [0, 1], (41)

the partial differential equations (PDEs) (Equations (35) and (36)) describing the concentra-
tion and temperature profiles within the catalyst pellet take the following form:

∂βA

∂t
= Γm ·

[
∂2βA

∂ζ2 +
2
ζ

∂βA

∂ζ
−Φ2 RA(βA, Tp)

RA,re f

]
, (42)
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∂Tp

∂t
= Γq ·

[
∂2Tp

∂ζ2 +
2
ζ

∂Tp

∂ζ
+ δ ·Φ2 RA(βA, Tp)

RA,re f

]
, (43)

with boundary conditions:

∂βA(0, t)
∂ζ

= 0,
∂βA(1, t)

∂ζ
= Bim[Xe

A(t)− βA(1, t)], (44)

∂Tp(0, t)
∂ζ

= 0,
∂Tp(1, t)

∂ζ
= Biq[Te(t)− Tp(1, t)], (45)

where:

Bim =
Lpkm

De f
, Biq =

Lpαq

λe f
, Γm =

De f

L2
p

1
εp + ρpKa

, Γq =
λe f

L2
pρpcs

, (46)

δ =
De f CA,re f (−∆h)

λe
, Φ2 =

L2
pRA,re f

De f
, RA = k0 exp

(
− E

RTp

)
· βA, RA,re f = k0 exp

(
− E

RTre f

)
. (47)

Performing similar mathematical operations as in the case of the pseudohomogeneous
model of the emulsion zone, the balance equations of interstitial emulsion gas (Equations (39)
and (40)) for the heterogeneous model may be transformed into the following form:

dXe
A

dt
= a′2(XA f − Xe

A) + ϕ1(Xe
A)− a′3(Xe

A − βA(1)), (48)

dTe

dt
= a′2(Tf − Te)− ϕ2(Te) + a′4(Tp(1)− Te)−Q′1(T

e − Tq), (49)

where the functions ϕ1(Xe
A) and ϕ2(Te) are given, respectively, by Equations (27) and (28),

however, for the heterogeneous model parameters B1 and B2 are replaced, respectively, by
B′1 and B′2 defined as:

B′1 =
δβbe

gA

(1− δ)εm f
, B′2 =

δ

(1− δ)εm f

(
αbe

q

ρgcg
+ βbe

p a1

)
. (50)

The other parameters appearing in Equations (48) and (49) are defined as follows:

a′2 =
ue

H
, a′3 =

6(1− εm f )

εm f dp
km, a′4 =

6(1− εm f )αq

εm f dpρpcs
, Q′1 =

aqkq

εm f ρgcg
, (51)

where the interphase mass and heat transfer coefficient are determined from the relations:

km =
Sh · DeA

dp
, αq =

Nu · λg

dp
. (52)

Resolving the equations of the heterogeneous model requires the formulation of
appropriate ICs for the catalyst pellet and the interstitial emulsion gas, namely:

βA(ζ, t = 0) = βA0, ζ ∈ [0, 1], (53)

Tp(ζ, t = 0) = Tp
0 , ζ ∈ [0, 1], (54)

Xe
A(t = 0) = Xe

A0, Te(t = 0) = Te
0 (55)

The above formulated heterogeneous model of the emulsion zone, consisting of PDEs
(Equations (42) and (43)) with BCs (Equations (44) and (45)) and ICs (Equations (53) and
(54)), and ODEs (Equations (48) and (49)) with ICs (Equation (55)), hereinafter is referred to
as full heterogeneous model or model H1 (Table 3). In the following subsection, selected
modifications of the full heterogeneous model are formulated based on some simplifications
resulting from the omission of internal resistances to mass and heat transfer.
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2.4.2. Heterogeneous Model with Simplified Models of the Pellet (Models H2 and H3)

The temperature gradient within a catalyst pellet is often negligible, thus in process
calculations, it is usually assumed that the intraparticle temperature distribution is uniform.
Neglecting the temperature distribution leads to the transformation of the PDE (36) into
time-dependent ODE yielding the lumped-thermal model (referred to as model H2, Table 3).

Assuming that the resistance to heat transport is concentrated in the boundary layer around
the particle, and at the same time the temperature gradient inside the particle is negligibly small,
the heat balance equation of the particle for the lumped-thermal model becomes:

Vpρpcs
dTp

dt
= Apαq(Te − Tp) + VprAυ(C

p
A, Tp) · (−∆h), (56)

where rAυ(C
p
A, Tp) is an overall process rate, per unit volume of the catalyst, defined as:

rAυ =
1

Vp

∫
Vp

rA(Cp(r), Tp) dυ, (57)

where dυ = 4π r2dr = 4πL3
pζ2dζ.

After the introduction of the dimensionless concentration of reactant A, βA, Equation (56)
takes the following form:

dTp

dt
= a′′ 1(Te − Tp) + δ′ · RAυ(βA, Tp), (58)

with initial condition:
Tp(t = 0) = Tp

0 , (59)

where:

a′′ 1 =
Apαq

Vpρpcs
=

6αq

dpρpcs
, δ′ =

CA,re f (−∆h)
ρpcs

. (60)

Assuming additionally that both internal and external resistance to mass transfer is
significant, the concentration profile of A in the pellet is quantitatively described, as in
the full heterogeneous model, by PDE (Equation (42)) with corresponding BCs defined
by Equation (44). Balance equations of the gas in the emulsion are also identical to the
equations formulated for the full heterogeneous model, i.e., Equations (48) and (49), while
functions defined by Equations (19) and (20) describe the distributions of the state variables
in the bubbles.
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The third heterogeneous model tested in this work is the so-called lumped-particle
model (model H3, Table 3). It was formulated based on the assumption that the resistance
to mass and heat transport is centered in the boundary layer around the particle, while
both concentration and temperature gradients inside the catalyst particle are negligible. As
in the case of the model H1 and model H2, the concentration of reactant A and temperature
of the gas in the bubbles and interstitial emulsion gas are described by Equations (19),
(20), (48) and (49). The mass and heat balance equations of a single catalyst pellet for the
lumped-particle model can be written as:

Vp

(
εp

dCp
A

dt
+ ρp

dqA

dt

)
= Apkm(Ce

A − Cp
A)−VprA(Cp, Tp), (61)

Vpρpcs
dTp

dt
= Apαq(Te − Tp) + VprA(Cp, Tp) · (−∆h), (62)

where Cp and Tp are lumped variables characterizing the entire volume of the catalyst pellet.
After making use of the dimensionless variables, Equations (61) and (62) take the form:

dβA

dt
= a′′ 2(Xe

A − βA)− a′′ 3RA(βA, Tp), (63)

dTp

dt
= a′′ 1(Te − Tp) + δ′ · RA(βA, Tp), (64)

where a′′ 1 is defined by Equation (60) and:

a′′ 2 =
Apkm

Vp(εp + ρpKa)
, a′′ 3 =

1
εp + ρpKa

. (65)

Equations (63) and (64) must be supplemented with ICs determining the initial values
of concentration and temperature in the entire volume of the catalyst pellet, namely:

βA(t = 0) = βA0, Tp(t = 0) = Tp
0 . (66)

2.5. Model Parameters and Numerical Methods

To compare qualitatively and quantitatively the steady-state and transient properties
of the bubbling fluidized-bed catalytic reactor determined using different mathematical
models, some representative values of the physicochemical and operating parameters were
selected based on the analysis of several solid-catalyzed chemical processes of industrial
importance [1,5,33,34] and adsorption isotherms from the literature [35,36]. The values of
the model parameters used in the numerical simulations are given in Table 4. To simplify
the analysis, it was assumed that the reactor is operated adiabatically, i.e., the product of
the heat exchange area per unit volume of the fluidized bed, aq, and the overall wall heat
transfer coefficient, kq was set to zero. However, some results concerning the influence
of the heat removal from the fluidized bed onto the reactor steady-state behavior can be
found in [26].
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Table 4. Model parameters used in numerical simulations.

Parameter Value Unit Parameter Value Unit

aqkq 0 kW·m−3·K−1 P 101,325 Pa
cg 1.0 kJ·kg−1·K−1 S 1 m2

cs 0.8 kJ·kg−1·K−1 Sh 2 -
dp 2 · 10−4 m Tf 300 K

DbA = DeA 2 · 10−5 m2·s−1 yAf 0.1 -
Def 2 · 10−6 m2·s−1 yPf 0 -
E 7 · 104 kJ·kmol−1 εp 0.5 -
Ea 3 · 104 kJ·kmol−1 λef 10−4 kW·m−1·K−1

∆h −2 · 105 to−6 · 105 kJ·kmol−1 λg 2 · 10−5 kW·m−1·K−1

Hmf 1.0 m µg 2.6 · 10−5 Pa·s
k0 106, 5 · 106 s−1 ρg 0.7 kg·m−3

Ka0 5 · 10−5 m3·kg−1 ρp 1600 kg·m−3

Nu 2 -

The influence of the following parameters, expected to affect strongly the transport
resistances, onto the steady-state and transient properties of the reactor was investigated:

• fluidization ratio, l f = u0/um f , determining the mean residence time of gas and
hydrodynamic conditions in the reactor;

• enthalpy of the chemical reaction, ∆h, and frequency coefficient in the Arrhenius
equation, k0;

• initial temperature of the fluidized bed, T0 (in case of transient simulations only).

In the steady-state analysis, solution branches with respect to lf were obtained by
parametric continuation of the equations describing the steady-state operation of the reactor,
equations derived by setting to zero the time derivatives in the dynamic models P, H1,
H2 and H3 (Table 3). A local parametrization algorithm [37] implemented in FORTRAN
was employed to calculate successive points of the steady-state branches. In the local
parameterization method, consecutive points of the solution branch are determined by
numerical resolution of the so-called extended system of nonlinear algebraic equations,
consisting of the model equations and an additional parameterizing equation [37]. At
each step of the continuation procedure, the model equations were solved using Newton’s
method, which in case of models H1 and H2 was combined with the shooting algorithm
and the fourth-order Runge-Kutta method for the integration (with a step size ∆ζ = 0.01) of
the differential equations describing the concentration and temperature profiles within the
catalyst pellet.

For the transient analysis, the dynamic equations were integrated in time using nu-
merical codes developed in FORTRAN and employing a variable-coefficient ordinary
differential equation solver (DVODE) [38] based on implicit backward formulas for numer-
ical differentiation. In the case of models H1 and H2, the PDEs describing the distribution
of the state variables within the particles were previously transformed into ODEs by the
method of lines with N = 101 discrete nodes along particle radius [39]. Depending of the
model (P or H1-H3) the number of ODEs to be integrated in time was from two (for model
P) to 204 (for model H1, with two ODEs describing the gas phase and 202 ODEs describing
the discretized catalyst pellet). It is worth underlining that the computational time of the
integration of the most complex model, i.e., the so-called full heterogeneous model H1,
over t = 105 s was of the order of 1 s. The computational time of the integration of less
complex and thus lower-dimensional models P, H2 and H3 was about 0.2–0.5 s.

3. Results and Discussion

Figure 3 shows the steady-state branches of Xe
A and Te determined with respect to

the fluidization ratio, lf, for several values of the chemical reaction enthalpy, ∆h, obtained
using a pseudohomogeneous model P and heterogeneous models: H1, H2 and H3. Solid
lines indicate stable steady states, whereas dashed lines indicate unstable steady states.
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and several values of enthalpy of chemical reaction: 1 (red curve) —∆h = −2 · 105 kJ·kmol−1, 2 (black) —∆h = −4 · 105

kJ·kmol−1, 3 (blue) —∆h = −6 · 105 kJ·kmol−1 (� denotes the limits of existence of fluidized bed, i.e., l f ,min = um f /um f = 1
and l f ,max = ut/um f ).

Regardless of the adopted value of ∆h and lf, the differences between the values of Xe
A

and Te determined according to different mathematical models of the reactor are indistin-
guishable in the scale of Figure 3. Despite the rather complex steady-state characteristics of
the examined system, which consists of multiple solutions, the results obtained suggest
that the steady-state operation of the analyzed catalytic BFBR can be described using even
the simplest model with the assumption of pseudohomogeneity made for the emulsion
zone (model P). It is worth underlining here that the complex structure of the steady-state
diagrams is not surprising: such kind, and even more complex behavior (e.g., isolated
solution branches) was observed also experimentally both in fixed-bed and fluidized-bed
catalytic reactors [40,41].

Representative values of the state variables derived from the different models collected
in Table 5 confirm these visual observations. It can be seen that treating the emulsion zone as
a pseudohomogeneous medium (model P) results in the values of the emulsion temperature,
Te, to be nearly identical to those calculated using the most complex model, i.e., the so-
called full heterogeneous model H1, both for l f = 2 and l f = 10. Moreover, minimal
differences between temperatures Tp(0), Tp(1) and Te obtained from model H1 indicate
that both external and internal resistance to heat transfer is negligibly small. Nevertheless,
some discrepancies are observed between the values of dimensionless concentration of
reactant A in the emulsion zone, Xe

A, determined with the aid of models P and H3 (i.e.,
lumped particle model) and the models accounting for the non-uniform distribution of the
concentration in the pellet (i.e., models H1 and H2). These differences are much higher at
lower values of the fluidization ratio and are due to the presence of the significant gradients
of concentration both inside the catalyst pellet and at the solid-gas interface: for instance
at l f = 2 the ratio between the surface concentration of A, βA(1), and βA(0) is as high
as 6.89, whereas the ratio between the concentration of A in the interstitial emulsion gas,
Xe

A, and βA(1) is around 1.30 (applies to the values calculated from models H1 and H2,
Table 5). However, the discrepancies between the values of Xe

A calculated from models of
different complexity, and the presence of intraparticle gradients of βA(ζ) (in the case of
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model H1 and H2) do not influence the value of the reactor yield with respect to product P,
WP, defined as:

WP =
νP

|νA|
u0CA f · αA(1) =

νP

|νA|
um f CA,re f

Tre f

Te · αA(1), (67)

where:
αA(1) = a6αb

A(1) + (1− a6)α
e
A, a6 =

δub
δub + (1− δ)εm f ue

. (68)

Table 5. Representative values of state variables corresponding to the high-conversion steady state obtained using different
models for ∆h = −6 · 105 kJ·kmol−1, k0 = 5 · 106 s−1 and Tf = 300 K.

State Variable βA(0) βA(1) or βA
1 Xe

A Tp(0), K Tp (1) or Tp 2, K Te, K WP, kmol·m−2s−1

Model lf = 2 (point P1 in Figure 3)
P – – 5.808 · 10−6 – – 1145.88 4.312 · 10−5

H1 1.501 · 10−6 1.034 · 10−5 1.346 · 10−5 1145.87 1145.87 1145.87 4.312 · 10−5

H2 1.501 · 10−6 1.034 · 10−5 1.346 · 10−5 – 1145.87 1145.87 4.312 · 10−5

H3 – 5.808 · 10−6 8.926 · 10−6 – 1145.88 1145.87 4.312 · 10−5

Model lf = 10 (point P2 in Figure 3)
P – – 1.825 · 10−3 – – 686.05 9.839 · 10−5

H1 1.803 · 10−3 1.838 · 10−3 1.846 · 10−3 686.06 686.06 686.04 9.839 · 10−5

H2 1.803 · 10−3 1.838 · 10−3 1.846 · 10−3 – 686.06 686.04 9.839 · 10−5

H3 – 1.824 · 10−3 1.831 · 10−3 686.06 686.04 9.839 · 10−5

1 In case of lumped-parameter model of the catalyst pellet. 2 In case of lumped-thermal or lumped-parameter model of the catalyst pellet.

The values of WP at the reactor outlet resulting from models P and H1-H3 (Table 5)
are identical up to four digits, and this confirms the capability of the simplified model P to
provide a correct prediction of the steady-state productivity of the reactor.

As already mentioned, the resistance to internal and external mass transfer increases
when the fluidization ratio, lf, determining the mean residence time of the gas in the appa-
ratus, decreases (Figure 4). Furthermore, as expected, both internal and solid-gas interface
concentration gradients get higher as the enthalpy of chemical reaction, ∆h, increases.

Another parameter that strongly influences the steady-state characteristics of the reactor
and determines the importance of resistance to mass transport is the frequency coefficient,
k0. As can be seen in Figure 5a, again the values of the concentration of A in the interstitial
emulsion gas, Xe

A, obtained using models characterized by different complexity, are almost
identical, and the branches of steady states determined with respect to lf again practically
overlap. However, according to the full heterogeneous model, for faster chemical reaction and
for longer mean residence time of the gas in the reactor, i.e., at lower values of lf, a significant
amount of component A reacts in the narrow outer shell of the pellet which is manifested
by a very low concentration of A at the pellet center (Figure 5b). As before, the temperature
distributions (not reported here; applies to model H1) that develop within the pellet are
practically uniform, regardless of the adopted value of k0; also, the temperature gradient at
the solid-gas interface is negligibly small.
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The above results of numerical simulations were confronted with criteria used in practice
for assessing the significance of internal and external transport resistances. For the mth

order chemical reaction described by power law kinetics, Weisz and Prater [42] proposed the
following criterion to assess the significance of resistance to internal mass diffusion:

m + 1
2

rAυL2
p

De f CAs
<< 1, (69)

In the above inequality (Equation (69)), CAs denotes the concentration of component
A at the pellet surface, i.e., CAs = Cp

A(Lp). If the inequality is satisfied, it means that the
process is controlled by chemical kinetics and that intraparticle mass diffusion does not
play a significant role.
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To evaluate the presence of temperature gradients in the pellet, Anderson [43] formu-
lated the following criterion:

4
3

(−∆h)rAυL2
pE

λe f RT2
bulk

< 1. (70)

Again, fulfilling the inequality (Equation (70)), referring to the spherical particle, means
that the temperature field is practically uniform in the entire volume of the catalyst pellet.

The criteria that permit to assess the significance of interphase concentration and
temperature gradients proposed by Mears [44] are as follows:

rAυLpm
0.15 · kmCA,bulk

< 1, (71)

(−∆h)rAυLpE
0.15 · αqRT2

bulk
< 1. (72)

The importance of diffusion and reaction limitations is also commonly evaluated in
terms of the internal, η, and the overall, η0, effectiveness factor of the catalyst [45]:

η =
rAυ

rAs
, η0 =

rAυ

rA,bulk
, (73)

where rAs is the rate of chemical reaction evaluated at the particle surface conditions, rA,bulk
is the rate of chemical reaction evaluated at the bulk conditions, i.e., at the interstitial
emulsion gas conditions, whereas rAυ is the overall reaction rate defined by Equation (57).

Figure 6 shows the values of the moduli specifying the significance of resistance
to mass and heat transport, and the values of internal and overall effectiveness factor
calculated based on the results obtained from model H1 for the same parameters as the
steady-state branches presented in Figure 3. The values of the moduli characterizing the
mass transport resistances (MTRs) (Figure 6a) confirm the previous observations: both
external and internal MTRs become higher when lf decreases and ∆h increases. Regardless
of the thermal effect of the process, both the values of moduli characterizing internal and
external heat transport resistances (HTRs) are much lower than one, i.e., inequalities given
in Equations (70) and (72) are fulfilled, which is also in line with the previous observations.

Analysis of the internal, η, and of the overall, η0, effectiveness factor of the catalyst
pellet shown in Figure 6c also confirms the very strong effect of external and internal mass
transport on the overall process rate at lower values of lf and higher values of ∆h. Moreover,
due to negligible gradients of the temperature both within the pellet and at the solid-gas
interface (representative values are given in Table 5) both the values of η and η0 do not
exceed unity, even when the reactor is operated at relatively high lf.

Despite the occurrence of significant resistance to mass transport and large intra-
particle gradients of the concentration, it can be concluded that it is sufficient to use the
pseudohomogeneous model of the emulsion zone when analyzing the steady-state opera-
tion of the reactor. However, the application of the more complex heterogeneous model
may be necessary to simulate the transient behavior of the reactor. The transient analysis
consisted of numerical simulations of the reactor start-up and was conducted in order to
emphasize the differences that emerge as a results of application of different mathemat-
ical models of the emulsion zone. It was motivated by the findings concerning highly
exothermic processes conducted in fixed-bed reactors, for which it was demonstrated that
pseudohomogeneous models may lead to erroneous evaluation of the transient behavior of
the reactor [46].
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Figure 6. Moduli characterizing: (a) mass transfer resistance; (b) heat transfer resistances, and: (c)
internal, η, and overall, η0, effectiveness factor, with respect to lf for k0 = 5 · 106 s−1 corresponding
to high-conversion steady-states from Figure 3 (� denotes the limits of existence of fluidized bed, •
denotes limit points, MTR—mass transport resistance, HTR—heat transport resistance).

Figure 7a,b show, respectively, the time trajectories of Xe
A and Te during the reactor

start-up calculated using models P and H1-H3. In all simulations it was assumed that the
bed was preheated to the initial temperature of 450 K, while the initial concentration of A
was set to zero.
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In the light of the results obtained for steady-state conditions, the results of the dynamic
simulations are quite surprising: while for l f = 2 the time trajectories of the concentration
(Figure 7a) and temperature (Figure 7b) obtained using all models practically overlap, the
decrease of the residence time of reacting gas in the reactor (l f = 5) results in significant
discrepancies between the trajectories of Xe

A and Te calculated using the models accounting
for the intraparticle and interphase concentration gradients (i.e., models H1 and H2) and
the models in which the intraparticle or both the intraparticle and interphase concentration
gradients were neglected (models H3 and P, respectively). This phenomenon is all the
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more surprising, because as in the case of steady-state behavior, the instantaneous values
of the moduli characterizing the importance of MTRs shown in Figure 8a suggest that the
resistance to mass transport is less significant at higher values of the fluidization ratio.
Therefore, one would instead expect some discrepancies in the results at lower values of lf.
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The differences between the results obtained, respectively, using models H1 and H2 and
models H3 and P, may be explained by the steep gradients of the state variables (Figure 7),
also reflected in the MTR and HTR curves (Figure 8) around t ≈ 8 · 103 s for l f = 5 and
resulting from a sudden ignition of the reacting mixture (Figure 7b). At higher value of lf one
initially observes a temporary reduction of the emulsion temperature (Figure 7b) due to the
short residence time of the gas in the reactor, resulting in a very low global process rate. This
leads to a significant increase of the concentration of reactant A (Figure 7a), followed by sudden
ignition and rapid heat release.

In some cases, the simplest models of the reactor, i.e., models H3 and P, not only fail
to predict the time of ignition correctly, but they fail completely in the prediction of such a
phenomenon. As shown in Figure 9, for l f = 5.06 both models P and H3 are unable to predict
the sudden drop of reactant concentration (Figure 9a) due to rapid ignition (Figure 9b). On the
other hand, model H2, that is the model that takes into account the nonuniform distribution of
the reactant in the pellet but assumes uniform intraparticle temperature, faithfully reflects—both
qualitatively and quantitatively—the solution obtained from model H3.Energies 2020, 13, x FOR PEER REVIEW 19 of 23 
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The nature of ignition is strictly connected to the occurrence of multiple steady states
in the analyzed system, and in particular to basins of attraction of the stable steady states.



Energies 2021, 14, 208 18 of 22

Figure 10 shows the influence of the fluidization ratio, lf, and the start-up temperature, T0, onto
the final steady state. This is represented graphically in terms of so-called reduced basins of
attraction [47]. Unstable solution branches Te from Figure 3 are plotted in Figure 10 (denoted
by MU), to compare their loci with the position of the basin’s boundaries. The boundaries (also
called separatrices, denoted in Figure 10 by Sep.) of the upper (US) and lower (LS) steady state
were determined using the algorithm proposed in Reference [47] using models P and H1, and
under the assumption βA(ζ) = Xb

A(z) = Xe
A = XA0 and Tp(ζ) = Tb(z) = Te = T0 at t = 0.

Although the unstable solution branches of the emulsion temperature Te obtained using model
H1 and model P practically overlap, the separatrices obtained from model P are always located
above those determined using the model H1. The differences between the results derived using
these two models increase, even up to a few Kelvins, as lf and ∆h increase. All pairs of the
fluidization ratio, lf, and reactor start-up temperature, T0, located in the narrow area in between
Sep. H1 and Sep. P (Figure 10b) correspond to the situation in which the pseudohomogeneous
model P fails to predict correctly the reactor behavior, i.e., while the trajectories determined in
this parameter range using model H1 converge to the upper stable steady state (i.e., ignited
state), model P predicts reactor extinction.
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4. Conclusions

The commonly used assumption regarding the pseudohomogeneous nature of the
emulsion zone in a catalytic BFBR was verified both for steady-state and transient condi-
tions using four different models of the reactor, including the model with the pseudoho-
mogeneity assumption made for the emulsion zone and three models accounting for the
heterogeneous character of this zone.

Even in the case of significant resistance to mass transfer, the pseudohomogeneous
model of the emulsion zone proved to be sufficiently accurate for the prediction of the
reactor steady state. However, the selection of the appropriate mathematical model is of
major importance in case of transient simulation. Adoption of the pseudohomogeneous
model of the emulsion zone to simulate chemical processes characterized by relatively
high thermal effect, when run at higher values of fluidization ratio may lead to erroneous
results. While it is possible to assume a uniform distribution of the temperature within the
pellet, assumption of uniform intraparticle concentration for such processes may results
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in a wrong prediction of the reactor behavior, especially when simulating reactor start-up.
In the region of occurrence of multiple steady states, both the pseudohomogeneous (P)
and lumped-particle model (H3) fail to predict correctly the sharp time gradients of the
state variables related to a sudden ignition characterizing the process run at high lf and
started-up with T0 slightly higher than the temperature corresponding to the boundary of
domain of attraction of the ignited steady state.

Comparison of the results of the numerical simulation with the criteria used in practice
to evaluate the significance of internal and external transport resistances demonstrates that
empirical criteria are not a sufficient tool to assess the significance of transport resistance.
Although the values of the moduli characterizing transport resistances are in line with the
observations made based on the parametric analysis of steady states and of the transient
behavior of the apparatus, the consistency is only of qualitative, not quantitative character.
Thus, considering the results presented in this work, it is inappropriate to adopt a priori
the pseudohomogeneous model for the emulsion zone. Such an assumption, especially in
case of highly exothermic processes, must be preceded by a detailed analysis made with
the aid of a full heterogeneous model.

The modelling approach presented here may be extended to analyze real processes
of industrial importance. However, it has to be borne in mind that, when analyzing the
influence of internal and external mass transport resistances, particular attention must be
paid to a proper description of the diffusive mass transport with the aid of mathematical
models suitable for the description of multicomponent gas mixtures.
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Nomenclature
aq heat transfer area per unit volume of a fluidized bed, m−1

cg, cs specific heat of gas and solid, respectively, kJ·kg−1·K−1

CA concentration of reactant A, kmol·m−3

db effective bubble diameter, m
dp catalyst pellet diameter, m
DiA diffusion coefficient of reactant A in the ith zone, m2·s−1

Def effective diffusion coefficient in a catalyst pellet, m2·s−1

Ea energetic parameter characterizing physical adsorption, kJ·kmol−1

E activation energy of chemical reaction, kJ·kmol−1

g gravitational acceleration, m·s−2

h vertical coordinate in a fluidized bed, m
∆h enthalpy of chemical reaction, kJ·kmol−1

H total height of a fluidized bed, m
k0 frequency coefficient in the Arrhenius equation, s−1

km mass transfer coefficient, m·s−1

kq overall wall heat transfer coefficient, kW·m−2 ·K−1

Ka adsorption isotherm equilibrium constant, m3·kg−1

Ka0 pre-exponential factor of the adsorption isotherm equilibrium constant, m3·kg−1

lf fluidization ratio
Lp catalyst pellet radius, m
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P pressure, Pa
qA amount of reactant A adsorbed on the catalyst pellet inert support, kmol·kg−1

r radial coordinate in a catalyst pellet, m
rA chemical reaction rate with respect to reactant A, kmol·m−3·s−1

RA modified chemical reaction rate with respect to reactant A, s−1

R universal gas constant, kJ·kmol−1·K−1

S cross section of the fluidized bed, m2

t time, s
T temperature, K
u velocity, m·s−1

u0 superficial gas velocity, m·s−1

Vp catalyst pellet volume, m3

WP process yield with respect to the product P, kmol·m−2·s−1

XA dimensionless concentration of reactant A
yj molar fraction of the jth reactant
z dimensionless coordinate in a fluidized bed

Greek symbols
αA conversion degree of reactant A
αq heat transfer coefficient, kW·m−2·K−1

α
ij
q coefficient of heat interchange between zones i and j, kW·m−3·K−1

βA dimensionless concentration of reactant A in a catalyst pellet
β

ij
gA coefficient of interchange of reactant A between zones i and j, s−1

β
ij
p coefficient of catalyst particles interchange between zones i and j, s−1

δ volume fraction of bubbles in a fluidized bed
εmf void fraction of a fluidized bed at minimum fluidization conditions
εp porosity of a catalyst pellet
η internal effectiveness factor of the catalyst pellet
η0 overall effectiveness factor of the catalyst pellet
φp sphericity of a catalyst pellet
λef effective heat transfer coefficient in a catalyst pellet, kW·m−1·K−1

λg thermal conductivity of gas, kW·m−1·K−1

µg dynamic viscosity, Pa·s
ν stoichiometric coefficient
ρg gas density, kg·m−3

ρp, ρs effective density of a catalyst pellet and solid phase density, respectively, kg·m−3

ζ dimensionless radial coordinate in a catalyst pellet
Subscripts

A, P refers to reactant A and product P, respectively
b refers to bubble zone
bulk refers to bulk gas
e refers to emulsion zone
f refers to feed stream
mf refers to minimum fluidization conditions
p refers to catalyst particle
ref refers to reference conditions
q refers to cooling medium
s refers to particle surface
t refers to terminal conditions

Superscripts
b, c, e, refers to bubble, clouds and wakes, and emulsion zone respectively.

References
1. Kunii, D.; Levenspiel, O. Fluidization Engineering; Butterworth-Heinemann: Boston, MA, USA, 1991.
2. Yates, J.G.; Lettieri, P. Fluidized-Bed Reactors: Process and Operating Conditions; Springer: Basel, Switzerland, 2016.
3. Fernandes, F.A.N.; Lona, L.M.F. Heterogeneous modelling for fluidized bed polymerization reactor. Chem. Eng. Sci. 2001, 56, 963–969.

[CrossRef]
4. Fernandes, F.A.N.; Lona, L.M.F. Heterogeneous modeling of fluidized bed polymerization reactors. Influence of mass diffusion

into polymer particle. Comput. Chem. Eng. 2002, 26, 841–848. [CrossRef]
5. Westerink, E.J.; Westerterp, K.R. Safe design and operation of fluidized-bed reactors: Choice between reactor models. Chem. Eng.

J. 1990, 45, 333–354. [CrossRef]
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24. Bizon, K.; Skrzypek-Markiewicz, K.; Pędzich, D.; Reczek, N. Intensification of catalytic processes through the pellet structuring:

Steady-state properties of a bifunctional catalyst pellet applied to generic chemical reactions and the direct synthesis of DME.
Catalysts 2019, 9, 1020. [CrossRef]
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